

Sheet 10

Question 10.1

- (a) Compute $H^*_{dR}(S^1)$ for $X = S^1$, exhibiting explicit generators for all cohomology classes.
- (b) Consider the map $f_n : \theta \mapsto n\theta$ from S^1 to S^1 . Compute the induced map on cohomology.
- (c) Assuming the Künneth theorem give explicit generators of $H^*_{dR}(T^n)$ where $T^n = (S^1)^n$ is the *n*-torus. Describe the product structure.

Question 10.2

Fix a cover \mathfrak{U} of a manifold X such that all U_i and their intersections are contractible. Define a product on the $C = \check{C}^*(\mathfrak{U}, \mathbb{R})$ by considering

$$f \cup g|_{U_{i_0\cdots i_{p+q}}} = f|_{U_{i_0\cdots i_p}} \cdot g|_{U_{i_p}\cdots U_{i_{p+q}}}$$

for $f \in \check{C}^p(\mathfrak{U}, \underline{\mathbb{R}})$ and $g \in \check{C}^q(\mathfrak{U}, \underline{\mathbb{R}})$. Check it is compatible with the Čech differential. By considering a suitable double complex show that $H_{dR}(X, \mathbb{R})$ and $\check{H}(\mathfrak{U}, \underline{\mathbb{R}})$ are isomorphic as graded algebras.

Question 10.3

Let X be a simply connected space and L a locally constant sheaf on L. Let $x \in X$.

- (a) Show that the support of any section of a locally constant sheaf on an arbitrary space is open.
- (b) Show the restriction map $r: \Gamma(X, L) \to L_x$ is injective.
- (c) * Show that r is also surjective.
- (d) Deduce that L is locally constant.

These questions will be discussed in the exercise class on 27 June 2025. Questions with an asterisk are more challenging.