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CHAPTER 1

Introduction

This is a second course on topology with a focus on homology and cohomology theory.
I will assume you have taken a first course in topology (or done some equivalent reading)
and know about

e Topological spaces, continuous maps, homeomorphisms,

e examples like Euclidean space R", closed balls D", spheres S", surfaces > , real
projective space RP",

e compactness and (path) connectedness,

e building topological spaces out of other spaces and maps by products, gluing along
a map and taking the suspension,

e homotopies between continuous maps and homotopy equivalences between spaces

e the fundamental group of a space X with base point z as the set of homotopy
classes of pointed maps from S! to X, made into a group with the operation of
concatenation,

e ideally you know the category of topological spaces and homotopy classes of maps
between them and know that the fundamental group is a functor from the pointed
homotopy category to the category of groups

If you know about these things you know how to show that the circle S! is not homotopy
equivalent to the point and the torus 72 = S! x S! & ¥}, is not homotopy equivalent to the
genus 2 surface .

You probably don’t know how to show that the sphere S? is not homotopy equivalent to
the point.

One way to prove that is to generalize the definition of the fundamental group to the
higher homotopy groups, but they are very hard to compute.

To illustrate this, here are some homotopy groups of the 2-sphere S? (writing Z,, for the
cyclic groups Z/nZ.):

n 23|45 6|7 8|9 (1011 12 13 14

15

WH(SQ) Z ZQ ZQ Z12 ZQ ZQ Zg Z15 ZQ ZQ ZQXZQ 212XZQ Zg4XZ2XZQ

ZQ XZ2

Instead of studying homotopy groups we will try to count holes in a computable way by
linearizing the problem. (This sentence may not make sense right now.)

The basic idea is that when a loop 7 in X is contractible we can extend v : S — X to
amap 0 : D? — X. Then the loop v may be considered as the boundary of the disk . The
boundary of v itself is trivial as it is a loop. If instead we consider a general path 8 : 1 — X
the boundary would be given by the restriction {0, 1} — X. If these two points are the same
the path is a loop and the boundary should be considered empty. So we say the boundary
of 3 is the formal sum £(1) — 5(0) and it is 0 exactly if 5 is a loop.
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A disk does not have a nice discrete boundary, but we can replace it (homeomorphically!)
by a triangle with three sides. Then we define the boundary to be the alternating sum of the
three sides, and if their concatenation is a given loop 7 then ~ is the boundary of the disk.

We will now develop this theory systematically.

In particular, if this motivational detour was mysterious to you, do not worry.

1. Chain complexes

DEFINITION 1.1. A chain complex is a sequence of abelian groups, (C),)nez, together
with homomorphisms d,,: C,, — C,,_; for n € Z, such that d,,_, od,, = 0.

Let R be an associative ring with unit 1z. A chain complex of R-modules can analogu-
ously be defined as a sequence of R-modules (C),),ez with R-linear maps d,,: C,, — C,,_1
with dn—l o dn =0.

DEFINITION 1.2.
e The d, are differentials or boundary operators.
e x € (), is called an n-chain and n is the degree of x.
e An x € (), with d,,z = 0 is called an n-cycle.

Zn,(C) :={z € C, | dyx = 0}.
o If z € (), is of the form x = d,, .1y for some y € C, 1, then z is an n-boundary.
B,(C) :== Im(dps1) = {dn1y | y € Cppa}-

Note that the cycles and boundaries form subgroups of the chains. As d,, od,,.1 = 0, we
know that the image of d,, 1 is a subgroup of the kernel of d,, and thus

B,(C) C Z,(C).

We will often often drop the subscript n from the boundary maps and write d. Other
times we write d” to emphasize that our differential belongs to a complex (Cp,)nez, which
we often just write C..

DEFINITION 1.3. The abelian group H,(C) := Z,(C)/B,(C) is the nth homology group
of the complex C,.

If H,(C) = 0 we say C, is ezact at C,,. So the homology groups measure the extent
to which C, is not exact. The idea is that an exact chain complex may be large but it is
boring, much like a contractible space in topology. If some element in C, is a cycle it could
be because it is a boundary, but that is not a very interesting reason, any boundary is a
cycle by definition. But if there is an element x that is a cycle, i.e. it has no boundary, such
that x is not itself a boundary, there may be something interesting going on. Much like the
a loop in the fundamental group that cannot by contracted as there is a hole in our space.

If ¢,d € C, are such that ¢ — ¢’ is a boundary, then we say c is homologous to . We
denote by [c] the equivalence class of a ¢ € Z,(C), or equivalently the image of ¢ in H,(C).

EXAMPLE 1.4. (a) Consider

On:{z n=0,1

0 otherwise



and let d; be the multiplication with N € N, then

Z/NZ n=0
0 otherwise.

(b) Take C,, = Z for all n € Z and

" {idZ n odd

0 n even.

What is the homology of this chain complex?
(c) Consider C,, = Z for all n € Z again, but let all boundary maps be trivial. What is
the homology of this chain complex?

DEFINITION 1.5. Let C, and D, be two chain complexes. A chain map f: C, — D, is a
sequence of homomorphisms f,,: C,, — D,, such that d” o f, = f,_1 0 dg for all n, i.e., the
diagram

dy;
Cp——Chy

fnl lfnl
dy

Dn E— Dn—l
commutes for all n.

Such an f sends cycles to cycles and boundaries to boundaries. We therefore obtain an
induced map

H,(f): Ha(C) — H,(D)
via Hy(f)le] = [fad]-

There is a chain map from the chain complex mentioned in Example a) to the chain
complex D, that is concentrated in degree zero and has Dy = Z/NZ. Note, that Hy(f) is
an isomorphism on Oth homology groups.

Are there chain maps between the complexes from Examples b) and ¢)?

Recall that a category is a collection (not necessarily a set) of objects and for every pair
of objects A, B a collection of morphisms Hom(A, B), written f : A — B, such that there is
an associative composition and for each object there is a unit id4 € Hom(A, A).

You know many categories already, even if you don’t know the word. for example you
know the categories of topological spaces and continuous maps, vector spaces and linear
maps or groups and homomorphisms.

PROPOSITION 1.6. There is a category Ch whose objects are chain complexes and whose
morphisms are chain maps.

PROOF. To show the proposition we have to check that the composition of two chain
maps is a chain map, and that the degree-wise identity map is a chain map. These are both
immediate. 0

From now on any map f : C, — D, between chain complexes will be assumed to be a
chain map.



Recall that a functor F': C — D between two categories assigns to every object C of C
a (unique) object F(C) of D and to every morphism f in Hom(C,C") a morphism F(f) in
Hom(F(C'), F(C")), such that composition and unit are respected: F(g) o F(f) = F(go f)
whenever that is defined, and F(id¢) = idp(c).

LEMMA 1.7. For all n the rule C, — H,(C) defines a functor from the category of chain
complezes Ch to the category of abelian groups Ab.

Proor. If f: C, — D, and ¢g: D, — FE, are two chain maps, we have to check that
H,(g9)o H,(f) = H,(go f), but this is immediate from the definition: Both sides send [c] to
lg(f(c))]. We also have to check H,(id¢) = idg, (), which is immediate. O

When do two chain maps induce the same map on homology?

DEFINITION 1.8. A chain homotopy H between two chain maps f,g: C, — D, is a
sequence of homomorphisms (H,),ez with H,: C,, — D, such that for all n

d7?+1 o Hn + anl o dyc; = fn — Yn-

d§+2 dgﬂ dg gy
s n+1 On Cn—l
Hpqq H Hp
2o Joa 2o [ 22
d5+2 D dfﬂ D ap D db_,
e n+1 n n—1

If such an H exists, then f and g are (chain) homotopic: f ~ g.

The name is consciously chosen to remind you of homotopies between continuous maps
and we will later see geometrically defined examples of chain homotopies.

PRrROPOSITION 1.9. (a) Being chain homotopic is an equivalence relation.
(b) If f and g are homotopic, then H,(f) = H,(g) for all n.

PROOF. (a) If H is a homotopy from f to g, then —H is a homotopy from g to f. Each
f is homotopic to itself with H = 0. If f is homotopic to g via H and ¢ is homotopic to h
via K, then f is homotopic to h via H 4+ K.

(b) We have for every cycle ¢ € Z,,(C.):

Hy(f)le] = Hu(g)le] = [fac = gac] = [d})y 0 Hu(e)] + [Hy-y 0 d;/(c)] = 0.
U

DEFINITION 1.10. Let f: C. — D, be a chain map. We call f a chain homotopy equiv-
alence, if there is a chain map ¢g: D, — C, such that go f ~ ids, and fog ~ idp,. The
chain complexes C, and D, are then chain homotopy equivalent.

By Proposition [1.9] and functoriality of homology we see that if f is a chain homotopy
equivalence with inverse g then H,(f) has inverse H,(g), thus we have:

COROLLARY 1.11. If f : Cy, — D, is a chain homotopy equivalenve then H,(f) is an
isomorphism for each n.

However, chain complexes with isomorphic homology do not have to be chain homotopi-
cally equivalent. (Can you find a counterexample?)
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DEeFINITION 1.12. If C, and C! are chain complexes, then their direct sum, C, & C., is
the chain complex with

C.oC),=C,eC, =C, xC!
with differential d = dg given by
dg(c,d) = (de,dd).

Similarly, if (C’ij ), d") e is a family of chain complexes, then we can define their direct
sum as follows:

P, =Py

j€J jeJ
as abelian groups and the differential dg is defined via the property that its restriction to
the jth summand is d).

2. Singular homology
DEFINITION 2.1. For every n we define the (topological) n-simplex A™ as
A" ={(to,...,tn) ER™™| Y t; =1,t; > 0}.
EXAMPLE 2.2. A% is a point, A! a line segment, A? a triangle, A? a tetrahedron.

By definition A" C R™"!, but we may always consider A" C R**! c R**2 C .. ..

The boundary of Al consists of two copies of A°, the boundary of A? consists of three
copies of Al. In general, the boundary of A" consists of n + 1 copies of A"~!. (Note this is
not the boundary in the topological sense as subspaces of R**! but this is just intuition for
the following formalization.)

We need the following face maps for 0 <i < n

d; = d,?_li Am1 — An, (to, . 7tn—1) — (to, ey tiin, 00, .. 7tn—1)-

We will write e; for the standard unit vectior that is 1 in the i-th component and 0
otherwise. (We start counting at i = 0.) The image of d ' in A" is the face that is opposite
to e;. It is the convex hull of ey, ..., e;_1, €;11,...,€y.

LEMMA 2.3. Concerning the composition of face maps, the following rule holds:
i todi P =di  od!?, 0<j<i<n
For example we may consider the two maps dy o dy and dg o difrom A to A%, We have

(A(]Olz()){eo} = {(1)} and dz(do((1))) = d2((0,1)) = (0,1,0) and do(di(eo)) = do((1,0)) =

PROOF. Both expressions yield
d?_l o d?_Q(to, e ,tn,Q) = (to, PN ,tjfl, O7 e ,ti,Q, 0, e atn72) = d}l_ld?__lz(to, e ,tnfg).
O]

REMARK 2.4. More generally any injection f : {0,...,k} — {0,...,n} induces a map
AF — A™ by sending e; to ey(;) and extending linearly.

Let X be an arbitrary topological space, X # &.
8



DEFINITION 2.5. A singular n-simplex in X is a continuous map «a: A" — X.

DEFINITION 2.6. Let S,(X) be the free abelian group generated by all singular n-
simplices in X. We call S,,(X) the nth singular chain module of X.

Elements of S,,(X) are finite formal sums Zie ; Ao with A; = 0 for almost all 4 € I and
a;: A" — X.

For all n > 0 there are non-trivial elements in S, (X ), because we assumed that X # &
we can always take an xy € X and the constant map x,,: A" — X as a. By convention, we
define S, (@) = 0 for all n > 0. (It’s the free abelian group on no generators.)

If we want to define maps from S,,(X) to some abelian group then it suffices to define
such a map on generators.

EXAMPLE 2.7. What is Sp(X)? A continuous a: A’ — X is determined by its value
a(eg) =: o € X, which is a point in X. A singular O-simplex ) ., Ajo; can thus be identified
with the formal sum of points ) ., Az,

For instance if you count the zeroes and poles of a meromorphic function with multiplic-
ities then this gives an element in Sy(X). In algebraic geometry a divisor on a curve X is
an element in Sp(X).

DEFINITION 2.8. We define 0;: S, (X) — S,_1(X) on generators
Oi(a) = aod
and call it the ith face of «.
On S, (X) we therefore get 0;(3_; Aja;) = 325 Aj(aj 0 dr .
LEMMA 2.9. The face maps on S,(X) satisfy
0;00;,=0;,_100;, 0<j<i<n.
Proor. This follows directly from Lemma [2.3] U

DEFINITION 2.10. We define the boundary operator on singular chains as 9: 5, (X) —
Sn-1(X), 0 =321 (=1)'0:.

LEMMA 2.11. The map O is a boundary operator, i.e., o 0 = 0.

PRrROOF. We calculate

n—1 n
D00 = (> (=1Y0;) 0 D _(=1)'3:) =Y > (~1)"79; 00,
j=0 i=0
= > (-1)Mge0+ Y (-1)M9;00
0<j<isn O<igyjsn—1
— Z (—1)™0,_1 00, + Z (—1)"99; 0 9; = 0.
0<j<i<n 0<i<j<n—1

Where in the last line we relabelled i — 1 as j and 7 as ¢ in the first summand to identify it
with the negative of the second summand. U



We therefore obtain the singular chain complex, S.(X),

0 0

Sp(X)—258, 1 (X)L —. . —L8 (X)—Z5.80(X)——0.

The singular chain complex is very large and unwieldy! But its homology contains important
information about X and we will find many ways of computing this homology without ever
having to worry about classifying all maps from A* to X.

We abbreviate Z,(S(X)) by Z,(X), B,(S(X)) by B,(X) and H,(S(X)) by H,(X).

DEFINITION 2.12. For a space X, H,(X) is the nth singular homology group of X.

Note that Zy(X) = Sp(X) as S_1(X) = 0.

As an example of a 1-cycle consider a 1-chain ¢ = o+ 3+ where a, 8,v: Al — X such
that a(e;) = B(eo), Ble1) = v(eo) and v(e;) = a(ep) and calculate that dc = 0. (One way to
obtain such a 1-cycle is to take a loop and divide it into three parts.)

We need to understand how continuous maps of topological spaces interact with singular
chains and singular homology. So let f: X — Y be a continuous map.

DEFINITION 2.13. The map f, = S,(f): Su(X) — S,(Y) is defined on generators
a: A" — X as
fola) = foa: Ar— L x Ty,
LEMMA 2.14. The singular chain complex defines a functor S, : Top — Ch. For every n
the singular homology H,, defines a functor Top — Ab.

ProOOF. We have to show that for any continuous map f : X — Y the induced map
fn t Sn(X) = S,(Y) assemble into a chain map f,, i.e. we need

Su(X) —L" s 5. ()

aXJ lBY
fn—l

Sp_1(X) —— S, 1(Y).
But by definition

0" (fa(@) =D (—1)(foa)od; =Y (-1)'fo(aod) = fu1(0%a).
=0 i=0
The identity map on X induces the identity map on S, (X) for all n > 0 and if we have
a composition of continuous maps

x1iywy 2.z

then Sy(g 0 f) = Su(g) © Su(f)-
As f, is a chain map it induces a map on homology which is functorial by Lemma[l.7, O

In any category a morphism f with an inverse morphism ¢ such that fog and go f
is called an isomorphism. It follows directly from the definition that any functor preserves
isomorphisms. Thus by Lemma it follows that homeomorphic spaces have isomorphic
homology groups:

X=2Y = H,(X)=ZH,(Y) for all n > 0.

10



Our first (not too exciting) calculation is the following. We will denote the 1 point space
by .

PROPOSITION 2.15. The homology groups of a one-point space * are trivial but in degree

zero,
Hy (%) = 0, Z.fn>(),
Z, ifn=0.

PROOF. For every n > 0 there is precisely one continuous map «: A™ — *, namely the
constant map. We denote this map by x,. Then the boundary of ,, is

" . - 4 Kn_1, N even
Okin = > (~1)'kpodi =Y (~1)'kn_1 = { ’ ’
P P 0, n odd.

For all n we have S, (pt) = Z generated by k,, and therefore the singular chain complex looks
as follows:

0=0 o0=id 0=0
ey M Ny Miic N/ O

3. HO and H1
Next we will compute the lowest homology groups. We begin by defining a map:

PROPOSITION 3.1. For any topological space X there is a homomorphism ¢: Hy(X) — Z
with € # 0 for X # @.

PROOF. For any topological space there is a unique projection map to the 1 point space.
By Lemma this induces a map on homology, so Hy(X) maps to Hy(x) = Z.

We can also construct e more explicitly: By definition Sy(@) is zero, so Ho(@) = 0 and
in this case we define £ to be the zero map.

If X # &, then we define e(a) =1 for any a: A° — X, thus e(3,c; hiowi) = >, A on
So(X). As only finitely many A; are non-trivial, this is in fact a finite sum.

We have to show that this map is well-defined on homology, i.e. that it vanishes on
boundaries. Let Sy(X) 5 ¢ = 9b be a boundary and write b = Y°._; v;5; with §;: A — X.
Then we get

(%:(921/2-@-:Zw(ﬁiOdo—ﬁz‘OdﬂZZVzﬂiodo—ZVzﬂiodl

icl icl icl icl
and hence
e(c) = €(0b) = ZV" - Zyi = 0.
iel iel

O

If X # &, then any a: A° — X can be identified with its image point, so the map ¢ on
So(X) counts points in X with multiplicities.

PROPOSITION 3.2. If X is a path-connected, non-empty space, then €: Hyo(X) = Z.
11



PROOF. As X is non-empty, there is a point x € X and the constant map x, with value
x is an element in So(X) with e(k,) = 1. Therefore € is surjective. Any other generator of
So(X) is of the form r, for some point y € X and there is a continuous path w: [0,1] — X
with w(0) = z and w(1) = y. We define a,,: A' — X as
Ckw(to,tl) = (JJ(l — to)
Then
0(aw) = Oo(w) — O1(ay) = ay(er) — ayleg) = ay,(0,1) — a,(1,0) = Ky — Ky,
and the two generators k,, k, are homologous. This shows that ¢ is injective. 0

From now on we will identify paths w and their associated 1-simplices a,.

COROLLARY 3.3. If X is of the form X = | |,.; X; such that the X; are non-empty and
path-connected, then

Hy(X) = Pz
iel
In this case, the zeroth homology group of X is the free abelian group generated by the
path-components.

PROOF. As the A™ are connected the singular chain complex of X splits as the direct
sum of chain complexes of the X;:

Sn(X) = @ Sn(XZ)
icl
for all n. Boundary summands 0; stay in a component, in particular,
0: S1(X) = P S1(X;) = @D Sol(Xi) = So(X)
iel i€l
is the direct sum of the boundary operators 0: S1(X;) — So(X;) and the claim follows. [

In fact the same proof shows that H, (X) = ®;e;H,(X;) for all n in the situation of the
corollary.

Next, we want to study H;. I have already been hinting it relates to the fundamental
group. But the fundamental group is not abelian, while H; is, we have to fix that.

DEFINITION 3.4. Let G be an arbitrary group, then its abelianization, Gy, is G/|G, G].

Recall that |G, G| is the commutator subgroup of G. That is the smallest subgroup of G
containing all commutators ghg 'h™!, g, h € G. Tt is a normal subgroup of G: If ¢ € |G, G|,
then for any g € G the element gcg~'c! is a commutator and also by the closure property
of subgroups the element gcg~'c™'c = gcg™! is in the commutator subgroup. Thus G, is a
group and since every commutator is contained in [G,G] it is in fact abelian.

Let now X be path-connected and z € X.

DEFINITION 3.5. Let h: m(X,2) — H;(X) be the map, that sends the homotopy class
of a closed path w, [w],,, to its homology class [w] = [w]y,. This map is called the Hurewicz-
homomorphism.

We will need a lemma to ensure that this is in fact well-defined!

12



LEMMA 3.6. Let wy,wq,w be paths in X.

(a) Constant paths are null-homologous.

(b) If wi(1) = we(0), then wyxws—wy —ws is a boundary. Here wyxws is the concatenation
of wy followed by wy.

(¢) If w1(0) = wa(0),wi(1) = we(l) and if wy is homotopic to we relative to {0,1}, then
wy and we are homologous as singular 1-chains.

(d) Any 1-chain of the form @ x w is a boundary. Here, 0(t) := w(1 —t).

Note that I used the opposite convention for wq * wy in the lecture.

PROOF. For a), consider the constant singular 2-simplex a(to,t1,t2) = x and ¢, the
constant path on z. Then da = ¢, — ¢, + ¢, = ¢,.
For b), we define a singular 2-simplex 3: A? — X as follows.

€2
W1 * W W9

€0 w1 €1

We define 3 on the boundary components of A? as indicated and prolong it constantly
along the sloped inner lines. Then

0f=pody—Bod + Body=wy—wy*xwy+ wi.

For ¢): Let H: [0,1] x [0,1] — X a homotopy from w; to ws. As we have that H(0,t) =
w1(0) = wy(0), we can factor H over the quotient [0, 1] x [0,1]/{0} x [0, 1] = A? with induced
map h: A2 — X. Then

Oh=hody—hody+ hods.

The first summand is null-homologous, because it’s constant (with value w;(1) = wy(1)), the
second one is ws and the last is wy, thus w; — wy is null-homologous.
For d): Consider v: A? — X as indicated below.

w(1) w

€0 ) €1

Alternatively, remember from your topology course that @ x w is homotopic to the constant
map and apply (b). O

COROLLARY 3.7. The Hurewicz map is a well-defined homomorphism.
13



PROOF. By Lemma [3.6] (b)
h(lwillwa]) = hfwr * wa]) = [wi] + [wa] = A(lwn]) + A([wa])
Well-definedness is Lemma (c). O

PROPOSITION 3.8. Let X be path connected and x € X. The Hurewicz homomorphism
induces an isomorphism
7T1<X, x)ab = Hl(X)

PROOF. As H;(X) is abelian the commutator subgroup [m (X, ), 71 (X, z)] must be sent
to 0 and we have the following factorization:

>

m (X, x)

» >~
hab

WI(X, x)ab = 7T1(X7 J])/[Wl(X, x)vﬂ-l(X7 J:)]

H, (X)

We will construct an inverse to h,p,. For any y € X we choose a path u, from x to y. For
y = x we take u, to be the constant path on x. Let o be an arbitrary singular 1-simplex
and y; = a(e;). Define ¢: S1(X) — 71 (X, 2)ap on generators as ¢(o) = [uy, * o * 4y, ] and
extend ¢ linearly to all of S;(X), keeping in mind that the composition in 7 is written
multiplicatively.

We have to show that ¢ is trivial on boundaries, so let 3: A2 — X. Then

P(0B) = p(Body— Bodi+ Body)=d(Body)p(Bod) " d(Bods).
Abbreviating 3 o d; with «; and writing y; for the vertices of 8 we get as a result
[y, * Qg * Uy, | [Uyo * Q1 % Uyy] ™ gy * i % Ty, | = [tyy % Qg * Ty, * Uy * Q% Uy * Uy, * Ay * Ty ).

Here, we've used that the image of ¢ is abelian. We can reduce u,, * u,, and 4,, * u,, and
are left with [uy, * ag * ag * @y * Uy, | but as * o * a7 is the closed path tracing the boundary
of 5 and therefore it is null-homotopic in X. Thus ¢(93) = 0 and ¢ passes to a map

¢: Hl(X) — 7T1(X, x)ab.
The composition ¢ o h,;, evaluated on the class of a closed path w gives

¢ 0 hap|Wlr, = Olw]h, = [Ug * W Ugr, -

But we chose u, to be constant, thus ¢ o ha, = idx (x,0)-

If c =) A\ is a cycle, then h,y, o ¢(c) is of the form [c + D.| where the D -part comes
from the contributions of the u,,. The fact that d(c) = 0 implies that the summands in D,
cancel and thus h,y, 0 ¢ = idg, (x). OJ

Note, that abelianization doesn’t change anything for abelian groups, i.e., whenever we

have an abelian fundamental group, we know that H;(X) = m(X,z). In general we lose
some information, which is the result of our linearization procedure.

ExAMPLE 3.9. Knowledge of m; immediately gives the following:
(a) Hi(S") =0, forn>1, H(S')~Z.
(b) H (S" x ... x SY) = 7",

—_———
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(c) Hi(S'VSY) ¥ (Z 7)., = Z @& Z. Tt is an exercise in group theory to see that the
natural map from Z x Z to Z @ 7Z induces an isomorphism on abelianizations.
(d) For real projective space we have

mErpy= s =l
' “z/2z, n>1.

4. Homotopy invariance

Before exploring higher homology groups we will show that two continuous maps that are
homotopic induce chain homotopic maps on singular chains and thus identical maps on the
level of homology groups. Thus homology is homotopy invariant and a good tool to study
spaces up to homotopy equivalence (rather than up to homeomorphism).

Heuristics: If a: A™ — X is a singular n-simplex and if f, g are homotopic maps from X
to Y, then the homotopy from f o« to goa is a map from A™ x [0, 1]. We want to translate
this geometric homotopy into a chain homotopy on the singular chain complex. To that end
we have to cut the prism A™ x [0, 1] into (n + 1)-simplices.

In low dimensions this is easy: A° x [0,1] is homeomorphic to A', A! x [0,1] = [0, 1]
and this can be cut into two copies of A? and A? x [0,1] is a 3-dimensional prism and that
can be glued together from three tetrahedra, e.g.

As you might guess now, we use n + 1 copies of A" to build A" x [0, 1]. We introduce
some notation first. Embedding A" x [0,1] € R""! x R we denote the vertices (e;, 0) of the
bottom simplex by v; and the vertices (ej, 1) of the top simplex by w;.

Then any ordered subset (qo,...,qn+1) of 4+ 2 of the points {wo,...,vn, wo, ..., w,}
determines a map A" — A" x [0, 1] by sending e; to the point ¢; and extending linearly.
(Equivalently we send (to, ..., tn41) t0 D> t;q;.

We denote this map by [qo, - - ., Gni1]-

For i = 0,...,n define p;: A" — A™ x [0,1] as the map [vo, ..., s, w;, . . ., Wy

We then define maps P;: S, (X) — Spi1(X x [0,1]) via P(a) = (o x id) o p;:

AP AT [0,1] 22 X x [0, 10.

For k = 0,1 let ji: X — X x [0,1] be the inclusion = + (z,k). We will show that
P =Y (—1)'P,; gives a chain homotopy between S, (jo) and S,(j1).

LEMMA 4.1. The maps P; satisfy the following relations
15



(a) Oy o Py = Sn(j1),
(b) an—i-lOPn:Sn(jO);
(c) O;0 P, =0;0 P,y for 1 <i<n.

(d)

@OPZ: PiOaj—h f0r2<]_2
Piod;, foriz

PROOF. Note that it suffices to check the corresponding claims for the p;’s and d;’s, i.e.
Oy o Py = S,(j1) if poody = (idan, 1) ete.

It also suffices to check the claims on the vertices e; as all maps are linear extensions of
maps on the vertices.

For the first two points, we note that on A™ we have

po o do(e;) = poleiv1) = (€5, 1)
and
Pn © dn+1 (ez) = pn(ez) = (6i7 0)
forall0 <7< n.
For c), one checks that p; o d; = p;_1 od; on A™: both send e; to w; if ¢ < j and to v,
otherwise.

For d) we first consider the case i > j+ 1. We need to compare p;od; and (d; xid)op;_.
In other words, the following diagram commutes:

Artl P AR % [0, 1]

An
Pi—1
dj xid
A" x [0,1] —— A" x [0, 1]
Indeed one checks that by both routes

(ex,0) for k < j
er — § (ex—1,0) for j <k <i
(ex_1,1) fori <k

The remaining case follows similarly. U

LEMMA 4.2. The map P =" (—=1)"Pi: Sp(X) = Sp1(X x [0,1] is a chain homotopy
between (Sy,(jo))n and (Sy(j1))n, ie., o P+ Pod = S,(j1) — Sn(jo)-

PRrRoOOF. We take an a: A" — X and calculate

n n+l n—1 n
OPa+ Pda =Y > (-1)"9;Pa+ > > (~1)"7Poa.
i=0 j=0 i=0 j=0

16



If we single out the terms involving the pairs of indices (0,0) and (n,n + 1) in the first sum
and use Lemma [4.1] (a) and (b), we are left with

n—1 n
Sn(j1) () = Sp(Jo) () + Z (_1>i+jajpi@+ZZ(_1)i+jPiaja-
(ivj)7£(070)7(n:n+1) =0 5=0

We now split the third sum according to the cases i1 < j—2,1=7—1,7and i > 75+ 1. By
Lemma [4.1| (c) the cases i = j — 1,7 cancel and we can use (d) to cancel the other two
cases with the last summand of the equation. Thus we see that only the first two summands
survive. U

So, finally we can prove the main result of this section:

THEOREM 4.3 (Homotopy invariance). If f,g: X — Y are homotopic maps, then they
induce the same map on homology.

PROOF. By Lemmal4.2] we know that S(jy) and S(j;) are chain homotopic. But compos-
ing a chain homotopy with a chain map gives another chain homotopy (check this!). Thus
S(f) = S(H o jo) = S(H) 0 5(jo) ~ S(H) o S(j1) = S(9)- 0

COROLLARY 4.4. If two spaces X,Y are homotopy equivalent, then H.(X) = H.(Y). In
particular, if X is contractible, then

7 _
Ho(X) 2 ,  forx 'O,
0, otherwise.
EXAMPLE 4.5. (a) As R, the closed disk D" and the open disk D" are contractible

for all n, the above corollary gives that their homology groups are trivial except in
degree zero where it consists of the integers.

(b) As the Mobius strip is homotopy equivalent to S!; we know that their homology
groups are isomorphic (and we already know Hy and Hj).

(c) If you know about vector bundles: the zero section of a vector bundle induces a
homotopy equivalence between the base and the total space, hence these two have
isomorphic homology groups.

5. The long exact sequence in homology

Our next goal is to compute singular homology groups by breaking up spaces into sub-
spaces.

But before we can move on to topological applications we need some more algebra of
chain complexes.

DEFINITION 5.1. A sequence

fi Az’—',—l fic1
of homomorphisms of abelian groups (indexed over the integers) is called ezact at A; if the
image of f;,1 is the kernel of f;.

The sequence is called (long) exact, if it is exact at every A;.

fi
LA,

17



An exact sequence of the form

is called a short exact sequence.

ExaMPLE 5.2. The sequence

0——Z—27— "7,/ 27——0

is a short exact sequence.

A short exact sequence 0 + A — B — C' — 0 is called split it B= A® C.
The following lemma will be useful later.

LEMMA 5.3. A short exact sequence 0 — A ENY: I P split iof and only if there
exists a right inverse r of g if and only if there exists a left inverse s of f.

PROOF. Given r we note that rg(b) — b is in the image of A, so we define s : B — A by
b rg(b) — b. It is a homomorphism and sf(a) = a.

Given s we define r(c) as follows. Pick any b in g~'(c) and let 7(c) = b — fs(b). This
is independent of b as g(b') = g(b) implies &’ — b is in the image of A, und thus equal to
fs(b) — fs(b'). It follows that r(b) = r(b').

We define homomorphisms f+7r: A®C — B and (s,g) : B— A®C and compute that
(5,9)(f +7)(@,¢) = (s(@), gr(c)) = (@) and (f +7)(s,)(b) = f3(b) +rg(b) = b, providing
the desired isomorphism.

If conversely B = A @ C we let r be the inclusion from C' and s the projection to A. [

By definition a chain complex C, (considered as the sequence of homomorphisms d;) is
exact at C; if H;(C) = 0. Thus homology measures failure of exactness.

If ©: U — A is an injection/monomorphism, then 0 — U — A is exact at U and
0—-U—A— A/U — 0 is a short exact sequence.

Similarly, a surjection/epimorphism ¢: B — (@) gives rise to a sequence B — @) — 0
exact at Q).

An isomorphism ¢: A = A’ gives rise to an exact sequence 0 — A LAY

DEerINITION 5.4. If A,, B,,C, are chain complexes and f,: A, — B, g: B, — C, are
chain maps, then we call the sequence

exact a B,, if the image of f,, is the kernel of g, for all n € Z.
18



Thus an exact sequence of chain complexes is a commuting double ladder

d d d
~ fat n+1
Apy1 — By — Cn+1
d d d
f g -
A, " B, 0,
d d d
fn—l gn—1

in which every row is exact.

EXAMPLE 5.5. Let p be a prime, then

0 0 0
7z—4 70 .9
p p?
7—> 7 —" 57/
T T id
7.)p7 —2— 7.)p*7 —— 7./ pZ.
0 0 0

has exact rows and columns, in particular it is an exact sequence of chain complexes. Here,

7 denotes varying canonical projection maps.

ProprosITION 5.6. If O A, d B, g C. 0 is a short exact sequence of chain
complexes, then there exists a homomorphism ¢: H,(Cy) — H,_1(A,) for all n € Z which is

natural, i.e. if




is a commutative diagram of chain maps in which the rows are exact then H, 1(a) o =

6o Hn(7),
H,(C.) —> H,—1(A,)

Hn(v)l lHn—l(Oé)

H,(C) — H, 1 (AL)
The method of proof is an instance of a diagram chase. The homomorphism ¢ is called
connecting homomorphism.

PrROOF. We show the existence of a ¢ first and then prove that the constructed map
satisfies the naturality condition.

a) Definition of ¢:

Is ¢ € C,, with d(c) = 0, then we choose a b € B,, with g,b = ¢. This is possible because
gn is surjective. We know that dg,b = dc = 0 = ¢,_1db thus db is in the kernel of g,_1,
hence it is in the image of f,,_;. Thus there is an a € A,,_; with f,_1a = db. We have that
fn_oda = df,_1a = ddb = 0 and as f,_» is injective, this shows that a is a cycle.

We define d]c| := [a].

B,>b—2—cecC,

A 1 sal S dbe B, |

In order to check that ¢ is well-defined, we assume that there are b and b’ with ¢,b =
gnb' = c¢. Then g,(b —b") = 0 and thus there is an a € A,, with f,a = b — . Define da’ as
a — da. Then

fn_la/ = fn_la - fn—ldd =db—db + db/ = db/
because f,,_1da = db— db'. As f,_1 is injective, we get that @’ is uniquely determined with
this property. As a is homologous to @’ we get that [a] = [d/] = d]c|, thus the latter is
independent of the choice of b.

In addition, we have to make sure that the value stays the same if we add a boundary
term to ¢, i.e. take ¢ = ¢+ dé for some ¢ € C,, ;. Choose preimages of ¢, ¢ under g, and
G, 1.e. b and b with g,b = ¢ and ¢,.1b = & Then the element ¥’ = b+ db has boundary
db/ = db and thus both choices will result in the same a.

Therefore §: H,(Cy) — H,_1(A.) is well-defined.

b) We have to show that § is natural with respect to maps of short exact sequences.

Let ¢ € Z,(C,), then d0[c] = [a] for a b € B, with g,b = ¢ and an a € A,_; with
fn_1a = db. Therefore, H, 1(a)(d[c]) = [an_1(a)].

On the other hand, we have

froi(an_1a) = Bn_1(fu-1a) = Bu_1(db) = dB,b
and
g;z(ﬁnb) = Yngnb = e
and we can conclude that by the construction of
0[7n(c)] = [an-1(a)]
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and this shows 0 o H,,(y) = H,_1(«) 0. O
With this auxiliary result at hand we can now prove the main result in this section:

PROPOSITION 5.7. For any short exact sequence

0—— A~ B, ——0
of chain complexes we obtain a long exact sequence of homology groups
(AN N g, (B) A () — 2 Hy (AN

PROOF. a) Exactness at H,(B,):

We have H,,(g)o H,(f)[a] = [gn(fn(a))] = 0 because the composition of g, and f, is zero.
This proves that the image of H,(f) is contained in the kernel of H,(g).

For the converse, let [b] € H,(B,) with [g,b] = 0. Then there is a ¢ € C,, 4 with dc = g,b.
As g, 1 is surjective, we find a b’ € B, with g,,10' = c. Hence

gn(b—dV') = g,b — dgp1b' = dc — dc = 0.

Exactness gives an a € A, with f,a = b — db’ and da = 0 and therefore f,a is homologous
to b and H,(f)[a] = [b] thus the kernel of H,(g) is contained in the image of H,(f).

b) Exactness at H,,(C.):

Let b € H,(B,), then 0[g,b] = 0 because b is a cycle, so 0 is the only preimage under
fn—1 of db = 0. Therefore the image of H,(g) is contained in the kernel of ¢.

Now assume that d[c] = 0, thus in the construction of §, the a is a boundary, a = da.
Then for a preimage of ¢ under g,, b, we have by the definition of a

d(b— f,a) = db—df,a = db— f,_1a =0.

Thus b — f,a is a cycle and g,(b — fna) = gnb — gnfnad = gub — 0 = g,b = ¢, so we found a
preimage for [c] and the kernel of ¢ is contained in the image of H,(g).

c¢) Exactness at H,_1(A,):

Let ¢ be a cycle in Z,,(C,). Again, we choose a preimage b of ¢ under g, and an a with
fn-1(a) = db. Then H,_1(f)d[c] = [fu-1(a)] = [db] = 0. Thus the image of § is contained in
the kernel of H,,_1(f).

Ifae Z,1(A,) with H,_1(f)[a] = 0. Then f,_1a = db for some b € B,,. Take ¢ = g,b.
Then by definition §[c] = [a]. O

6. The long exact sequence of a pair of spaces

Let X be a topological space and A C X a subspace of X. Consider the inclusion map
i: A— X, i(a) = a. We obtain an induced map S, (i): S,(A) — S,(X), but we know that
the inclusion of spaces doesn’t have to yield a monomorphism on homology groups. For
instance, we can include A = S! into X = D?.

We consider pairs of spaces (X, A).

DEFINITION 6.1. The relative chain complez of (X, A) is
Si(X,A) == S.(X)/S:(A)
with differential induced by the differential on S, (X).
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Note the differential on S.(X) descends to the quotient as it preserves S.(A).
S, (X, A) is isomorphic to the free abelian group generated by all n-simplices 5: A" — X
whose image is not completely contained in A, i.e., B(A") N (X \ A) # @.

e Elements in S, (X, A) are called relative chains in (X, A)

e Cycles in S, (X, A) are represented by chains ¢ whose boundary lies in A. These are
relative cycles.

e Boundaries in S, (X, A) are chains ¢ in X of the form 0%b+ a where a is a chain in
A, these are relative boundaries.

The following facts are immediate from the definition:

(a) Sp(X, @) =S5, (X).
(b) Sn(X,X)=0.
() Sp(XUX' X)) =S, (X).
DEFINITION 6.2. The relative homology groups of (X, A) are
Hy (X, A) == Hn(5.(X, A)).
THEOREM 6.3. For any pair of topological spaces A C X we obtain a long exact sequence

O H (A (X ) Hoy (X, A)— s H, (A2

For a map of spaces f: X — Y with f(A) C B C Y, we get an induced map of long
exact sequences

S H (A Y g (X)) —— Ho (X, A) = H, o (A)

lHn(fA) lHn(f) lHn(f) lHnl(ﬂA)

. H,(B) —— H,(Y) —— Hu(Y,B) —— Hy, 1 (B) — . ..
1) Hn('l) ) anl(’b)

A map f: X — Y with f(A) C B is denoted by f: (X, A) — (Y, B).
PROOF. By definition of S.(X, A) the sequence

0 S.(4) S.(i)

is an exact sequence of chain complexes and by Proposition we obtain the first claim.
For a map f as above the following diagram

S (X)—55.(X, A)——0

0—— 5, (4) 29,

J/S'rL(f'A) S’n(f) an(f)/sn(flfl)

0 —— S(B) 2 5, (V) —s S,(Y, B) —— 0

Sp(X) — S (X, A) —— 0

commutes, thus the second claim follows from naturality of the boundary map in Proposition

2.6l U
EXAMPLE 6.4. Let A =S""1 and X = D", then we know that H;(i) is trivial for j > 0.
From the long exact sequence we get that 6: H;(D", S 1) = H;_4(S"~ 1) forj>1landn > 1.
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PROPOSITION 6.5. Ifi: A — X is a weak retract, i.e. if there is an r: X — A with
roi~idy, then
H,(X)= H,(A) @ H,(X,A), 0<n.
PRrROOF. From the assumption we get that H, (r)oH,(i) = H,(id4) = idp,(a) for all n and

hence H, (i) is injective for all n. Thus all boundary maps are trivial and 0 — H,,(A) M@,

H,(X) — H,(X,A) — 0 is exact for all n.
As H,(r) is a left-inverse for H,(i) we obtain a splitting
H,(X)=H,(A) & H,(X, A)
by Lemma 5.3 0
Let us now consider the case where A is just a point. In that case the projection X — *
makes z : * — X into a weak retract and we have H,(X) = H,(X,z) @ H,(x). For a path
connected space this just splits off Ho(X) = Z and allows us to concentrate on the more

interesting parts.
In fact H(X, ) is isomorphic to another construction:

DEFINITION 6.6. We define H,(X) := ker(H,(¢): H,(X) — H,(*)) and call it the
reduced nth homology group of the space X.

We have the following straightforward observations:

e Note that H,(X) = H,(X) for all positive n.
e If X is path-connected, then Hy(X) = 0.
e For any choice of a base point x € X we get

H,(X) = H,(X, )
e We can also augment the singular chain complex S,(X) and consider S, (X):
51 (X)——S5p(X)——Z——0.
where e(a) = 1 for every singular O-simplex . Then for all n > 0,
H,(X) = H,(S,(X)).
LEMMA 6.7. The assignment X — H,(X)) is a functor Top — Ab.

_ ProoF. This just means that for a continuous f: X — Y we get an induced map
H,(f): H.(X) — H,(Y) such that the identity on X induces the identity and composition
of maps is respected.

All maps f : X — Y are compatible with the projections px : X — %, thus f induces

amap H(X) — H(Y) on the kernels of H,(px). Functoriality follows from functoriality of
H,. U

We can also define relative reduced homology:

DEFINITION 6.8. For @ # A C X we define

H, (X, A) = Hy(X, A).
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PROPOSITION 6.9. For each pair of spaces, there is a long exact sequence

S —— Hy(A) — Hy(X) — Ho(X, A) —— Hy, 1 (A) — ...

_ Proor. If A = () the result is trivial. If A # () we consider the short exact sequence
Si(A) = S.(X) — S«(X, A) (note there is no tilde on the rightmost term) and use Proposi-
tion 5.7 0

We have one more long exact sequene for relative homology:

DEFINITION 6.10. If X has two subspaces A, B C X, then (X, A, B) is called a triple, if
BCcACX.

Any triple gives rise to three pairs of spaces (X, A), (X, B) and (A, B) and accordingly
we have three long exact sequences in homology. But there is another one.

PROPOSITION 6.11. For any triple (X, A, B) there is a natural long exact sequence

... ——Hy(A, BY——H,(X, B)——H, (X, A)—2+H,_1(A, B)—. ..
Proor. Consider the sequence
0——=50(A)/Sn(B)——5(X)/Sn(B)—=5.(X)/5n(A)—0.
This sequence is exact by basic algebra, because S, (B) C S,(A4) C S,(X). O

COROLLARY 6.12. Let (X, A, B) be a triple with i : B C A a homotopy equivalence.
Then H,(X,A) = H,(X, B) for all n.

PROOF. By TheoremHn(i) is an isomorphism for all n, thus by TheoremHn(A, B) =
0 for all n and by Proposition we have H, (X, B) = H,(X, A) for all n. O

In fact, the sequence in Proposition [6.11] is part of the following commutative diagram
displaying four long exact sequences braided together.

Ny T

Hn+1(X7 Hn<A7B) Hn—l(B)

A)\Hn(A)/ H,(X, B)/ \ .
7 7

\
H,(B) H,(X) H,(X,A)

In particular, the connecting homomorphism §: H,,(X, A) — H,_1(A, B) is the composite
§ = a6 §XA (unravelling definitions).
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7. Barycentric subdivision

We will now simplify relative homology groups in order to compute them. The key will be
to replace spaces by smaller spaces by gluing pieces together or removing (excising) pieces.
The problem is that we might have some “large” singular simplex that does not land neatly
within one of the pieces. The solution is to replace singular simplices by smaller ones by a
process called barycentric subdivision.

We will restrict ourselves to a special kind of simplex first.

DEFINITION 7.1. A singular n-simplex a: A™ — AP is called affine, if

Oé(z tzez) = Z t,oz(e,)
i=0 i=0
We denote by S%/(AP) the subcomplex of affine simplices of AP.

If we write o(e;) as v; then a(d 1 tie;) = > - t;v;. The map « is determind by the v;
which we call the vertices of a.

Similar to Section [d] we also write oo = [vg, . .., v,]. We note that dia = [vg, ..., 0;, ..., V)
where 0; indicates the entry with index i is skipped. Note that with this notation [v] is the
constant function with value v.

First, we construct the cone of a simplex. Let v € AP and let a: A™ — AP be a singular
n-simplex in AP.

DEFINITION 7.2. The cone of a = [y, ..., v,] with respect to v is K, = [vg, ..., Up, V).

We could also defines this for a general singular simplex as

Kv(oz): (to, ce 7tn+1) — {

(1 _tn+1)05(1_i:+17"'71_§—2+1> +tn+1va tn+1 < 17

U, tn+1 - 1
K,(a) is again affine if « is, so extending K, linearly gives a map
K,: S9T(AP) — ST (AP).

n+1
LEMMA 7.3. The map K, satisfies

(a) OK,(c) = e(c)[v] — ¢ where ¢ € So(AP) and ¢ is the augmentation.
(b) For n >0 we have that do K, — K, 00 = (—1)"id.

PROOF. For a singular O-simplex [vg]: A® — AP we have £([v;]) = 1 and we calculate
O[vg, v] = v — vg. The result follows by extending linearly.

For n > 0 we have to calculate 0; K, («) and it is straightforward to see that 0,11 K, ([vo, . .., vy]) =
Ont1[V0s - -+ s Uny 0] = [0, ..., vn] and O;(Ky([vg, - -, vn])) = [vo, ..., Uiy ... 0] = K, (0;a) for all
1<n+ 1 O

DEFINITION 7.4. For a: A" — AP let b(a) = b := 5 >_1" ja(e;) be the barycenter of
a. The barycentric subdivision B: S/ (A,) — S¥7(A,) is defined inductively as B(a) = «
for o € Sp(A,) and B(a) = (—1)"K,(B(0«)) for n > 0.

For n > 1 this yields B(a) = Y1 ,(—=1)"" K}, (B(0;cx)).

If we take n = p and a = ida», then for small n this looks as follows:

For n = 0 we have B(c) = ¢, you cannot subdivide a point any further.
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For n =1 we get

\
\

Note here the arrows are the direction of the simplices making up the barycentric subdivision,
in the barycentric subdivision of the 1-simplex considered as a 1-chain the two simplices are
oriented in parallel.

And for n = 2 we get (up to tilting)

LEMMA 7.5. The barycentric subdivision is a chain map.

PRrROOF. We have to show that 0B = B0J. If « is a singular zero chain, then 0Ba =
Ja =0 and Boa = B(0) = 0.
Let n = 1. Then a = [vg, v1] and

O0B[vg, v1] = —0K,B([v1]) + 0K, B([v)).
But the boundary terms are zero chains and there B is the identity so we get
—0K([v1]) + 0Ky ([vg]) = —[b] + [v1] + [b] — [vo] = Oa = Boo
where we used Lemma [7.3| (a). (Note that b is always b(«), not a b(0;«v).)
We prove the claim inductively on n, so let a € S%/(AP). Then
OBa =(—1)"0K,(Bo«)
=(—1)"((—-1)"Bia + K,0B0«)
—Bda + (—1)"K,Bdda = Bda.

Here, the first equality is by definition, the second one follows by Lemma [7.3| and then we
use the induction hypothesis and the fact that 90 = 0. O

Subdividing chains should not change anything on the level of homology groups and to prove
that we show that B is chain homotopic to the identity.
We construct v, : S, (AP) — S,+1(AP) again inductively by

bo([v]) = =Ky ([v]) = —[v, ]
and
Un(@) = (1) Ky(a — ,-100)
LEMMA 7.6. The sequence () is a chain homotopy from B to the identity.
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PROOF. So we claim that 0v, + ¥,,_10 = id — B,.
For n = 0 we have 0vy([v]) = —0([v,v]) = 0 and this agrees with By — id.
For n = 1 we compute

Otbn(a) = (=1)"" Ky (a = ¥n10a)
= — wn_laOé + (—1)”+1K58(a — wn_laoz)
=a— P, 10a+ (—1)""Kd(a — (o — Ba — 0, _»q)

by first Lemmal(7.3]and then the induction assumption. We cancel a—a and note K,00t,,_o =
0. Then using that B is a chain may by Lemma we may rearrange and are left with the
identity

8wn + ¢n,18 - ld - (—1)n+1Kan,18.

But the rightmost term is —B by definition and we are done. ([l
DEFINITION 7.7. Let A be a subset of a metric space (X,d). The diameter of A is

sup{d(z,y) | z,y € A}

and we denote it by diam(A).
Accordingly, the diameter of an affine n-simplex o in AP is the diameter of its image
(with the metric induced from RP*!), and we abbreviate that with diam(«).

LEMMA 7.8. For any affine o every simplex in the chain Ba has diameter < nLHdiam(oz).

PROOF. Do it yourself or see [Bredon]|, proof of Lemma IV.17.3. U

We may iterate the application of B and find that the k-fold iteration, B*(a), has diam-
eter at most (#1)]c diam(a).
In the following we use the deceptively easy trick to write a as

This allows us to use the barycentric subdivision for general simplices in general spaces.

DEFINITION 7.9.
(a) We define BX: S,(X) — S,(X) as

B () := S,(a) o B(idan).
(b) Similarly, X : S,(X) — S,1(X) is
Uy (@) 1= Sppa(a) 0 P (idan).

LEMMA 7.10. The maps B~ are natural in X and are chain maps homotopic to the
identity on S, (X) via ¢¥:X.

Proor. Naturality follows directly from the definition, let f: X — Y be a continuous
map. We have

Su(f) By (o) =8u(f) © Su(ar) o B(idan)
=5,(f o) o B(idan)
=BY(foa).
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As « induces a chain map we have
U(0) = 90 Sus1(a) 0 Ynlidan) = Su(a) 0 90 y(idan)
and thus we can check the chain homotopy
X+ 10 = Sp(a)o(Fot,(idan)+1n_100(idan)) = Sy(a) o (B —id)(idar) = BX(a)—a.
O

We now drop the superscript X from B¥. Now we consider singular n-chains that are
spanned by ’small’ singular n-simplices.

DEFINITION 7.11. Let ¢ = {U;,7 € I} be an open covering of X. Then S¥(X) is the free
abelian group generated by all a.: A™ — X such that the image of A™ under « is contained
in one of the U; € 4.

Note that S¥(X) is an abelian subgroup of S,,(X). As we will see now, these chains see
the whole singular homology of X.

LEMMA 7.12. Ewvery chain in S,(X) is homologous to a chain in S*(X) and H,(X) =
H, (S4(X)).

PROOF. Let oo = Z;nzl Aja; € S, (X) and for each j let L; for 1 < j < m be the Lebesgue
number for the covering {a;'(U;),i € I} of A". Le. L; is such that any ball with diameter
less than L; is entirely contained in one of the aj_l(U ). It exists as A" is compact.

Choose a k, such that (n%l)k <min(Ly, ..., Ly). Then B*ay, ..., B, are all in S¥(X).
Therefore

B*(a) =Y XB*ay) € SH(X).
j=1
As B is chain homotopic to the identity we see that
a~ Ba~...~BFa

are all homologous and we are done.

This shows surjectivity of the natural map i : H,(S*(X)) — H,(X). To show injectivity
let i(a) = 9B in H,(X). Using the previous argument 3 = ' + dy with 8’ € Si,,(X). But
then [a] = [08] =0 € H,(S*(X)). O

8. Excision

With the technical work form the last section we can prove one of the main results of
this part of the course:

THEOREM 8.1 (Excision). Let W C A C X such that W C A. Then the inclusion
it (X \W, A\ W) — (X, A) induces an isomorphism

H,(i): H (X \ W, A\ W)= H,(X, A)
for allm > 0.
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PRroOF. Consider the open covering ¢ = {A, X \ W} =: {U, V}.

We first prove that H, (i) is surjective, so consider a relative cycle in S, (X, A) represented
by ¢ € S,(X) which satisfies Oc € S,,_1(A).

By Lemma there is a k such that ¢ := B¥c is a chain in S¥(X). We decompose ¢
as ¢ = ¥ + ¢ with ¢V and ¢” being elements in the corresponding chain complex. (This
decomposition is not unique.)

We know that the boundary of ¢’ is ¢’ = 0B*c = B¥dc and by assumption this is a chain
in S,_1(A4). But ¢ = dcV + dc¥ with oV € S,_1(U) C S,_1(A). Thus, oc" € S,_1(A)
also, in fact, dc" € S, _1(A\ W) and therefore ¢" is a relative cycle in S,(X \ W, A\ W).
We compute H,(i)[c"] = [c — V] = [c] € H,(X, A) because [¢V] lies in S,,(U) C S, (A).

We consider injectivity of H,, (7). Assume that thereisac € S,(X\W) with 0c € S,,_;(A\
W) and assume H,(i)[c] = 0, i.e. ¢ is of the form ¢ = 0b+a’ with b € S,,1(X) and @’ € S,,(A).
Write b as bY + 0¥ with bV € S, 1(U) C Spy1(A) and bY € S, 1 (V) C Syt (X \ W). Then

c—obY = oY +d.
Here 0bY and @’ are elements in S,(A) and as the left hand side lies in S, (X \ W) so does
the right hand side. Thus [¢] = [0bY] =0 € H,(X \ W, A\ W). O

EXAMPLE 8.2. X = X, and A a subspace homeomorphic to a surface of genus h < g
with one boundary component. We can equip shrink A a little bit to define a subset W.
Then H,(X,A) = H,(X \ W, A\ W). We can also consider Y = 3,_;, with a subset B
homeomorphic to a disk. Picking V' C B a smaller disk we see H,(Y, B) = H,(Y \V,B\V).
But the pairs (Y'\V, B\V) and (X \W, A\W) are homeomorphic, thus H"(X, A) = H"(Y, B)

or, in more suggestive notation:
Hy (5, Eg) = Hn(zg—h=D2)~
Now we can finally compute some relative homology.

DEFINITION 8.3. We call (X, A) a good pair if A C X is a closed subspace A is a
deformation retract of an open neighbourhood A C U C X.

Here we say A is a deformation retract of U if there is r : U — A such that r o7 = id4
and i o r ~ idy via a homotopy h with hy(a) = a for all ¢. Tt then in in particular follows
that U/A deformation retracts to A/A = . This is the key point why good pairs are good,
the proof is a little subtle and many places gloss over it, see Lemma for details.

PROPOSITION 8.4. Let (X, A) be a good pair. Then
H,(X,A) =~ H,(X/A), 0<n.

PROOF. Let m: X — X/A be the canonical projection. Let U be a neighbourhood of A
such that A is a deformation retract of U.
Consider the following diagram:

Hy(X, A) — = H (X, U)+——— H, (X \ AU\ A)

Hn(ﬂ')l %lHn(w)

Ho(X/A, AJA) = H,(X/A,UJA) «— H,(X/A\ AJA,U/A\ AJA)
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The upper left arrow is an isomorphism by Corollary because A is a deformation retract
of U. The isomorphism in the upper right is a consequence of excision, because A = A C U.
The right vertical map is an isomorphism as 7 induces a homeomorphis of pairs (X \ A, U \
A) = (X/A\ AJA,UJ/A\ A/A). The lower right map is an isomorphism by excision again.
Finally, for the lower left map we need to use that A is a deformation retract of U. Thus
A/A is homotopy equivalent to U/A and the last map is an isomorphism. O

We now return to Example . We had shown H;(D",S" ')~ H; ;(S" ') for alln > 1
and j > 1. But (D", S™ 1) is a good pair, so the right hand side is H;(D"/S") = H;(S").

So we may compute homology groups of S” inductively. As S° is just a disjoint union of
two points we know H;(S%) = Z if i = 0 and 0 if i > 0.

Thus H;(S") is 0 in degrees higher than n and Z in degree n. If 0 < i < n we may reduce
H;(S™) to Hy(S™**1) which is 0 by the computation in Example .

In fact, revisiting Example [6.4] and considering the long exact sequence of reduced ho-
mology we can directly compute Hy (D"/S"1) = Hy(S") 2 0.

If we pick a generator po = (1,—1) of H 0(5% we may thus define generators u,, of
H™(S?) for all n > 0 by Dpp = fin_1 where D : H*(S™) & H™ (571} is the isomorphism
we just constructed.

As this is arguably the most important computation in the course we state the result as
a theorem:

THEOREM 8.5. For all n > 0 we have
- 7 ifi=
ZACO IS S A
0 ifi#n
We can thus prove topological invariance of dimension:
COROLLARY 8.6. If R™ = R" then m = n.

PROOF. The case m = 0 is straightforward so assume m > 1 and n > 1. Let f : R™ —
R™ be a homeomorphism, this induces a homeomorphism R™ \ {0} = R™\ {f(0)} and a
homotopy equivalence S™ 1 ~ S§"~1 But reduced homology groups are homotopy invariant,
so Theorem [8.5] implies m = n. O

We can also compute the homology groups of bouquets of spaces. Let (X;);cr be a family
of topological spaces with chosen basepoints z; € X;. Consider

xX=\/X.
i€l
PROPOSITION 8.7. If there are open neighbourhoods U; of x; € X; together with a defor-
mation of U; to {x;}, then we have

H,(\/ X;) = @ H.(X)).
i€l iel
PROOF. We may define a deformation retract of IIU; to II{z;}.
We then have H, (V. X;) = H,(IL,X;, IL;{z;}) as (IX;,I{z;}) is a good pair. But the

right hand side is isomorphic to @;H,(X;) by splitting S, (IL; X;, IT;{x;}) into &S, (X}, z;) as
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in the proof of Corollary and observing that taking homology commutes with taking a
direct sum. (To convince yourself define a comparison map from @&, H,,(C;) to H,(€;C;) and
check it is an isomorphism.) O

9. Mayer-Vietoris sequence

We consider the following situation: there are subspaces U,V C X such that U and V
are open in X and such that X = U U V. We consider the open covering { = {U,V'}. We

need the following maps:
U
2N
1%
Vv

unv X=UUV

Note that by definition, the sequence

jV

(iU i) U M-
(9.1) 0= S (UNV) -5 8,U)® S,(V) —= SHX)—0
is exact. Here we write j¥ for S,(jY) etc. for better legibility.

THEOREM 9.1 (The Mayer-Vietoris sequence). There is a long exact sequence

LS V) S g U e Ha(V) S B(X) S H (U V) s

PROOF. By Lemma H¥(X) = H,(X), thus the theorem follows from Theorem (6.3
and Equation [9.1] 0

There is also a short exact sequence

(9.2) 0——5.(U N V)5 () @ 8, (V)——58(X)——0

which is just Z ﬂ 7 ®7 — Z in degree —1. Thus we similarly obtain a Mayer-Vietoris

sequence in reduced homology (just put H instead of H everywhere in Theorem .

ExAMPLE 9.2. We calculate the homology groups of spheres again. Let X = S™ and for
m > 1let X* :=S™\ {Fe,1} with inclusion i* : X* — S™. The subspaces X+ and X~
are homeomorphic to open balls and contractible, therefore H,(X*) = 0 for all positive n.
Moreover. XN X~ ~ §m~L,

The Mayer-Vietoris sequence is as follows

S HL (XN X )——Hy(XT) @ Hy (X )—— H, (S™) —2Hy (XN X )—. ..

We consider m = 1 first where H,(S') = 0 if n > 1 as it lies between zeros in an exact
sequence. In low degrees we have

0— Hy(SY) 2 Hy(SY) & Ho(XH) @ Ho(X™) X 72 — Hy(S') 2 Z' — 0
which is entirely determined by ¢ = (i, 7).
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Ho(XT N X7) is Z? generated by [e1] and [—e;]. The map ¢ sends both [e;] and [—e;] to
(1,1) e Hy(X') @ Hy(X ) =ZDZL.

Thus H;(S') = ker((iy, iv)) = Z is generated by 6 !([e;] — [—e1]).

For n > 1 we can deduce

Ho(S™) = H,_((X* N X7) = H, y(S™Y).

The first map is the connecting homomorphism and the second map is the inverse of
H, 1(i): H, 1(S™1) — H, 1(X* N X~) where ¢ is the inclusion of S™ ! into X+t N X~
and this inclusion is a homotopy equivalence. Thus define D' := H,,_1(i)"! o §. This D’ is
an isomorphism for all n > 2.

Thus H,(S™) = H, ms1(S'Y) = 0 for n > m and H,,(S™) = H,(S') = Z. Finally
H,(S™) = H (S™"1) if 0 < n < m and it remains to compute H;(S™) for m > 1.

Again we have H;(S™) = ker(v: Hy(XTNX") — Ho(X )@ Hy(X7)) and ¢ : 1+ (1,1)
is injective.

Thus H,(S™) = 0 for m > 1, confirming the earlier computation via Hurewicz’ theorem.

We can summarize the result as follows.

Z&7Z, n=m=0,

Z =0 0
R
Z, n=m >0,
0, otherwise.
DEFINITION 9.3. Let uf, := —[e1]+[—e1] € Ho(XTNX ") = Hy(S?). Then a diagram chase

shows that u) € H(S') given by the loop t — €™ aka the identity, satisfies D'u} = pj.
We define the higher u! via D'ul = u!, . Then p is called the fundamental class in
H,(S™).

We could have simplified our live by using the reduced Mayer-Vietoris sequence. We
shall do this for our next example.

EXAMPLE 9.4. Recall that we can express RP? as the quotient space of S? modulo
antipodal points or as a quotient of D?:

RP?=§*/4+id 2 D?/z ~ —z for z € S*.

We use the latter definition and set X = RP?, U = X \ {[0,0]} (which is an open Mobius
strip and hence homotopy equivalent to S') and V = D?. Then

Unv =D\ {[0,0]} ~S.

Thus we know that Hy(U) = Z, H(V) = 0 and HyU = HyV = 0. We choose generators «
for H(U) and ~ for H;(U NV) as follows:
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Let a be the path that runs along the outer circle in mathematical positive direction
half around starting from the point (1,0). Let v be the loop that runs along the inner
circle in mathematical positive direction. It thus runs around the boundary of the Mobius
map, which corresponds to running around the equator of the Mobius band twice. Thus the
inclusion 2: U NV — U induces

1Y = 2]
This suffices to compute H,(RP?) up to cgzgz;ree t[w]o because the long exact sequence is
Hy(U) & Ho(V) = Ho(X) — Hi(UNV) 2 Hy(U) = H(X) = Hy(UNV)

which becomes

0— Hy(X) = Z 2 Z — H(X) = 0.
We obtain:

Hy(RP?) = ker(2-: Z — Z) = 0,

H,(RP?) = coker(2-: Z — 7) = 7./27Z,

Hy(RP?) = 7.
The higher homology groups are trivial, because there H,(RP?) is located in a long exact
sequence between trivial groups.

We next consider a relative version of the Mayer-Vietoris sequence. For this we need
some tools from homological algebra.

LEMMA 9.5 (The 5-lemma). Let
A= Ay = Ay 0 Ay — Ay

fll le fsl f4l ffl
B1 B2 B3 Ba

By By By By Bs

a a2

be a commutative diagram of exact sequences. If fi, fa, f4, f5 are isomorphisms, then so is

fs-

PROOF. Again, we are chasing diagrams.

In order to prove that f3 is injective, assume that there is an a € Az with fsa = 0. Then
Bsfsa = fiaza = 0, as well. But f; is injective, thus aza = 0. Exactness of the top row
gives, that there is an as € Ay with asas = a. This implies

fzanay = fza =0 = [afras.
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Exactness of the bottom row gives us a b € By with 51b = foas, but f; is an isomorphism so
we can lift b to a; € Ay with fia; = 0.

Thus foaya; = B1b = faae and as fo is injective, this implies that aja; = ay. So finally
we get that a = asas = asaqaq, but the latter is zero, thus a = 0.

For the surjectivity of f; assume b € Bj is given. Move b over to By via (3 and set
a:= f;'Bsb. (Note here, that if £3b = 0 we actually get a shortcut: Then there is a by € B,
with 52b2 = b and thus an as € A2 with f2a2 = bg. Then ngéQ&Q = 62b2 = b)

Consider fsaga. This is equal to 84036 and hence trivial. Therefore aya = 0 and thus
there is an ag € A3 with azas = a. Then b — fsas is in the kernel of 83 because

B3(b— fsas) = Bsb — faazas = f3b — faa = 0.
Hence we get a by € By with Boby = b— fzas. Define ay as fy ' (by), 50 as + aqay is in Az and
fa(as + azaz) = faaz + PBafoas = fzaz + Paby = fzaz +b — faaz =b.

O

The next lemma has an easier proof, left as an exercise (on one of the example sheets).

LEMMA 9.6 (The 9-lemma). Consider the following commutative diagram such that all
columns and the first two rows are exact.

Then the bottom row is also exact.

THEOREM 9.7 (Relative Mayer-Vietoris sequence). If A, B C X are open in AU B, then
the following sequence is exact:

o — S H (X, AN B)——H,(X,A) & Hy(X, B)——H,(X, AU B)->—

PROOF. Set U := {A, B}. This is an open covering of AU B.
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The following diagram of exact sequences combines absolute chains with relative ones:

0
0 0 0 /Sn(AU B)
0—— S, (ANB)—— S, (4A)® S, (B) ———— SY(AUB) ———— 0 Sn(X)

A /

0 s S (X) —2 5 () B S(X) 45, (X) 50 S.(X,AUB)

/Qb/)

0—— S, (X, AN B) — S, (X, A) ® S, (X, B) — S,(X)/SHAUB) —0 0

0 0 0

Here, 1 is induced by the inclusion ¢: S¥(AUB) — S,(AUB), A denotes the diagonal map
and — the difference map. It is clear that the first two rows are exact, thus the third row is

exact by Lemma [9.6]
Consider the two right-most non-trivial columns in this diagram. Each gives a long exact

sequence in homology and we focus on five terms.

Ho(SH(AU B)) — Hy(X) —— Hy(S.(X)/SH(AU B)) — H, 1(S¥(AU B)) — Hy1(X)
@{ ‘ w*l %

Hy(AUB) — H,(X) ——— H,(X,AUB) —2— + H, 1(AUB) —— H,_1(X)

Then by the five-lemma [0.5] as H, () and H,_1(¢) are isomorphisms, so is H, (). Thus
the bottom row gives a short exact sequence

0= S(X,ANB) = S,(X,A)® S.(X,B) = S.(X,AUB) =0
which gives the theorem by Proposition [5.7] O

EXAMPLE 9.8. We compute the homology H,,(S?,S'). Let A, B be two arcs homeomorphc
to [0,1] connecting the two points of a copy of S° in S3. We really want to take open
neighbourhoods, but this won’t affect the homotopy type and thus won’t affect the homology
groups.

= Hy(S,8%) = Ho(SP, B) @ Ho (S, A]) = Ho(S?,S') = Ha(S%,8%) — ...
From the relative homology sequence H™(S? S%) is Z in degrees 3 and 1. Thus we have
00— Hy(S,SHY B Z 577 — Hy(S, S
5050— Hy(S*SY) S Z—0— H(SSH D00 Hy(S, S
Thus we immediately see that H, (S S') =Z if n =2 and 0 if n # 2, 3, 4.
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To further analyze this we need to work out ¢. It is induced by the inclusions of (S?, S°)
into (S3, A) and (S®, A). But Hs = Z is generated by the image of the generator usz of S* for
all of these spaces (the subspace does not have any influence on H?). Thus ¢(j13) = (jis, ji3)
and H,(S%,SY) 2 0, Hy(S%,S") = Z.

We check that this makes sense topologically: S3/S! squeezes a loop in S* down to a
point, thus the interior of the loop bubbles out to give a copy of S?, wedged together with
S3/D? =~ S3. By our computation of the homology group of wedge sums H, (S*/S') =
H,(S?) @ Hy(S?), which agrees with our Mayer-Vietoris computation.

10. Mapping degree

Recall that we defined fundamental classes p,, € H,(S") for all n. > 0. In fact there are
two reasonable solutions: By the boundary map of the Mayer-Vietoris sequence and by the
boundary map of the relative homology exact sequence.

DEFINITION 10.1. Let g := [e1] — [—e1] € Ho(SY). We define the the fundamental class
o € H,(S™) via Dy, = pin—1.
Here we used

D : H,(S") = H,(D"/S"") = H,(D", S ") & H,_,(S"™)

and then let the fundamental class be j,, = D™, _;.

Here we have to fix the first isomorphism, and we choose it to be induced by the map
from D" C R™ to S” +e¢,,.1R"*! that wraps the disk around the ball in an upwards direction.
As a formula (x1,...,7,,0) = (uzy,...,uz,,2t) where t = > x? and v = /1 — (2t — 1)2.
Call this map u, : D"/S""! — S" for future reference.

REMARK 10.2. With our conventions the closed interval [—1,1] in D! generates the loop

e?™ in mathematically positive direction and by a diagram chase this is sent to py by D.

Contrast this with the situation in Definition [0.3!
Let f: S™ — S™ be any continuous map.

DEFINITION 10.3. The map f induces a homomorphism

H,(f): Hy(S") — H,(S")

and therefore we get

Hn(f),un = deg(f),un
with deg(f) € Z. We call this integer the degree of f.

In the case n = 1 we can relate this notion of a mapping degree to the one defined via
the fundamental group of the 1-sphere: if we represent the generator of 71 (S*, 1) as the class
given by the loop

w:[0,1] = S, t s e
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then the abelianized Hurewicz, hap: 71 (S, 1) — H;(S'), sends the class of w precisely to u;
and therefore the naturality of hgy,

shows that

deg(f)pr = Hi(f)pr = hap(mi(f)[w]) = han(degp[w]) = degy (s pu1-

where deg, ;) is the degree of f defined via the fundamental group. Thus both notions
coincide for n = 1.
The degree of self-maps of S™ satisfies the following properties:

ProProsITION 10.4.

(a) If f is homotopic to g, then deg(f) = deg(g).

(b) The degree of the identity on S™ is one.

(c) The degree is multiplicative, i.e. deg(g o f) = deg(g)deg(f).
(d) If f is not surjective, then deg(f) = 0.

PROOF. The first three properties follow directly from the definition of the degree. If f is
not surjective, then it is homotopic to a constant map and this has degree zero. Alternatively
we have a factorization of f through S™ \ {z}), which has no n-th homology, thus f.is0 on

H,. U

It is true that the group of (pointed) homotopy classes of self-maps of S” is isomorphic
to Z and thus the first property can be upgraded to an ’if and only if’, but we won’t prove
that here.

We use the mapping degree to show some geometric properties of self-maps of spheres.

PROPOSITION 10.5. Let f(: S* — S™ be the map
(X0, T1y ooy ) = (—Z0, T1y v oy )
Then f™ has degree —1.
PROOF. We prove the claim by induction. p was the difference class [+1] — [—1], and
FO (1] - [-1))

We defined pi,, in such a way that Dy, = j,_;. Therefore, as D is natural and f™|gn1 =
f=1 we have

Hn(f(n)):un = Hn(f(n))D_llun—l = D_lHn—l(f(n_l)),un—l = D_l(_”n—l) = —Hn-

(=1 = [+1) = —ho.

COROLLARY 10.6. The antipodal map A: S"™ — S", A(z) = —x, has degree (—1)"*1.
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PROOF. Let fz-("): S™ — S™ be the map (g, ..., Tn) = (Lo, -y Tio1y —Tiy Tigts - - Tn)-
As all fi(n) are homotopic to each other (by continuously varying the plane of reflection) we
see that by Proposition m the degree of fi(n) is —1. As A= f"Mo. .o én), the claim
follows. O

In particular, the antipodal map cannot be homotopic to the identity as long as n is
even!

PropoSITION 10.7. Let f,g: S* — S™ with f(x) # g(x) for all x € S", then f is
homotopic to Ao g. In particular,

deg(f) = (=1)"*"'deg(g).

PROOF. By assumption the segment ¢ — (1 — t)f(x) — tg(x) doesn’t pass through the
origin for 0 < t < 1. Thus the homotopy

(1 —t)f(x) —tg(x)
(1 =1)f(z) — tg(z)]|
connects f to —g = Aog. U

H(z,t) =

COROLLARY 10.8. For any f:S™ — S™ with deg(f) = 0 there is an x4 € S™ with
flzy) =24 and an x_ with f(z_) = —x_.

PRrROOF. If f(x) # x for all x, then deg(f) = deg(A) # 0. If f(z) # —a for all z, then
deg(f) = (1)1 deg(4) # 0. 0

COROLLARY 10.9. Assume that n is even and let f: S* — S™ be any continuous map.
Then there is an x € S™ with f(x) = x or f(z) = —x.

PROOF. Assume f(x) # x for all n. Then by Proposition f is homotopic to Aoidgn.
If f(z) # —x for all n then f is also homotopy to Ao A = id. As n is even this is a
contradiction. O

Finally, we can say the following about hairstyles of hedgehogs of arbitrary even dimen-
sion. For this we need to define a hairstyle, aka a tangential vector field.

The tangent bundle of a manifold M C RY is the subspace of M x R¥ consisting of pairs
(m,T) with m € M and T a vector in RY tangent to M at m. See your differential geometry
course for what that means in general, in the case of the sphere it gives

TS" ={z,v |z €S" & (x,v) =0} c R""! x R"!

The tangent space ot x is 7,S" = {v | (z,v) = 0}. The tangent bundle has a natural
projection T'S™ — S™ and a tangential vector field is a section x +— (z,V(x)) : S" — TS".

PROPOSITION 10.10. Any tangential vector field on S?* is trivial in at least one point.

PROOF. Assume that V' is a tangential vector field which does not vanish, i.e., V(z) # 0
for all z € S* and V(z) € T,.(S**) C R**! for all x.

Define f : S?* — S?* by k H“;gill' Assume f(z) = x, hence V(z) = ||V (z)||z. But this
means that V' (x) points into the direction of x and thus it cannot be tangential. Similarly,
f(z) = —x yields the same contradiction. Thus such a V' cannot exist. U
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We now consider a way of determining the degree, which depends globally on the map
f by a local computation, just considering what happens in the neighbourhoods of some
points.

DEFINITION 10.11. For any topological space X and z € X we call H,(X, X \ {z}) the
local homology groups of X at x.

By excision this really only depends on an open neighbourhood of x in X.

If X = S" then by excision H;(S",S"\ {z}) = H;(D",S" 1) is Z if i = n and 0 otherwise.
Assume f : S" — S"™ and y € S™ are such that there is y € V C §" and U C S™ with
f(U)CV and f~'(y) NU = {x}. Then there is an induced map

n\ ~v n n ~ f* ~ n n ~ I7T n
fo: Hy(S") = Hp(S",S"\{x}) = H, (U, U\{z}) = Hn(V,V\{y}) = Ha(S",S"\{y}) = Hn(S")
which is given by multiplication of some integer d.

DEFINITION 10.12. In the situation as above we call the integer d the local degree of f
at x and denote it by deg(f)|.,-

PROPOSITION 10.13. Let f : S™ — S™ be a map and y € S™ is such that f~'(y) is finite.
Then deg(f) = inef—l(y) deg(f)
PROOF. By excision

H,(S",S"\ f'v) = H,(11U;, 11U; \ {=;}) = @ H,(U;, U \ {x})

for some collection of disjoint neighbourhoods of the z; € f~!(y).

In the following diagram the horizontal maps are induced by the long exact sequence of
relative homology and by excision and all vertical maps are induced by f. Thus by naturality
it commutes (the rightmost square commutes by definition).

;i

H,(S") —— Hy(S™, 8"\ f\(y)) — @H, (U, U; \ {2} —— ©H,(S")

f*l lf* f*l (deg f:ci)J/

H,(S") — H,(S",S"\ {y} ——— H,(V,V\ {y}) —— H,(S")

We denote the composition of isomorphisms at the bottom by v. (It can only by +1 or —1
and in fact it is the identity as the composition of inverse isomorphisms but that is not needed
for the proof.) The composition of the top maps induces the diagonal map 1 — (v,...,v)
as it is equal to the map v on each summand as it is constructed in exactly the same way as
the map on the bottom.

The rightmost map is just the local degree at x; in the i-th coordinate. Thus commuta-
tivity of the diagram then gives deg(f) = >_ deg(f)|., (as the v’s cancel). O

EXAMPLE 10.14. Let f, g : S™ — S™ be maps that fix a point (which we will declare to
be the base-point). Then we have an induced map fVg:S"VS" — S* Vv §". We consider
the pinch map P : S" — S" V S" that contracts the equator down to a point and the fold
map V : §" V S" induced by identity map on both summands.

We define f+g := Vo(fVg)oP. Then it follows from Proposition[10.13|that deg(f+g) =
deg f+deg g: Any non-base point has two pre-images x, y under the fold map and we compute
the degree of f and ¢ by considerinng their preimages {x;} respectively {y;} under f and g
respectively. Then deg(f +g) =>_, deg fl., +>_, deggl,, = deg f + degg.
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11. CW complexes

We now define an important class of topological spaces. They are flexible enough to
cover most reasonable spaces, in particular all the spaces we are interested in in this course.
At the same time they have very useful inductive description.

First we recall the notion of a colimit of topological spaces. (Replacing Top by another
category we obtain the general definition of colimits.)

DEFINITION 11.1. Let I be a small category (i.e. a collection of objects and morphisms).
Then a diagram of topological spaces of shape [ is a functor I — Top.

ExAMPLE 11.2. A map of topological spaces is nothing but a diagram in the shape of
the category e — e of two objects and non non-identity morphism.

DEFINITION 11.3. Let X : I — Top be a diagram. The colimit colim; X of the diagram
is a topological space C' together with maps ¢; : X (¢) — C for all objects i of I such that
(a) ¢t; 0 X(f) = ¢; for any morphism f:¢ — jin /
(b) for any other topological space D with a maps ¢; : X (i) — Y satisfying ¢;0 X (f) = ¢;
there is a unique map c : C' — D satistying ¢; = ¢ o ¢; for all 1.
We say C'is the universal object under the diagram X.

The corresponding diagram looks like this:

X

Let [ = @ < e — @ be a category with three objects and two non-identity morphisms.
A diagram of shape I is called a pushout diagram and its colimit a pushout.

PRrROPOSITION 11.4. Pushouts exist in Top.

PROOF. Let I — Top be pushout diagram, we write it as Y L X % 7 Consider
C =Y U Z/ ~ where y ~ z if there is x such that f(z) =y and g(z) = z and equip it with
the quotient topology.

Let D be some other object under the pushout diagram, with maps ¥ x, ¥y, ¥z to B. It is
easy to see from the definition that there is a unique map of sets C' — B making everything
commute, just define ¢ by 1y on [y| and ¥z on [z], it is well defined as ¥y (f(x)) = ¥x(z) =
b(9(2)).

Moreover 1) is continuous by the universal property of the disjoint union and quotient
topology on C (these are final topologies, the finest topologies making all the canonical

incoming maps continuous). O
EXAMPLE 11.5. (a) The colimit of a discrete diagram (where I only has identity
morphisms) is called a coproduct. In the category Top this is the disjoint union

I, X;.
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(b) The colimit over the empty diagram is an object with a unique morphism to every
other object. In Top this is the empty space.
(c) You have probably met some version of the gluing X Us Y where f : A — Y. This

is just the pushout of X < A Ly
In particular S™ is the pushout of D" « S*~! — D",
(d) Let I now be the category N with one object for every natural number and a unique
morphism ¢ — j if and only if i < j. A colimit of a diagram I — Top is called a
direct limit (my apologies, this is a terrible name).

PROPOSITION 11.6. Direct limits exist in Top.

PROOF. Let X : N — Top and define colimy X by 11, X (n)/ ~ with z,, ~ x,, if z,, =
X(m < n)x, for x; € X(i).
The proof now proceeds as for pushouts. 0

REMARK 11.7. In fact, all colimits exist in Top, and they may be constructed in a similar
fashion to pushouts and direct limits.

REMARK 11.8. One may dualize the notion of a colimit to define a limit. For example
the limit over a discrete diagram of topological spaces is their product.

DEFINITION 11.9. An CW complex is a topological space X with a filtration by subspaces
f=X"1cX°c X!'c X?... such that

(a) every X* is a pushout of a diagram
k
X1 & ey, ODF — 1ieq, DF,

where Ij is some (possibly empty) indexing set and ¢ : ILic;, OD¥ — X; ; is a
continuous map on the boundaries
(b) X = colimy X*.

In particular by this definition X° = (II;,D") ITy @ is a disjoint union of points, or a
discrete topological space. (Noting D° = D% = % and 9D° = {.)
Next we introduce some vocabulary:

DEFINITION 11.10. (a) We call X™ the n-skeleton of X. If X = X" for some n
but X # X" ! we say X is n-dimensional. A CW complex is called finite if it has
finitely many cells.

(b) We call the maps ¢F : S*~! — X;,_; making up ¢* the attachment maps.

(¢c) The induced maps QF : D* — X* are called characteristic maps. We observe that the
composition with the natural inclusion of the interior ]D)kZ gives a a homeomorphism
onto a subset eF of X that we call an k-cell. By construction X has a (set-theoretic!)

cell decomposition
X = |_| |_| e, ek

k>0 4erk

12

RF.

(d) A closed subspace A C X of a CW complex is called a subcomplex if it is a union
of cells of X. In particular every n-skeleton X™ of X is a subcomplex of X (and of
every m-skeleton with m > n).
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EXAMPLE 11.11. S™ has many cell decompositions. We can have S” = ¢ U ¢ with the
unique attachment map S"' — .

Alternatively we can inductively define S™ as S""!Ue"Ue™ where both n-cells are attached
via the identity map to S*~1.

Taking the colimit as n — oo we obtain the infinite CW complex S*°.

In the case n = 2 we can also obtain a CW structure by projecting our favourite dice
out to S?, the vertices give Xy, adding the the edges gives X; and adding the faces gives
XQ == 82.

EXAMPLE 11.12. RP" is a CW complex with X; = RP* and the attachment map ¢* is
the canonical 2:1 map S¥~! — RP*~!. Then RP" = ¢’ Ue!---Ue™.

One can relate this to other definitions of RP" for example by considering the cell struc-
ture on S" with X* = S* and taking the image in RP" under the canonical map.

REMARK 11.13. CW stands for closure-finite weak-topology. Closure-finite means that
the closure of each cell is covered by finitely many open cells. This follows from a general
result that any compact subspace of a CW complex (like the closure of a cell) is contained
in a finite subcomplex.

Weak topology denotes the following equivalent definition of the topology on the colimit:
A subset A C X is closed if and only if it intersect each closure of a cell in a closed set.

REMARK 11.14. The characteristic maps Q¥ satisfy the following properties:
k

()

(a) QF|; is a homeomorphism onto its image, the cell ef, and the €} are disjoint and
exhaust X.

(b) Q%(OD*) is contained in the union of a finite number of cells of dimension less than
k

(c) A subset of X is closed iff it meets the closure of each cell in a closed set.

In fact a Hausdorff space X together with a collection of characteristic maps Q¥ : D* — X
is a CW complex if and only if these conditions hold. See Proposition A.2 in [Hatcher].

EXAMPLE 11.15. The unit interval [0, 1] has a CW structure with two zero cells and one
1-cell. But for instance the decomposition of = {0}, o) = {1}, k > 0 and o} = (515, ;) does
not give a CW structure on [0, 1]. The 0-skeleton is not discrete.

Another way to see this is to cconsider the A C [0, 1] given by

1/1 1
A=+ — .
U Gy e

Then ANa} is precisely the point (3 + k—}rl) and this is closed, but A isn’t. Thus [0, 1] does
not have the weak topology.

Let X and Y be CW complexes. A continuous map f: X — Y is called cellular if it is
compatible with the filtration, i.e. f(X™) C Y™ for all n > 0.

The category of CW complexes together with cellular maps is rather flexible. Most of
the classical constructions don’t lead out of it (except mapping spaces), but one has to be
careful with respect to products.

EXAMPLE 11.16. Whenever X and Y are CW complexes and Y is locally compact then
X xY is a CW complex.
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We can always define a cell decomposition of X x Y with n-cells given by the products
of cells of X and Y, i.e. if €% is a k-cell of X and , €% an (n — k)-cell of Y, then ek x "
is an n-cell of the product.

We have to be careful though, the product X x Y is only guaranteed to carry the weak
topology if X or Y is locally compact or has countably many cells! If X and Y don’t satisfy
these conditions it is best to re-topologize X x Y with the weak topology. So there is a
product of CW spaces, it is just not the naive product in topological spaces.

LEMMA 11.17. For any CW complex X we get for the skeleta:
(a) o
X"\ x| |Dr.
I’ﬂ
(b)
xXr/xrte=\/sm
]’ﬂ
PRrROOF. The first claim follows directly from the definition of a CW complex. For the

second claim note that the characteristic maps send the boundary D" to the n — 1-skeleton
and hence for every n-cell we get a copy of S" in the quotient. O

EXAMPLE 11.18. Consider the hollow cube W? as a cell complex. Then W?2/W1 =
Vi, §% and WH/WO = \/i2 S,

The following is a key fact about the topology of CW complexes, that I won’t prove:

LEMMA 11.19. Let X be a CW complex. Then (X, A) is a good pair for any subcomplex
A C X. In particular, for each skeleton (X™, X" 1) is a good pair. Recall that this means A
has a neighbourhood in X which deformation retracts onto A.

PROOF. Proposition A.5 in [Hatcher]. O

REMARK 11.20. CW complexes are nice topological spaces in the following sense: They
are normal (and thus Hausdorff), locally contractible, locally path-connected and paracom-
pact. This is all shown in Appendix A of [Hatcher].

12. Cellular homology
In the following, X will always be a CW complex.

LEMMA 12.1. Forallg#n > 1, H (X", X" ') =0. For g =n H, (X", X" is a free
abelian group with one generator of each n-cell of X.

PRrROOF. By Lemma |[11.19| we may use Proposition to compute relative homology via
the quotient, which is determined by Lemma and Proposition

Hy(X" X0 = H (XX = @D H,(87). O
I'IL

LEMMA 12.2. Consider the inclusion i": X™ — X and let ¢ < n.

(a) The induced map il: Hy(X") — H,(X) is surjective.
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(b) On the (n + 1)-skeleton we get an isomorphism
il Hy(X™) =~ H,(X).
PROOF. (a) We can factor i" as

in

X
in+1
a1
o ,L'n+3

7
Xn+1 Xn+2 Xn+3 -y
a2 as g

X

The map H,(an): Hy(X™) — H,(X™*!) is surjective, because H, (X", X™) = 0. For i > 1
we have the following piece of the long exact sequence of the pair (X", X"+i=1)

0 Hq+1<Xn+i, Xn+i_1)—>Hq(Xn+i_1) He(a)
Therefore H,(cy;) is an isomorphism in this range. If X is finite-dimensional, this already
proves the claim.

Every singular simplex in X has an image that is contained in one of the X™ because the
standard simplices are compact. If a € S,(X) is a chain, a = 3", \;3; then we can find an
M such that the images of all the 3;’s are contained in XM say for M = n + k. Therefore
every [a] € H,(X) can be written as i*[b], but ay o ... o ay is surjective, hence [b] is of the
form ay o ... 0 aqc] but then

Hq(Xn+i)—>Hq(Xn+i, Xn—i—i—l) >~ 0.

[a] =i oago...0m|d =i

thus 49 is surjective.

(b) If [a] = " [u] = 0, then we have a = dc and as ¢ can be defined on some M-skeleton
of X asin (a) we have ¢ = i™¢ and a = M o 0.. .0 ay[u] where 0. ..0asfu] = dd = [0].
As the «; are injective [u] = 0 also and 7 is injective.

U

COROLLARY 12.3. For CW complexes X, Y we have

(a) If the n-skeleta X™ and Y™ are homeomorphic, then H,(X) = H,(Y'), for all ¢ < n.
(b) If X has no q-cells, then H,(X) = 0.
(¢) In particular, if ¢ exceeds the dimension of X, then Hy (X) = 0.

PrROOF. The first claim is a direct consequence of the lemma above.

By assumption in (b) X% ! = X4, therefore we have H, (X% ') = H,(X?) and the latter
surjects onto H,(X). We show that H,(X") = 0 for n > r. To that end we use the chain of
isomorphisms

H(X") 2 H, (X"~ =2H, (X%
which holds because the adjacent relative groups H,(X*, X*~!) are trivial for i < n. O
Again, X is a CW complex.

DEFINITION 12.4. The cellular chain complex C.(X) consists of C,,(X) := H,(X™, X" 1)
with boundary operator

d: Hy(X", X" H, (X" )—25H, (X", X"2)

where ¢ is the map induced by the projection map S, (X" 1) — S, (X1, X"72).
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We have observed that C,,(X) is a free abelian group with
Co(X) = P H.(S") = P
In m
For n < 0, C,(X) is trivial. If X has only finitely many n-cells, then C,,(X) is finitely
generated. If X has finitely many n-cells and (n — 1)-cells the boundary operator d,, can be

calculated using matrices over the integers. We will soon analyze it.
Let us first check that our definition is right.

LEMMA 12.5. The map d is a boundary operator.

PROOF. The composition d? is podopod, but dop is a composition in an exact sequence,
the homology exact sequence of the pair (X"~1, X"=2). O

THEOREM 12.6 (Comparison of cellular and singular homology). For every CW complex
X, there is an isomorphism Y : H, (Cu(X),d) = H.(X).

Proor. Consider the diagram

Cry1(X) =—— Hppq (X", X7)
l \
A
J Hoa (X, X" — Y S H(xm — % H(X)
/
O (X) H, (X", X7
l \
A
J Ho(X, X" — B, (X)) — S H, (X))
/
Cn—1<X) —_— n—l(Xnilen72)
l \
A
a Ho 1 (X, X" ) =0 H, (X2 — L H, (X))
/

We now make the following series of observations:

e All occurring o-maps are injective because Hy(X* 1) =0 for all k.
e For every a € H,(X") o(a) is a cycle for d:

do(a) = odo(a) = 0.
o Let ¢ € C,(X) be a d-cycle, thus 0 = dc = pdc and as g is injective we obtain
dc = 0. Exactness for the homology of the pair (X", X" !) yields that ¢ = o(a) for
an a € H,(X"™). Hence,

Ho(X™) 2 ker(d: Co(X) — Chy(X)).
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e We define T: ker(d) — H,(X) as T[] = i”(a) for ¢ = p(a) and : H,(X™) —
H,(X).

e The map T is surjective because 17 is surjective.

e In the diagram, the triangles commute, i.e. 6 = ¢’ o A by naturality of the boundary
map.

e The sequence

Hypir (X)) — Hy (X)) —— Hypy (X, X)) —— H, (X)) —— H,,(X)

tells us that H,, (X, X™") =0 and this in turn implies that ) is surjective.
e Using this we obtain
im(0) = im(d") = ker(i}).
As d = pod and p is injective, the map p induces an isomorphism between the image
of d and the image of .
e Thus we have determined both the kernel and the image of d in terms of expressions
on the right of our diagram. Taking quotients p induces an isomorphism
ker(d: C\(X) — Cp 1(X)) o, Ha(X")
im(d: Cpy1(X) = Co(X))  ker(i?)

But the exact sequence

0——ker (i) —— H,(X")——im(i?)——0
gives us

H,(X™)/ker(i") = im(i") = H,(X). 0

It is clear from the definition that any cellular map f : X — Y induces a map f, of
cellular homology H,(C.(X),d) — H.(C.(Y),d).

LEMMA 12.7. The isomorphism in Theorem is natural, i.e. T o f, = fyoT.

PROOF. Observe that every map in the large diagram in the proof of Theorem [12.6| is
natural. n

To use cellular homology we next need to be able to compute d. We've already observed
that the (closed) n-cells give a natural basis of C,,(X) = H,(X", X" ') and the (closed)
(n — 1)-cells give a basis of C,,_1(X). So the question is what happens to an n-cell under d.

We consider the following diagram:

H,(S") —= H,(D",D") —— H,_;(S"1)

l(Qi)* l(qz‘)*

Hy(X™, Xm0 2 g, (XY —5 H, (XL, X2 {, (S

(pj)*

Here @); is the canonical map of pairs from from the i-th n-cell (and its boundary) to
(X™ X" 1). The map m; is projection onto the j-th factor. Geometrically we may describe
the map p; as projection onto the j-th (n—1)-cell (i.e. we collapse the n — 2-skeleton and all
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other (n — 1)-cells to a point and are left witth one copy of S"~!). The square in the middle
commutes by naturality of the connecting homomorphism 4.

The generator p, for H,(S™) is sent by @; to one of the generators of C,(X), and the
image under pd may be computed as (g;)s © 0(tn) = (¢i)«(ttn—1). Projecting to the j-th
(n — 1)-cell gives (pj © j;)s«(fn—1)-

Thus the (4, j)-component of the boundary map d : &mZ — Bm-17Z is the degree of
bj© g

As we compute d on the boundary of the cell representing the n-th homology it is indeed
a boundary operator in the topological sense and does provide a nice conceptual description
of homology.

ExAMPLE 12.8. We compute the homology of projective Spaces.
Let K be the reals R, complex numbers C or quoternions H with m := dimg (K) and let
K* =K\ {0}. We let K* act on K" via

K* x K"\ {0} — K™\ {0}, (A\v) — Ao
We define K P" = (K™ \ {0})/K* (with the quotient topology) and we denote the equiva-

lence class of (xq,...,z,) in KP" by [zg:...: 2]
We define a filtration by
XM= {lxg:...:m) | X1 = ... =2, =0}
and note that X™ = KP'. We see that {[x¢:...:x,] | z; #0,2;11 = ... =2, =0} is an

open mi-cell. ’

An explicit characteristic map is @; : D™ — KP™ given by (yo,...,%i-1) = [yo : -+ :
Yier o L—|ly||: 0:---:0]. ' ' ‘ ‘

Thus attachment map 0D™ — X1 is given by the composition S™~' — K%\ {0} —
Kpi—1 o~ Xm(i_l).

Here the map from the sphhere to projective space is well known in some examples: It
specializes to the 2:1 map S"! — RP*! if K = R and to the quotient map by the U(1)
action from S*~! — CP*"!if K = C.. (The case i = 2 is the Hopf fibration.)

(a) First we consider the case K = C. Here, we have a cell in each even dimension

0,2,4,...,2n for CP™. Therefore the cellular chain complex is
7 k=2,0<1i<n,
0 k=2t—1ork>2n.

C(CP™) = {

The boundary operator is zero in each degree (as it always has source or target equal
to 0) and thus

H,(CP") =

Z, k=2i,0<k<2n,
0, otherwise.

(b) The case of the quaternions is similar. Here the cells are spread in degrees congruent
to zero modulo four, thus

Z, k=4i,0<k<4n,
0, otherwise.

Hy(HP") = {
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(¢) Non-trivial boundary operators occur in the case of the real numbers. Here, we have
a cell in each dimension up to n and thus the homology of RP" is the homology of
the chain complex

0—C, 2 2—5C, 222 0y 2 7.
For the computation of d,, we have to compute the degree of ¢ := poq in the diagram
st 4 Rpt 2y §n1 where ¢ is the canonical quotient map and p is obtained by
collapsing the subcomplex RP"~2 to a point.

In coordinates we send (x1, ..., 2,) to [z1 : x9- - : x,] where we moreover identify
all points with z,, = 0. The point [e,] has thus preimage e, and —e, and we may
use the local formula for degrees: In the neighbourhood {x, > 0} of e, the map ¢
is a local homeomorphism so we must have deg(¢)., = £1. As the sign of d will be
irrelevant for our computations we just assume the degree is +1. (Or we check it is
indeed +1.) But ¢|,,~0 = @]z, <0 © A thus deg(¢)|_., = deg(¢)|e, deg(A) = (—1)".

Together we have deg(¢) = deg(id) +deg(A) =1+ (—1)™.

Thus d[e;] = 2[e;—1] if 7 is even and 0 if 4 is odd.

Thus, depending on n we compute

7 k=20
Hy(RP") =< 7Z/27Z k <n,k odd
0 otherwise.
for n even.
For odd dimensions n we get
7 k=0,n
H,(RP") = Z/2Z 0<k<n,kodd
0 otherwise.

Note that RP! = S! and RP? = SO(3).

13. Homology with coefficients
Let G be an arbitrary abelian group.

DEFINITION 13.1. The singular chain complex of a topological space X with coefficients
in G, S,(X;G), has as elements in S,(X;G) finite sums of the form S~  g;a; with g; in G
and a;: A" — X. Addition in S, (X;G) is given by
N N N
i=1 i=1 i=1
The nth (singular) homology group of X with coefficients in G is
Ho(X;G) i= Hy(S4(X;G))
where the boundary operator 0: S, (X;G) — S,-1(X; G) is given by
N n N
8(2 gity;) = Z(—l)](z gi(a; o dj)).
i=1 =0 i=1
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We use a similar definition for cellular homology of a CW complex X with coefficients in
G. Recall, that C,(X) = H, (X", X" 1)~ P Z

o an n-cell “*

DEFINITION 13.2. We define C,(X;G) = @D, \p necen G- On ¢ € C,(X; G) written as
¢ =N gio; we define the boundary operator d by de = S~ | gid(0;) where d: C,(X) —

Cy—1(X) is the boundary in the cellular chain complex of X.

We can transfer Theorem (and every other general theorem we have proven, like
Excision and Mayer-Vietoris) to the case of homology with coefficients:

H,(X;G) = H,(Ci(X;G),d)
for every CW complex X and therefore we denote the latter by H,(X;G) as well.
Note, that H,(X;Z) = H,(X) for every space X.

EXAMPLE 13.3. If we consider the case X = RP?2, then we see that coefficients really
make a difference. Thus while theorems translate, computations have to be re-checked.

Recall that for G = Z we had that Ho(RP?) = Z, H;(RP?) = Z/27Z and Ho(RP?) = 0.
However, for G = 7Z/27 the cellular chain complex looks as follows:
0——7Z/22.-2"57,)27—7./27——0

and therefore H;(RP?;Z/27) = 7./27Z for 0 < i < 2.
If we consider H,(RP?; Q) we obtain the cellular complex

0—Q—=Q——Q—0
But here, multiplication by 2 is an isomorphism and we get Hy(RP? Q) = Q, H,(RP%* Q) =
Q/2Q = 0 and Hy(RP% Q) = 0.

Thus we see that homology with coefficients can be very different from the homology
with integer coefficients we first met.

However, somewhat surprisingly, H,(X,G) is computable from H,(X) and G. But we
need some basics from algebra to see that.

Let A and B be abelian groups.

DEFINITION 13.4. The tensor product of A and B, A ® B, is the quotient of the free
abelian group generated by A x B by the subgroup generated by

(a) (a1 4 a2,b) — (a1,b) — (a2,b),
(b) (a,by +bs) — (a,by) — (a,by)
for ai;,a1,a € A and by, by,b € B.
We denote an equivalence class of (a,b) in A ® B by a ® b.

Note, that relations (a) and (b) imply that A(a ® b) = (Aa) ® b = a ® (\b) for any
integer A\ € Z and a € A, b € B. Elements in A ® B are finite sums of equivalence classes
Z?:l >\iai & bz

e Of course, A ® B is generated by a ® b with a € A, b € B.
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e The tensor product is symmetric up to isomorphism and the isomorphism A ® B =

B ® A is given by
=1 =1

e [t is associative up to isomorphism:
AR (BC)=Z(A®B)®C
for all abelian groups A, B, C.
e For homomorphisms f: A — A’ and ¢g: B — B’ we get an induced homomorphism
fRg: A B— A @B

which is given by (f ® g)(a ® b) = f(a) ® g(b) on generators.

e In particular we may tensor a chain complex C', with an abelian group G by defining
(C®G), =C,®G and setting the differential to be d ®id. We’ve already seen this
tensor product: S,(X) ® G is isomorphic to S, (X, G).

REMARK 13.5. The tensor product has the following universal property. For abelian

groups A, B, C', the bilinear maps from A x B to C are in bijection with the linear maps
from A® B to C.

There is another closely related universal property. For two abelian groups A, B the set

of homomorphisms has a natural structure of abelian group by pointwise addition. Denoting
this abelian group by Hom we have

Homap(A ® B, C') = Homap(A, Hom(B, ()

We collect the following properties of tensor products:

(a) For every abelian group A, we have
ARZ=AXZ® A.
(b) For every abelian group A, we have
AQRZInZ = A/nA.

Here, note that nA = {na | a € A} makes sense in any abelian group. The isomor-
phism above is given by
a®1i+—ia
where 4 denotes an equivalence class of i € Z in Z/nZ and ia the class of ia € A in
A/nA.
8

(c) If O A—-B C 0 is a short exact sequence, then in general,

0——A® DB o D0 @ id—s0

is not exact for D abelian. For example,
0-Z—Q—Q/Z—0

is exact, but
0>ZQ®ZLI2Z — QRZL)2Z — Q/Z R ZLJ2Z — 0
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isn’t, because Q ® Z /27 = 0.

When tensoring complexes with G it is often interesting to ask when a complex stays
exact.

LEMMA 13.6. For every abelian group D, (—)®D is right exact, i.e., if 0 A—"-B C
1s a short exact sequence, then

A DB e D20 9 D——0
1s exact. If the exact sequence 0 A—-B o C 0 is a split short exact sequence,
then
0 A®Da®1dB®Dﬁ®1dO®D 0
18 exact.

PROOF. It is easy to check surjectivity of § ® id: It is enough to show that ¢ ® d is in
the image, so just b € 37*(c) and by definition 8 ® id(b® d) = c ® d.

It is a non-trivial exercise to directly show that —® D is also exact in the middle. Instead
we can use some abstract machinery (feel free to ignore this if you haven’t seen the categorical
tools before). We need to show that ker(f ®id) = im(a ®id). That means we want to show
B®D/im(A® D)=C® D.

The left hand side is a colimit in abelian groups of the diagram (0, a®id) : AQD = B®D.

By the universal property in Remark [13.5 we have that —® D commutes with all colimits,
as it follows directly from unravelling definitions that

Hom(colim(A; ® D), B) = limHom(A4; ® D, B) = lim Hom(A;, Hom(D, B))
= Hom(colim A;, Hom(D, B)) = Hom(colim A; ® D, B)

holds for all B. Thus maps out of colim A; ® D agree with maps out of colim(A; ® D). As
everything is natural under the colimit diagram this implies that colim A; ® D is a colimit of
the diagram A;® D. Alternatively it follows from the Yoneda lemma that the two expressions
agree.

The second part is left as an exercise. O]

The failure of the functor (—)®D to be exact on the left hand side means that H, (X, G) =
H,(S.(X) ® G) is not always isomorphic to H,(X) ® G = H,(S.(X)) ® G.

DEFINITION 13.7. Let A be an abelian group. A short exact sequence 0 — F; —»
Fy — A — 0 with Fj and F} free abelian groups is called a free resolution of A.

Note that whenever Fj is free then F} is automatically free abelian because it can be
identified with a subgroup of Fj, recalling from algebra that a subgroup of a free abelian
group is free. (This is not true for modules over a general ring R!)

Here we may see F} — Fj as a chain complex with homology A concentrated in degree
0. We replace A by the complex with the same homology.

EXAMPLE 13.8. For every n > 1, the sequence 0 — Z % Z = Z/nZ — 0 is a free
resolution of Z/nZ.

PROPOSITION 13.9. FEvery abelian group possesses a free resolution.
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The resolution that we will construct in the proof is called the standard resolution of A.

PROOF. Let Fj be the free abelian group generated by the elements of the underlying
set of A. We denote by y, the basis element in Fy corresponding to a € A. Define a

homomorphism
p: Fo— A p (Z )\aya> = Z)\aa.

acA acA
Here, A\, € Z and this integer is non-trivial for only finitely many a € A. By construction, p
is an epimorphism. We set I} to be the kernel of p and in that way obtain the desired free
resolution of A. O

DEFINITION 13.10. For two abelian groups A and B and for 0 F—F, A 0
the standard resolution of A we define
Tor(A, B) :=ker(t®id: F; ® B — Fy® B) = Hi(F, ® B)).
Here we write F, ® B for the complex F; ® B % Fy® B.
As i ®id doesn’t have to be injective, thus Tor(A, B) need not be trivial.
We will show that we can calculate Tor(A, B) via an arbitrary free resolution of A. To
that end we prove the following result.

ProPOSITION 13.11. For every homomorphism f: A — B and for free resolutions
0——F—Fy——A——0 and 0——F/— " F)——B——0 we have:
(a) There is achain map g : F, — F, such that the diagram

0 ) AN RNy | 0

I I, L

0 Fl - F-—*X>B 0

commutes.

Any two such chain maps are chain homotopic, i.e. if hg, hy are also homomor-
phisms with this property, then there is an «: Fy — F| with i’ o a = gy — hg and
ool = g1 — hl.

(b) For every abelian group D the map g ®id induces a map H,(F.® D) — Hy(F,® D)
that is independent of the choice of g. We denote this map by o(f, F, F').
(c¢) For a homomorphism f': B — C the map ¢(f'o f, F, F") is equal to the composition

p(f', F', F") o o(f, F, FY).

PRrROOF. For (a) let {x;} be a basis of Fy and choose y; € I with p/'(y;) = fp(z;). We
define go: Fy — F{ via go(z;) = y;. For every r € F} we obtain p’ o go(i(r)) = fopoi(r) =0
and therefore go(i(r)) is contained in the kernel of p’ which is equal to the image of 7. As ¢/
is injective we may define g;(r) as the unique preimage of g(i(r)) under 7’.

For h and g as in (a) we get for x € I that go(z) — ho(x) is in the kernel of p" which is
the image of the injection ¢'. Define « as (7)1 (hg — ho). Then by construction i'a = gy — hy
and

i/(gl - hl) = (go — ho)Z = i/Cki.
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As i’ is injective, this yields ¢ — hy = ai.

For (b) it is easy to see that g ® id defines a chain map and thus induces a map on H;
and that g ® id is chain homotopic to h ® id via a ® id.

For (c) we note that the uniqueness in (b) implies (c). O

COROLLARY 13.12. For every free resolution 0 F| d F A 0 we get a
unique isomorphism

o(idy, F', F): ker(i' @ id) — Tor(A, D).
PROOF. By the proposition we obtain ¢(id, F, F’) which is an inverse of ¢(idy, F, F").
O

Thus we can calculate Tor(A, D) with every free resolution of A.

EXAMPLE 13.13. (a) Tor(Z/nZ,D) = {d € D | nd = 0} for all n > 1. That’s why
Tor is sometimes called torsion product. For the calculation we use the resolution

0 7——7—"7/nZ——0. By definition and by Corollary [13.12[ we have
Tor(Z/nZ,D) = ker(n®id: Z® D — Z ® D).

AsZ® D = D and as n ® id induces the multiplication by n, we get the claim.

(b) From the first example we obtain Tor(Z/nZ,Z/mZ) = 7 /gcd(m,n)Z because the
n-torsion subgroup in Z/mZ is Z/ged(m,n)Z.

(c) For A free abelian, Tor(A, D) = 0 for arbitrary D. For this note that 0 - 0 — A =
A — 0 is a free resolution of A and the kernel is a subgroup of 0 ® D = 0 and hence
trivial.

(d) For two abelian groups Aj, Ay, D there is an isomorphism

TOI'(Al D A27 D) = TOI'(Al, D) D TOI'(AQ, D)

If we have free resolutions

0= F - F,— A —0
for i = 1,2 then the direct sum is a free resolution of A; & A, and
ker((i; @ iz) ® id) = ker(i; ® id) @ ker(is ® id).
It follows that tensoring with a free abelian group preserves exact sequences.
From Example (c) we get the following useful corallary:

LEMMA 13.14. Let C, be a chain complex and A a free abelian group. Then H,(C,®A) =
H,(C)® A.

PRrOOF. The proof is left as an exercise. 0
We can now state the following powerful theorem:

THEOREM 13.15 (Universal coefficient theorem). For every space X there is a split short
exact sequence

0— H,(X)®G — H,(X;G) = Tor(H,—1(X),G) — 0,
and therefore we get an isomorphism
H,(X;G)= H,(X)®G® Tor(H,—1(X),G).
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The proof will need some further work in algebra.

EXAMPLE 13.16. For X = RP? we obtain
H,(RP*@G) = H,(RP?) @ G @ Tor(H,_1(RP?),G)
thus
Ho(RP?* G) = Hy(RP?) ® G @ Tor(H_1(RP?),G) = G,
H,(RP?;,G) = H{(RP?) ® G @ Tor(Hy(RP?),G) = G/2G & 0 = G/2G,
1
. Hy(RP?;,G) = Hy(RP?) ® G @ Tor(Hy(RP?),G) = Tor(Z/27, G).

And this agrees with our earlier computations!

REMARK 13.17. Note that the splitting in the unvirsal coefficient theorem is not natural.
This means for example that a map f: X — Y may induce the zero map on H,(X)® G —
H,(Y)®G and on Tor(H,,—1(X),G) — Tor(H,-1(Y), G) yet be nonzero on H,(—,G)! (This
situation is compatible with the short exact sequence being natural, but not the splitting
being natural.)

For example consider the map RP? — S? collapsing the 1-cell. It is non-trivial on
homology with Z/2 coefficients (as is apparent from cellular homology), yet on H; and H,
with integer coefficients, and thus on the outer terms of the short exact sequence, it must
induce the zero map.

14. Algebraic Kiinneth theorem
We extend the definition of tensor products to chain complexes.

DEFINITION 14.1. Are (C,,d) and (C.,d’) two chain complexes, then (C, ® C?, dg) is the
chain complex with

(C* ®C:<)n = @ Cp@cc/]

pHg=n
and with dg(c, ® ;) = (dc,) ® ¢, + (=1)Pc, @ d'c,.

Note the sign in the definition, which is needed to make dg a differential:
LEMMA 14.2. The map dg is a differential.

PROOF. The composition is
dg((dey) @ ¢ + (=1)Pc, @ d'c)) = 0+ (—1)P " (de,) @ (d'c,) + (—1)P(de,) @ (d'cl,) +0 = 0.
OJ
In particular the abelian group G may be viewed as a chain complex that is G in degree
0 and 0O in all other degrees. We will abuse notation and denote the chain complex and

the abelian group by the same letter. Then for every chain complex (C,,d) we recover our
definition

In particular, for every topological space X,
S(X)®G=S8,(X,G).
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Similarly, for a CW complex X we get C,.(X;G) = C(X) ® G.
For every pair of spaces (X, A) we have

Si(X, A;G) = S.(X,A) ®G.
As tensoring with G is right exact this is equivalent to defining it as the quotient of S, (X; G)

by S.(4;G)
A map f: (Cs,dc) — (D., dp) induces a map of chain complexes

f®id: C,®C. - D, ®C..

In particular, for every continuous (cellular) map we get induced maps on singular (cellular)
homology with coefficients.

We may similarly define f®g: C®C" — D® D' for f : C — C', g : D — D’ by sending
c®d to flc)®g(d).

DEFINITION 14.3. A chain complex C, is called free, if C,, is a free abelian group for all
n € Z.

The complexes S, (X, A) and C,(X) are free.

THEOREM 14.4 (Universal coefficient theorem (algebraic version)). Let C, be a free chain
complex and G an abelian group, then for all n € Z we have a split short exact sequence

0— H,(C,)®G— H,(C, ® G) — Tor(H,_1(C,),G) — 0,

i particular

H,(C,®G) = H,(C,) ® G& Tor(H,—_1(Cy),G).

Unravelling the definitions we can deduce the topological universal coefficient theorem
form the algebraic version.

The algebraic universal coefficient theorems itself is a corollary of the following more
general statement.

THEOREM 14.5. (Kiinneth formula) For a free chain complex C, and a chain complex
C! we have the following split exact sequence for every integer n

0——D, 4 Hp(Ci) ® H, (C1)2—H,(C, ® C)——D, gn_1 Tor(H,(Cs), Hy(CY))——0,
ie.,
W(CooC) = @ H)(C) @ Hy(CL)d @D Tor(Hy(C.), Hy(CL)).
pt+q=n p+q=n—1
The map A\: @, ,_, Hp(Cs) ® Hy(CL) — Hu(C. ® CY) in the theorem is given on the

(p, g)-summand by
A[ep] ® [cg]) = [ep ® €]

q
for ¢, € C, and ¢ € C}. By the definition of the tensor product of complexes, this map is
well-defined.

PRrROOF OF THEOREMS [13.15] AND [14.4] To recover the algebraic universal coefficient
theorem we just set C, = G. To recover the topological version we set C, = S,(X), which is
free by definition. O
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LEMMA 14.6. Let 0 = A — B 5 C — 0 be a short ezxact sequence where C' is free. Then
the short exact sequence is split.

PRroOOF. By Lemma [5.3] it suffices to provide a right inverse r of g : B — C'. But as C'is
free we may just pick a basis {c} of C, let 7(c) to be an arbitrary element of g~'(c) for each
c and extend to all of C. U

LEMMA 14.7. For any free chain complexr C, with trivial differential and an arbitrary
chain complezx, C., X is an isomorphism

A @ Hy(Cy) ® Hy(CY) = H,u(C @ CY).

pt+q=n

Proor. We note C, = @ C,[—p] where C,[—p] denotes the chain complex which is C,
in degree p and 0 otherwise.

It is easy to show from the definition of the tensor product that it commutes with direct
sums. As homology also commutes with direct sums we find H,,(C®C") = H,((%,C,[—p]) ®
C1) = ®,Hy(Cyl—p] & C).

As G, is free we have H,(C,[-p] ® C}) = C, ® H,_,(C;) by Lemma and this
completes the proof. O

ProOF OF THEOREM [I4.5l We abbreviate the subgroup of cycles in C} with Z; and
the subgroup of boundaries in C with B and use analogous abbreviations for C.. As C,, is
free so are the subgroups Z, and B,.

We consider the short exact sequence 0 = Z, — C, — B,_; — 0 and tensor it with
C,, and sum over p+ ¢ = n. Since B, ; is free, the original sequence is split by Lemma W
and hence the resulting sequence is exact by Lemma [13.6,

We define two free chain complexes Z, and D, via

(Z*)p = Zp, (D*)p — DPp-1

with trivial differential.
Collecting our short exact sequences for all values of n we obtain a short exact sequence
of complexes

d®id
0 691D+q=n ZP ® C; 691a+q=n CP ® C; @pw:n B p—1 ® Ctlz 0
l(l)ﬂd@d’ ld®1d+(1)1’id®d’ l(l)pidt@d’
0 @erq:nfl Zp ® C(IJ @p+q=n71 Cp ® Ct; doid p+g=n—1 Bp*1 ® Ctlz 0

We have to verify that the two squares commute. This is clear for the left one and a quick
computation for the right one. Note that as B,_; is the degree p part of D we do indeed
have the sign (—1)? in front of the rightmost differential.

This gives a long exact sequence

n+1

s Hpt(Dy ® C) S H (7, © O ——s Ho (C @ CL)—— Ho (D @ CL)—" Hyy 1(Z, © C)——s. .
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As Z, and D, satisfy the conditions of Lemma we get a description of H,(D, ® C.) and
H.(Z,® C?) and therefore we can consider 0,11 as a map

@p—{-q:n—‘,—l HP(D*) ® Hq(Ci) - @p—‘,—q:n—l—l Bp_l ® HQ<C>L)

lj@id
@p-i—q:n ZP ® HQ(CL) = @p+q:n HP(Z*> ® Hq<C>,k)
which is just induced by the inclusion j: B, — Z, (unravelling the definition of the boundary

map). We can cut the long exact sequence in homology into short exact pieces and obtain
that

0 — coker(d,41) — H,(C. ® C) — ker(d,) — 0
is exact. The cokernel of 9,41 is isomorphic to € Z,/B,) @ H,(C}) because the tensor
functor is right exact, thus
coker(d,,11) = @ H,(C,) ® H,(C%).
ptg=n

As 0 —» B, — Z, — H,(C,) — 0 is a free resolution of H,(C,) we obtain that
Tor(Hy(C.), Hy(CL) = ker(j ©d: B, ® Hy(CL) — 7, @ Hy(CL)

p+q:n<

and therefore
ker(d,) = @D Tor(H,(C.), Hy(CL))
p+g=n—1
noting that the kernel of §,, is a subspace of @p rg=n
This proves the exactness of the Kiinneth sequence.
We will prove that the Kiinneth sequence is split in the case where both chain complexes,
C, and C., are free. In that case the sequences

B,—1 ® H,(C") and relabelling indices.

0—2,—Cy—DBy.1—0, 02, —-C,— DB, ,—0

are split by Lemma and we denote by r: C, — Z, and r": C) — Z| chosen retractions.
Consider the two compositions

C,——Z,—»H,(C,), C;T—/>Z(’]—»Hq(0fk)

and view H,(C.) and H,(C.) as chain complexes with trivial differential. Then these com-
positions yield a chain map

rer: C,e 0, — H.(C.) ® H.(C})

This is indeed a chain map as the diagram

Cp - Zp Hp

I I

r
Cp_l e Zp—l —_— Hp_1

commutes, which follows as r sends boundaries in C), to boundaries in Z,, which get sent to
0 in homology.
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On homology we get
r@r’ s Hy(Cy ® C)) — Ho(H.(C)) ® Hy(CY)) = @ H,(Cy) ® Hy(CY).
p+q=n

This map gives the desired splitting; it is easy to check it is left inverse to A. U

In the cases we are interested in (singular or cellular chains), the complexes will be free.

As we have seen for the universal coefficient theorem the splitting of the Kiinneth sequence
is not natural. We have chosen a splitting of the short exact sequences in the proof and
usually, there is no canonical choice possible.

15. Kiinneth theorem in topology

What does the Kiinneth formula give for two topological spaces and their chain com-
plexes? The Kiinneth sequence for C, = S.(X) and C} = S,(Y") yields that

0= P Hy(X) @ Hy(Y) — Hy(S.(X) @ S.(Y)) — @D Tor(H,(X), Hy(Y)) = 0

is exact. But what is H,,(S.(X) ® S.(Y))? In the following we will show that this group is
actually isomorphic to H, (X x Y'), thus the Kiinneth Theorem has some geometric content!
First of all, we define a map.

LEMMA 15.1. There is a homomorphism x: Sy(X) @ S,(Y) — Spig(X x YY) for all
p,q = 0 with the following properties.

(a) For all points xo € X viewed as zero chains
(l’o X 6)(750, . ,tq) = (1'0, B(tm - ,tq))
for B: A =Y. Analogously, for all yo € Y and a: AP — X
(a X yo)(to, R ,tp) = (Oé(to, R ,tp>,y0).
(b) The map x is natural in X and Y, so for f: X - X' and g: Y — Y’
Sprq(f9) 0 (a0 x B) = (Sy(f) 0 @) x (Sy(g) o B).
(¢) The Leibniz rule holds
Do x ) = B(a) x A+ (~1V%a x (B).
The map X is called the homology cross product.

PROOF. For p or g equal to zero, we define x as dictated by property (a). Therefore we
can assume that p, ¢ > 1 and induct on p + ¢. The method of proof that we will apply here
is called method of acyclic models — you’ll see why. Let X = AP, Y = A? o« = idar, and
B =idaq. If idar X idae were already defined, then property (c¢) would force

a(idAp X iqu) = a(idm) X idae + (_1)pidAp X 8(iqu) = Re Serq,l(Ap X Aq)
For this element R (which is already defined) we get
OR = 0*(idar) xidac+(=1)P'0(id ar ) x O(id e )+ (—1)PO(id ar ) x D(id aa ) +(—1) P~ Hd ap X * (id aa) = 0
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so R is a cycle. But Hpyq—1(AP x A?) =0 because p+¢—1 > 1 and AP x A? is contractible
and therefore S,(AP x A?) has no homology. Thus R has to be a boundary, so there is a
c € Spiq(AP x A?) with dc = R.

We fix such a ¢ and define

idAp X iqu = cC.

Now let X and Y be arbitrary spaces and a: AP — X, 5: A? — Y. Then S,(«)(idar) =
a and S,(5)(idas) = B and therefore binaturality dictates

a x B = S,(a)(idar) x S,(8)(idac) = Spiq(c, B)(idar X idaa).

By construction, this definition satisfies all desired properties. 0]

Note that for spaces X, Y with trivial homology in positive degrees, the Kiinneth Theorem
yields that H,(S.(X) ® S.(Y)) = 0 for positive n.

LEMMA 15.2. Let C, and C. be two chain complexes which are trivial in negative degrees
and such that C,, is free abelian for all n and H,C. =0 for all positive n, then we have

(a) Any two chain maps f., g.: C. — C.L with fo = go are chain homotopic.
(b) Is fo: Co — C} a homomorphism with fo(OCy) C OC] then there is a chain map
fe: C — CL extending fo.

ProOF. For (a) we will define a map H,,: C,, = C), for all n > 0 with 0H,, + H,,_,0 =
fn — gn inductively. For n = 0 we can take zero because fy = go by assumption. Assume
that we have Hj, for k < n — 1. Let {x;} be a basis of the free abelian group C,, and define

Yi i = fali) = gn(2i) — Hym10(23) € Cy,.
Then
Oy; =0 [n(;) — Ogn(x;) — OHp—10(x;)
:6fn(xz) - agn<xl) - Hn—282(xi) - fn—la('rl) + gn—la(xi)
=0.

But (7, is acyclic by assumption and therefore y; has to be a boundary and we define H, (x;) =
z; for some z satisfying 0z; = y;. Then

(8Hn + Hn_la)(xz) =Y, + Hn_lﬁ(xi) = fn(l’Z) — gn(xz)

For (b) we define f,: C,, — C! inductively with df,, = f,_10. Assume that {x;} is a
basis of C,,. Then f, 10(x;) is a cycle and thus there is a y; with dy; = f,,_10(x;) due to the
acyclicity of C!. We define f,(x;) as y;. Then

afn($z‘) = Oy; = fn—la(ffi)-

PROPOSITION 15.3. Any two binatural chain maps fxy,gxy from S.(X) ® S.(Y) to
S«(X X Y') which agree in degree zero and send the zero chain xo® yy € (S«(X) ® S«(Y))o
So(X) ® So(Y) to (xo,y0) € So(X X Y) are chain homotopic.
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Here by fxy being a binatural chain map we mean that any pair of maps f : X — X’
and g : Y — Y’ we have a commutative diagram

fx,y

S(X)@S.(Y) —Y L8 (X xY)

lf*(@g* l(fxy)*

S.(X") @ S.(Y") S.(X' % Y7)

fX’,Y’

PROOF. First we deal with the case X = AP and Y = A% for p,q > 0. If f,g: S.(AP) ®
S, (A7) — S, (AP x A7) are two chain maps then S,(AP) ® S,(A?) is free abelian and
S.(AP x A7) is acyclic so we can apply Lemma and get a chain homotopy (H/)p,
H) . (S.(AP) @ S.(AY),, — Sp1(AP x A7)
with O0H/, + H],_,0 = f, — gn.
Note that for arbitrary X and Y binaturality implies
fxy o (S:(a) ® 5.(8)) = Su(a, B) o faras,  gxy © (5:.() ® 5.(B)) = S.(a, ) 0 garaa

for all : AP — X, f: A1 =Y.
We define

H,: (Se(X)®S:(Y)) — S (X xY)
as
H,(a®B) = S,1(a, ) o H (idar ® idag).
This is well-defined and by construction:
OH,(a® ) = 0Spi1(a, B) o H) (idar ® idaq)
= Sy(a, B)OH] (idar ® idaq)
= Spu(a, B) o (—H],_10(idar ® idad) + fr(idar @ idaed) — ¢n(idar ® idaq))
— fula® ) — gula ® B) — Ho10(a @ B).

For the last step use that we can rewrite
anla(a ® 6) = Hn71<S*<a) & S*(ﬁ*))a(ldAp & iqu)

as Si(a) is a chain map, and the left hand side is S, («, B)H],_;(0(idar ® idaq) by definition.
U

Next we need existence and essential uniqueness of a suitable map from S,(X x Y) to
Se(X) ® S.(Y).

PROPOSITION 15.4. (a) There is a chain map S,(X xY) — S,(X)® S.(Y) for all
spaces X and 'Y such that this map is natural in X and Y and such that in degree
zero this map sends (xo,Yyo) to xo @ yo for all zo € X and yp € Y.

(b) Any two such maps are chain homotopic.

PROOF. Let X = A" =Y for n > 0 and set C, = S,(A" x A") and C. = S,(A™) ®
S«(A™). Set fo: Cp — C} as dictated by condition (a). Then by Lemma there is
a chain map (fim)m, fm: Sm(A" x A") — (S.(A") ® S.(A"));m. We need to check the
condition f(9C;) C 9C]. Consider a boundary (xg,yo) — (z1,41) € So(X X Y), so there is
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(o0,7) : A" - X x Y with 96 = 2y — x; and 97 = yo — y1. Then one can check that the
image g ® yo — x1 ® y; is of the form dg (0 @ yo + 1o @ 7).
Now for a: A" — X x Y we define

fal@) = (S.(p1 0 @) @ Su((p2 0 @) o f(Aan).
Here, Aan: A" — A™ x A™ is the diagonal map viewed as a singular simplex Aan €

Sn(A™ x A™) and the p; are the projection maps X2 X xvE Ly

Su(A™ x A" — " (5.(A™) © S.(A™)),

l&(a)@&(a)
(Se(X xY) @ 8,(X xY)),
ls*(m)@&(m)
(S(X) @ S(Y))n.

It is easy to check that this map sends (zg,yo) to Tg ® yo.
Claim (b) follows as in Proposition [15.3] O

THEOREM 15.5 (Eilenberg-Zilber). The homology cross product x: S.(X) ® S.(Y) —
S«(X X Y) is a homotopy equivalence of chain complexes.

PRrROOF. Using Proposition let f be any natural chain map S,(X xY) — S,(X) ®
S.(Y) with fo(zo,y0) = o ® yo for any pair of points. Then
fo(=x=): Su(X)®S5,(Y) = Su(X) @ S.(Y)

and this composition sends g ® yo to itself. We now proceed exactly as in the proof of
Proposition [15.3} By Lemma for X = AP and Y = A? there is a chain homotopy H’
between f o (— x —) and the identitiy map on S,(AP) ® S.(A?). We then define a chain
homotopy by H(a® ) = Spi1(a, 8)o H' (idar ®idaq). Similarly we get that the composition
(— x —) o f is homotopic to the identity. O

COROLLARY 15.6 (Topological Kiinneth formula). For any pair of spaces X and Y the
following sequence is split short exact

0= P Hy(X)@ Hy(Y) — Hy(X xY) — 5 Tor(H,(X), Hy(Y)) = 0.

The sequence is natural in X and Y but the splitting is not.

EXAMPLE 15.7. (a) For the n-torus T™ = (S')" we get
() = z(%)

where we can identify the rank of the homology in degree i as the coefficient of !
in (14 z)* (the two numbers are given by the same combinatorics).
(b) For a space of the form X x S™ we obtain

Hy(X x S") = Hy(X) @ Hy_n(X).
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There is also a relative version of the Kiinneth formula. The homology cross product in
its relative form is a map

x: Hy(X,A) @ H(Y,B) — H,+ (X XY, AXx Y UX X B).
In particular for A and B a point we get a reduced Kiunneth formula which yields
Hy(X)@ Hy(Y) — Hpf(X XY, X VY)

and in good cases (see Proposition the latter is isomorphic to ]:[p+q(X A'Y) where
XANY=XxY/XVY.

16. Simplicial homology

Singular homology has a very unwieldy definition which gives good formal properties,
but it may only be computed using general theorem.

Cellular homology gives a very small chain complex computing homology, but determin-
ing the differentials in terms of degree copmutations is highly non-trivial.

There is a third approach called simplicial homology which is also historically the first
definition of homology.

It is defined not for arbitrary topological spaces but for simplicial complexes, which are
glued out of the standard simplices A™. We restrict ourselves to finite ones.

Recall that an affine simplex, denoted [vg,...,v,]| is a singular simplex of the form
(to,...,tn) — >, tiv; where {v;} is some set of points. (This makes sense in any affine
target space.)

In this section we will mean by a simpler an affine simplex in R* sucht that all v; are
affinely independent. Here R* = colim,, R", although in pratictice it is enough to consider
R for some very large N.

The faces of a simplex [vo, ..., v,] are all simplices spanned by a subset of {v;}. The i-th
face of o = [vy, ..., v,], denoted by d;o is [v, ..., 0, ..., v,] where v; denotes that the vertex
v; is left out.

DEFINITION 16.1. A finite simplicial complez is a a collection K of simplices {o} such
that

(a) if o € K then so are all the faces of o,
(b) if 0,7 € K then o N7 is a face of both ¢ and 7.

We call the associated topological space |K| = Ugo the polyhedron of K.
Given a topological space X a homeomorphism X = |K| for some simplicial complex K
is a triangulation.

Importantly, any finite simplical complex gives rise to a finite CW complex if we filter
| K| it by the dimension of the simplices, noting A™ = D".

EXAMPLE 16.2. The torus has a triangulation given by the following simplicial complex
with 9 O-simplices, 27 1-simplices and 18 2-simplices. A smaller triangulation would not
satisfy that every simplex is determined by its vertices (which is necessary for a simplicial
complex).

Recall that the barycenter of a simplex o = [vy, ..., v,] is defiend as 6 = #1 > ;.
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DEFINITION 16.3. The barycentric subdivison K1) of a simplicial complex K has vertices
o for all ¢ € K and simplices |7y, ..., %] for any sequence of simplices oy, ..., o where o;
is a proper face of o;.

We have met the linear version of this construction in Definition [7.4] The barycentric
subdivision of A? is the following simplicial complex:

One can check that |[K(V| 2 |K]|.
We will denote iterated barycentric subdivision by K.

REMARK 16.4. If you are put off by the size of this triangulation you may want to consider
A-complexes, which are somewhere between CW complexes and simplicial complexes and
are used extensively in Hatcher’s book.

REMARK 16.5. In the beginnings of the subject of topology people assumed any reason-
able space could be given a triangulation, and any two triangulations of a space would have
some common refinement, thus allowing us to reduce the study of homology to the study of
simplicial complexes.

The latter was called the Hauptvermutung. It is very false, even for manifolds. In
dimensions greater or equal to 4 there are always manifolds with multiple inequivalent trian-
gulations. In dimensions greater or equal to 4 there are also manifolds which do not admit
any triangulation at all!

Incidentally, in dimension 4 it is unknown if every manifold is homeomorphic to a CW
complex. (This is known to be true in all other dimensions.)

Note that differentiable manifolds always admit a triangulation (and thus a CW struc-
ture).

DEFINITION 16.6. The simplicial chain complex C.(K) of a simplicial complex K is de-
fined by C,,(K) = @k, Z where K, is the set of n-simplices and the differential is given on gen-
erators by o = Y _.(—1)'d;o, explicitly given by d[vg, . .., vn] = > 1 o(—=1)"[v0s - -+, Viy e+, V).

PROPOSITION 16.7. Let K be a finite simplicial complex. The homology of C.(K) is
isomorphic to the homology of the polyhedron |K]|.

PROOF. There are two reasonable proofs:

The first proof is more geometric. We observe that C.(K) is nothing but the cellular
chain complex of |K| with the induced CW structure. This is clear for the C,,, one has to
take some care when considering the differentials (exercise).

The other proof is more systematic. We note that every simplex of K defines a singular
simplex of |K|, and by construction this is compatible with the differentials and we get a
map C,(K) — S.(|K]).

Denoting Uz < nk,, by K" this induces a map of short exact sequences of complexes:
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0—— Co(K" 1) —— C.(K") —— C.(K")/C. (K™ 1) —— 0

J l l

0 — Su(|K"7Y) — Su(|K™]) — Su(|K"], [Kna]) —— 0

This induces a map between long exact sequences on homology:

Hi1 (C(K™) [C(K™) — H(C(K™) — H(C(K™) — H(C(K™)/C(K™) s Ho_y(C(K" 1)

: Fo g :

Hia(|K™|, |[Km ) 22— Hi(|K™Y)) —— Hi(|K™]) —— H(|K"), [ K™ ) —— Hi 1 (|K"Y)

Here the first and fourth column are isomorphisms as we observe that C,(K"™)/C.(K"™ 1) is
just the free abelian group on K, in degree n, and the inclusion induces a natural isomorphism
with H,(|K"|,|K"!|) which is H,(Vg,S") in degree 0.

For n = 0 we have H,(C(K"°)) & H,(]K°|). Thus we may assume the second and fifth
columns are isomorphisms by induction assumption.

We find by the 5-Lemmal0.5] that H,(|K"|) = H.(C(K™)) for all n. As K = K™ for some
large n we are done. 0

Simplical complexes form a category whose morphisms are simplicial maps f : K — L
which are maps of 0-simplices Ky — Lg such that for an [vg, ...,v,] € K we have a simplex
with vertices {f(vo), ..., f(v,)} in L. (Note that the f(v;) need not be distinct.) Simplicial
maps clearly induce morphism on simplicial chain complexes.

A simplicial map f induces a continuous maps on polyhedra |f| : |K| — |L| by sending
a point > tv; € |K| to > t;f(v;) € |L].

THEOREM 16.8 (Simplicial approximation theorem). Let K, L be finite simplicial com-
pleves and f : |K| — |L| a continuous map. Then there is a simplicial map g : K — L
from an iterated barycenric subdivision of K to L such that f is homotopic to g.

We introduce some notation and one lemma to organize the proof.

DEFINITION 16.9. Given a simplex ¢ in a simplicial complex we define its star St(o) to
be the union of all simplices containing o.

We define its open star st(o) to be the union of all the interiors of the simplices containing
o

Here the interior of 7 is 7\ d7 (and a 0-simplex is equal to its own interior). The open
star of o is an open subset of |K| and St(o) is its closure.

EXAMPLE 16.10. Consider a vertex o of the simplicial complex OA3. Its star consists of
all the faces of A3 except for the one opposite o. The open star conists of the interor of the
star, i.e. the complement of the face opposite o in A3,

By definition if o is a face of 7 then St(7) C St(o).

LEMMA 16.11. Let vy,...,v, a collection of a simplicial complex K. Then M;st(v;) is
nonempty if and only if v, ..., v, are the vertices of a simplex o in K. In this case st(c) =
Nst(v;).
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PROOF. By definition the intersection consists of all the interiors of simplices containing

all v;. So if the intersection is nonempty there is such a simplex and contains o = [vy, ..., vy,]
as a face. Moreover these simplices containing all v; are exactly the simplices containing
0. 0

COROLLARY 16.12. Let f : S¥ — S™ be a continuous map. If k < n then f is homotopic
to a constant map.

PROOF. Any S* may be triangulated as the boundary of the (k + 1)-simplex. It follows
from Theorem that f is homotopic to a simplicial map which must send S* to the
k-skeleton of S™, and any such map is null-homotopic. O

In other words 7,(S™) =0 if k < n.

ProoF OF [I6.8. We note that K may be embedded in some large RY. In fact we can
choose N = #Kj and send the i-th vertex to the standard basis vector e;. This equips |K|
with a metric which restricts to the usual Euclidean metric on every simplex.

Let {v} be the set of vertices of L. Then f~!(st(v)) is an open cover of K. Let ¢ be
its Lebesgue number. We recall that barycentric subdivison reduces the diameter of the
simplices from Lemma Thus we may take an iterated subdivison K () such that each
simplex has diameter < €/2 and then the closed star of any vertex x € K has diameter < e.
So we have f(St(x)) C st(v) and we set g(x) = v.

We claim that this map extends to a simplicial map g : K — L. So consider a simplex
[z1,...,2,) in K. We need [f(z1),..., f(z,)] to be a simplex in L. Consider any x in the
interior of [xy,...,x,]. it lies in every st(z;), so by definition f(z) lies in every st(g(x;)).
Thus by Lemma [g(x1),...,9(x,)] is a simplex in L.

Then |g|(x) is defined by linear interpolation from the g(z;).

It remains to show f and |g| are homotopic. We embed L into RY again and define a
linear homotopy h:(x) = (1 —t)f(x) + tg(x). This wis a continuous homotopy between f
and |g| in RY, we just have to check it is contained in |L|.

Any x in |K| lies in the interior of some simplex [z1,...,z,] and |g|(x) lies in 0 =
lg(z1),...,9(x,)]. By construction f(x) lies in St(¢), thus there is a simplex 7 containing
f(z) and g(z) and thus hy(x) = (1 —t)f(z) + tg(x) € T C |L]. O

17. The Lefschetz fixed point theorem

Simplicial homology has many practical short comings, but it does have some uses. Our
next goal is to prove the famed Lefschetz fixed point theorem.

To simplify things a little bit we work over the rational numbers QQ, that means instead
of abelian groups we consider chain complexes which are given by Q-vector spaces in every
degree.

We recall the Euler characteristic of a chain complex from Exercise sheet 6. So from now
on let all our chain complexes have Y dim C; < oo. Then x(C) = > (—1)"dim(C;).

We may also define something like the Euler characteristic of a morphism:

DEFINITION 17.1. Let f : C — C be a chain map. Then we define 7(f) to be
In particular 7(id¢) = x(C).
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LEMMA 17.2. Let f : C — C'". Then 7(f) = 7(H.(f)) := >_,(=1)"r(H;(f)).

PRrROOF. We first consider a short exact sequence 0 — V. — W — W/V — 0 of chain
complexes and an endomorphism f : W — W with f(V) C V. Then there is an induced
map fwy : W/V — W/V and we have 7(f) = 7(f|v) + 7(fw/v). The proof is elementary
linear algebra, just note that f has a block upper triangular form and the trace is the sum
of the traces of the diagonal blocks.

We can then apply our observation to the short exact sequences 0 — B, — Z, — H, — 0
and 0 —» Z,, —» C, — B,_1.

We find

T(H*(f))ZZ(—l)itr(Hi(f)) = Z(—l)i(tr(Zi(f))—tT(Bz-(f))
= D (=1 (tr(Z(f) + tr(Bia(f))

= Y (-Vtr(fle) =7() O

DEFINITION 17.3. Let X be a topological space and f : X — X. Then we define the
Lefschetz number 7(f) to be 7(f. : Hi(X) = H.(X)).

It is clear from the definition that 7(f) is homotopy invariant.

THEOREM 17.4 (Lefschetz fixed point theorem). Let K be a finite simplicial complex and
f:|K| = |K| a continuous map with 7(f) # 0. Then f has a fized point.

PROOF. Assume f has no fixed point. We choose a metric on |K| as in the proof
of Theorem [16.8] As |K| is compact we see that d(z, f(x)) attans a minimum e > 0.
Subdividing K we obtain a simplicial complex K’ such that the stars of all simplices have
diameter < €/3.

Subdividing K’ further we find a simplicial map ¢ : K” — K’ homotopic to f. By
construction f(z) and |g|(x) always lie in the same simplex, so d(f(z), |g|(z)) < €/3.

We claim o N g(o) = 0. Indeed if x,y € o then

d(y, g(x)) > d(z, f(x)) — d(z,y) — d(f(z), g(x)) > €/3,
so the intersection is empty.

We now note that g does not give a simplicial map K” — K" (as subdividing the right
hand side means the images of simplices on the left hand side may no longer be simplices).
However, it does induce a cellular map on the CW complex associated to K" as the n-skeleton
of |K’| is contained in the n-skeleton of |K"|.

By Lemmall7.2] we can compute 7(f) by computing 7(|g|) on the cellular chain complex
of K”. On the basis given simplices all of the diagonal entries of g are 0 as every n-simplex
is moved. This shows 7(f) = 7(|g|) = 0 and completes the proof. O

One may also work over the integers but has to divide out all torsion subgroups.

EXAMPLE 17.5. (a) Let f be an endomorphism of the closed disk D". As D" is
contractible 7(f) is just the trace of f on Hy, which is 1 for every path connected
space. Thus f has a fixed point and we have reproven the Brouwer fixed point
theorem.
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(b) The same argument applies to any space with trivial rational homology. In particular
any endomorphism of RP?" has a fixed point.

(c) Consider a (rotationally symmetric) torus and rotate it by some angle ¢ around the
axis through the hole. This continuous map does not change the homology class of
any generator on homology, thus the Lefschetz number is 1 —2+1 = 0 and the map
need not have a fixed point.

(d) Consider a surface 3 of genus 2 that has reflectional symmetry through a plane
separating the two holes. The reflection f has trace 1 in degree 0 and trace 0 in
degree 1 as the generators of H;(X) are permuted. In degree 2 we use Hy(X) =
Hy(3, 2\ {z}) for some z in the fixed plane. Then reflection changes the sign of the
fundamental class of Ho(3, %\ {z}) & Hy(S?,S?\ {x}) and the trace of f on H, is
—1. Thus the Lefschetz number is 7(f) =1 -0+ (—1) = 0. But f clearly has fixed
points. Thus there is no converse to the fixed point theorem. However, we may note
that 7(f) is the Euler characteristic of the fixed point set!

The following observation makes the Lefschetz fixed point theorem more powerful:

COROLLARY 17.6. Let X be a retract of a finite simplicial complexr and f : X — X has
7(f) #0. Then X has a fized point.

PROOF. Let r : |[K| — X be the retraction with ri = idy. Aussume f has no fixed
point, then neither does ifr : |K| — |K|. So 7(rfi) = 0 by Theorem [17.4 But as H,(X) is
a direct summand of H,(|K|) then 7(f) = 0 also. O

REMARK 17.7. Any compact manifold and any finite CW complex is a retract of a finite
simplicial complex, see Theorem A.7 in [Hatcher].

COROLLARY 17.8. Let f be a simplicial homeomorphism of a finite simplicial complex
K. Then 7(f) = x(K') where K/ is the subspace of fized points of |K]|.
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CHAPTER 2

Singular cohomology

1. Definition of singular cohomology

DEFINITION 1.1. A cochain complex of abelian groups is a sequence (C™),cz of abelian
groups C™ together with homomorphisms §: C" — C™*! with 62 = 0. The map J is called
coboundary operator. The group

ker(§: C™ — C™1)
im(5: Cn=1 — Cn)

H(C*) =

is the nth cohomology group of C*.

If (C4,dc) is a chain complex, then we can define D" := C_,,, dp = d|C and this is a
cochain complex. The fact that do lowers degree by one gives d: C_,, = D" — C_,,_; =
D™ so dp raises degree by one. We therefore don’t need a theory of cochain complexes; it
is just often convenient to switch the notation.

DEFINITION 1.2. For two cochain complexes (C*,8) and (C*,4) a map of cochain com-
plezes from C* to C* is a sequence of homomorphisms f*: C" — C™ with f"™od =do f".

n+1 fn+1 “n+1
crtt—

S
cn L cn.

Maps of cochain complexes induce maps on cohomology.

DEFINITION 1.3. Let (C,, d) be a chain complex. Then the dual cochain complex Hom(C,, Z),
often denoted C*, is defined to be Hom(C,,,Z) in degree n with differential induced by d,
i.e. (¢)(a) = ¢(da) for a € Cy4q and ¢ € Hom(C,,, Z).

The composition 6%(¢)(a) is (dp)(da) = p(d*a) = 0 for a € Cy42, ¢ € Hom(C™, Z).

DEFINITION 1.4. For a topological space X we call the dual of the singular chain complex
the singular cochain complex S*(X,Z) = Hom(S.(X),Z).

If G is any abelian group we may similarly define

S*(X: @) = (Hom(S.(X),G), )

as the cochain complex of X with coefficients in G.
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For a: A" — X and ¢: S,(X) = Z, 6(¢)(a) = ¢(0a).
Sp(X) =7
d %
Sn—i-l(X)

DEFINITION 1.5. Let GG be an abelian group, then

ker(d: S"(X;G) — S"THX; Q)
im(d: S 1(X;G) = S(X;Q))
is the nth cohomology group of X with coefficients in G.

H"(X;G) =

Every continuous map f: X — Y induces a map of cochain complexes S*(Y;G) —
S*(X;G). Thus S* : Top” — Ch and H™ : Top” — Ab are contravariant functors from
the category of topological spaces and continuous maps to the category of chain complexes,
respectively abelian groups.

For a continuous map f: X — Y we denote S.(f) by f. and S*(f) : S*(Y: G) — S*(X; G)
by f*. For ¢ € S*(Y;G) and a € S,(X),

f1(@)(a) = p(fia) € G.

In order to compute cohomology we may again use cellular methods:

DEFINITION 1.6. Given a CW complex X we define the cellular cochain complexr with
coefficients in abelian group G to be the Hom(C.(X), G).

ExXAMPLE 1.7. (a) Dualizing the cell complex Ze,, & Zeg we compute that H*(S™) is
Z if i =n or i =0 and 0 otherwise (for n > 0).

(b) The cellular cochain complex of RP? with its usual CW structure is Hom(Z NN
7,7), which is Z & 7 & 7.

Thus we have H*(RP?) =Z/2, H'(RP?) = 0, H'(RP?) = Z.

As chains and cochains are dual we may define a pairing:

DEFINITION 1.8. e For two abelian groups A and GG, we define the Kronecker pair-
mg
(—,—): Hom(A,G)® A — G, (p,a) =¢(a) € G
where ¢ € Hom(A,G), a € A.
e For a homomorphism f: B — A we define f*(¢) = ¢ o f € Hom(B, G) and have
(f*0,0) = (¢, f) = o(f(b)).
e For a chain complex C, and C" = Hom(C,,, G) we define
<_7_>: Cm®cn — G,S0®a'—> <907a> = QO(CL)
e In particular, for A =S, (X) we get a Kronecker pairing
(—,—): S"(X;G)® S,(X) = G.
e For 0: S,11(X) — S,(X) and a € S,+1(X) we get
(0, a) = (p,0a) = ¢(0(a)).
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LEMMA 1.9. The Kronecker pairing (—,—): C™ @ C,, — G is well-defined on the level of
cohomology and homology, i.e., we obtain an induced map

(—,—): H"(C") ® H,(C,) — G.
PROOF. Let ¢ be a cocycle, then
(p,a+0b) = (p,a) + (@, 0b) = (@, a) + (6, b) = (¥, a).
Assume that ¢ = 99 and a is a cycle. Then we get
(p,a) = (0¢,a) = (1, da)y = 0.
Therefore (¢, —) is well-defined on H,(C,) and H"(C*). O

For later use we choose v, € H"(S") with (v, p,) = 1.
The Kronecker pairing also defines a natural map

k: H"(C*) — Hom(H,(C.),G)

via k[p][a] := (p,a). How much does the map « see?

2. Universal coefficient theorem for cohomology

Dual to Tor, we consider a corresponding construction for the functor Hom(—, —) instead
of (=) ® (—). For a short exact sequence

0—-—A—B—C—=0

the sequence
0 — Hom(C,G) — Hom(B,G) — Hom(A,G) — 0

is always exact on the left, but not necessarily on the right.

As an example, consider 0 7—-7 Z/nZ 0 for a natural number n > 1.
Then the sequence

0——Hom(Z/nZ,Z) = 0——Hom(Z,Z) = Z——~Hom(Z,Z) = Z
is exact but multiplication by n isn’t surjective, so we cannot prolong this sequence to the

right with a zero.

DEFINITION 2.1. For two abelian groups A, G and the standard free resolution 0 — F; —
Fy — A — 0 we define Ext(A, G) as the cokernel of the map

Hom(i, G): Hom(Fy, G) — Hom(Fy, G).
Here, Ext comes from ’extension’, because one can describe Ext(A, G) in terms of exten-

sions of abelian groups.

o As for Tor it is true that Ext(A, G) is independent of the free resolution of A. We
may use essentially the same proof.
e The functor A, G — Ext(A, G) is covariant in G and contravariant in A: for homo-
morphisms f: A — B and g: G — H we get
[ Ext(B,G) — Ext(A, G), g.: Ext(A,G) — Ext(A, H).
70



o It follows from the corresponding properties of Hom that for a family of abelian
groups (Gy,i € 1)

Ext(A, [[ G:) = [[ Ext(A, Gy)

i€l i€l
and
Ext(@D Gi, B) = [ [ Ext(G:, B).
iel iel
e Similarly to Tor the group Ext(A,G) can be explicitly calculated if A is a finitely
generated abelian group (see the exercise sheet).

REMARK 2.2. It is clear that Ext(A, G) is trivial if A is free. It is also trivial if G is
divisible, i.e., for all g € G and n € Z \ {0} there is a t € G with g = nt. For example this
holds if G is isomorphic to Q, R, Q/Z, or C.

In more general settings, when we replace abelian groups by R-modules over some com-
mutative unital ring R, the properties ensuring that Extg(A, G) disappears are that A is
projective or G is injective. In the special case of Z-modules, i.e. abelian groups, this is
equivalent to A being free respectively G being divisible.

THEOREM 2.3. (Universal coefficient theorem for cochain complezes) For every free
chain complex Cy and C* = Hom(C,, G) the following sequence is exact and splits

0——Ext(H, 1(C.), G)—— H"(C*)——~Hom(H,(C,), G)—0.
Setting C, = 5,(X) we immediately obtain:

COROLLARY 2.4. (Universal coefficient theorem for singular cohomology) Let X be an
arbitrary space. Then the sequence

0——Ext(H, 1(X),G)——H"(X; G)——Hom(H,(X),G)—0
18 split exact.

PROOF OF THEOREM [2.3 Let C, be a free chain complex and C* = Hom(C,, G). Then
the sequence 0 — Z,, — C,, — B,,_1 — 0 is split exact. There is a potential ambiguity
here between the dual group Hom(B,,,Z) and the space of coboundaries B™ C C™. But the
groups agree: Any coboundary Jf comes from a map f € C"H!

As in the case of tensor products this means that the G-dual sequence

0—=B"!—C"—2Z"=0

is short exact. (Note that (contrary to what I said in lectures) B™ here is Hom(B,,, G), which
is not the space of boundaries in C™!)

As the sequence is compatible with differentials (the trivial differential on B* and Z*),
we get a short exact sequence of cochain complexes. This yields a long exact sequence on
the level of cohomology groups

0 %

Bn—l Hn(cf*) VAL
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Here, 0 denotes the connecting homomorphism in the cohomological case. By the very
definition of the connecting homomorphism we get that 0 is the dual of the inclusion i,,: B,, C
Zn, 0 =1". We cut the long exact sequence above into short ones

0 — coker(iy ;) — H"(C*) — ker(i;) — 0

and hence we have to identify the kernel and the cokernel above.
Left exactness of hom gives us the exact sequence

0——Hom(H,(C.), G)——Hom(Z,, G)i—:WHom(Bn, G),
which tells us that the kernel of ¢} is the image of 7* and due to the injectivity of 7* this is
isomorphic to Hom(H,(C.), G).
The sequence

'in—l

0 Bn—l Zn—l Hn—l(c*)—>0
is a free resolution of H,,_1(C\) and therefore the cokernel of ¢} _,; is Ext(H,_1(C.),G).
THe splitting is left as an exercise. O

ExXAMPLE 2.5. We know that the homology of CP" is free with

Z, 0<k<2n,k even,
0, otherwise.

Hy(CP") = {

Therefore H*(CP™) = Hom(H,(CP"),Z), thus the cohomology is given by the Z-dual of the
homology.

3. Axiomatic description of a cohomology theory

We will now give the axiomatic description of singular cohomology. These axioms will
be the main results we proved for homology, and that hold equally for cohomology.

We begin by noting the following facts, easy consequences of some of the results we
proved for chain complexes.

e For a chain map f: C, — C. (such as the barycentric subdivision) the G-dual map
f* =Hom(f,G): Hom(C., G) — Hom(C\, G)

is a map of cochain complexes.
o If (H,: C,, = Cl ) is a chain homotopy, then the G-dual

(H" := Hom(H,,G): Hom(C,_ ,,G) — Hom(C,, G)),

is a cochain homotopy. Thus if 0H, + H,_10 = f, — ¢y, then H"0+0H" ! = f*—g".

e As we mentioned above, for a split exact sequence 0 - B; — By — B3 — 0 the
dual sequence 0 — Hom(B3, G) — Hom(Bs, G) — Hom(B;,G) — 0 is exact. For
instance, if A is a subspace of X, then the short exact sequence

0— Si(A) — Su(X) — S.(X,A) — 0
is split. We define r,,: S,,(X) — Sp(A) on a: A" — X via
(@) {a, if a(A ) C A,
0, otherwise.
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Therefore 0 — S*(X, A) — S*(X) — S*(A) — 0 is a short exact sequence.

With the help of these facts and using the results we have established for singular ho-
mology we can show that singular cohomology satisfies the azioms of a cohomology theory:

THEOREM 3.1. Singular cohomology satisfies the following axioms for cohomology:

(a) The assignment (X, A) — H"(X, A) is a contravariant functor from the category of
pairs of topological spaces to the category of abelian groups.

(b) For any subspace A C X there is a natural homomorphism 0: H"(A) — H" (X, A)

(c) If f,g: (X, A) — (Y, B) are two homotopic maps of pairs of topological spaces, then
H"(f)=H"(g9): H(Y,B) —» H"(X,A).

(d) For any subspace A C X we get a long exact sequence

H™(i) )
—

=L HM (X, A)—— HM(X)—= H"(A) 2. ..

(e) Excision holds, i.e., for W C W C AcAcx
H"(i): H"(X,A) = HY (X \ W, A\ W), for alln > 0.
(f) Let x be the one-point space, then

ni s o V2L, n=0,
H<*):{0 n#0

This is called the axiom about the coefficients or the dimension axiom.
(9) Singular cohomology is additive:

H(| |x) = [[H"(X).
i€l iel
PROOF. We have shown the corresponding theorems for homology and together with our
observations above this gives (a)-(f). For (g) note that S, (I1.X;) = @;5X;) , Hom(®;5.(X;),Z) =
[ [, Hom(S.(X;),Z) and cohomology commutes with direct products of chain complexes. [

For singular cohomology with coefficients in G we have an analoguous set of axioms,
replacing the dimension axioms by H*(x) = G in degree 0.

Remarkably these axioms determine the cohomology groups uniquely, at least if we re-
strict attention to CW pairs!

THEOREM 3.2. On the category of CW pairs the singular cohomology groups H™ are the
only functors satisfying the above axioms.

PROOF. See Theorem 4.59 in [Hatcher]. The idea is to use the filtration of CW complexes
and compare cellular singular cochains and cellular cochains based on some other cohomology
theory. 0

One may drop the dimension axiom and a set of functors satisfying all other axioms
is called a generalized cohomology theory. In particular we may allow the point to have
cohomology in nonzero degrees.

There are many important examples of generalizied cohomology theories, like (different
flavours of) topological K-theory or cobordism. An important example of a generalized
homology theory (defined entirely analogusly) is stable homotopy theory.
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4. Cup product

In the following, we fix a commutative ring with unit R and we will consider homology
and cohomology with coefficients in R. We will often suppress the R in our notation, so
H,(X,A) will stand for H,(X, A; R) and similarly S,(X) is S,(X; R) etc. We'll use analo-
gous abbreviations for cochains and cohomology. We will introduce p : R ® R — R as an
explicit name for the multiplication on R.

If we consider cohomology groups with coefficients in a commutative ring then cohomol-
ogy itself can be equipped with a product.

The key point is that by contravariance of cohomology the diagonal map induces a map
H*(X x X) — H*(X), and by our considerations when proving the Kiinneth theorem the
left hand side receives a map form H*(X) ® H*(X).

We first recall from Proposition that there is an essentially unique natural chain
map S(X X X) — S,(X) ® S.(X). We will now pick an explicit model for the composition
of this map with the diagonal.

DEFINITION 4.1. Let a: A™ — X and let 0 < ¢ < n.

e The (n — ¢)-dimensional front face of a is
F(a)=F""a)=aoi: A1t A% X
where i is the inclusion i: A"™7 — A" with i(e;) = e; for 0 < j < n — ¢, explicitly
(to, . ,tn_q) — (t(),. .. ,tn_q,O. . ,0)
e The g-dimensional back or rear face of a is
R(a) = R%(a) =aoh: AI——A"—"=X
where r: A? — A" is the inclusion with r(ep) = ep—q,...,7r(eq) = en, le. 7(e;) =
€n—(q—i)s > exphc1tly (to, R ,tq) — (0, R ,O, to, e ,tq).
We can express the (n — g)-dimensional front face of a as
F"%a) = Op—gt10...00,(a).
Similarly,
Ri(a) =0po...00(a)
where 0y is repeated n — ¢ times.
DEFINITION 4.2. The Alezander-Whitney diagonal map S.(X) — S.(X) ® S.(X) is
defined by
AW(a) = Y F(a) ® R(a)
ptg=n
for a generating simplex a : A™ — X in S,,(X).

PROPOSITION 4.3. The Alexander Whitney map is a chain map and satisfies AW (z) =
r®x forx € Sy(X).

PROOF. The first statement follows by unravelling the definitions (note the convention
for the differential on the tensor product). The second statement is immediate. U
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DEFINITION 4.4. The cup product U : SP(X) ® S%(X) — SPT9(X) on cochains is defined
by
a U f(c) = pla® B)AW (a)

If |a| = p, |B] = q then for ¢ € S, ,(X) we have
a U f(c) = a(F?(c))B(R(c))-

REMARK 4.5. Somebody might object that the sign is not right. I have mentioned before
that moving an object of degree p past an object of degree ¢ picks up a sign pg. With this
rule we should have

aUB(c) = (=1)"Ma(FP(c)) B(R(c)).
as we commute [ of degree ¢ past F(c) of degree p.

In general, for two elements z,y € C, and &, v € C* one can define (( ® v)(z ® y) =
(=1)llle(2) @ v(y)). This is an instance of the Koszul rule of signs.

But in fact, to be principled the same applies to the sign in the cochain complex, and
we want the formula 0 = df(a) = (5f)(a) + (—1)'f|f(0a) to be true for a cochain f and a
chain a. But that implies 0 f(a) = (—=1)f+1 f(da).

All of this is a matter of convention, in some sense Bredon is the most principled source,
but it is a bit easier to work with Hatcher’s conventions, so this is what we will do.

LEMMA 4.6. The cup product is associative, unital and functorial.

PRrROOF. We compute that a U (S U~)(c) and (U B) U~ are both given by p(p®id)(a®
B @) (Fl(ec) @ MV (c) @ RN (c)) where MIPl(¢) is the “middle face” of ¢, given by the
composition with the map e; — e;4|q| from APl to Al

The constant cochain with value 1 is the identity.

For the last statement we need to check that f*(a) U f*(8) = f*(a U ). But this is
immediate as AW is a chain map:

faup)(e) = u(a®5)AW(f(a))
p(a @ B) f.(AW (a))
=( (o) U f1(8))(a)

O

We want to show our product descends to cohomology, and this is a consequence of the
following Leibniz formula:

LEMMA 4.7. For a € SP(X) and B € S X) we have 6(aU ) = daU B+ (1) UdS.

PROOF. We need to check on ¢ € S,4,41 we compute:

(O U B)(c) = Z(—l)ia(@F”“(C))B(Rq(C))

and
q+1

(=D (U dp)(c) = Z(—l)p“Oé(Fp(C))ﬁ(&Rq“(C))
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Investigating the summands in turn and repeatedly using that 9;0; = 0;_10; wo commute

the boundary past the front and rear face maps we see that we obtain exactly the summands

of
ptq+1

(BaUB)e) = 3 (—1)a(F(8,6) B(R (D))
=0
except for the terms (—1)P™ (8,41 FP(c))B(RI(c)) (which is the last summand of the first
sum) and (—1)Pa(FP(c))B3(9o R4 (c)) (first summand of second sum). Those two terms
cancel, as 0,1 FP*(c) = FP(c) and R (c) = R%(c). O

As the cup product mixes up different degrees it is best to consider it on all cohomology
groups a the same time. We thus consider the category of graded rings.

DEFINITION 4.8. A graded ring is a ring R with a decomposition R = ®;cz R’ such that
R'- R/ C R"™. A homomomorphis of graded rings f : R, — S, is a ring homomorphism
R — S such that f(R;) C S; for all i € Z. We denote by Ring®" the category of graded rings.

THEOREM 4.9. The direct sum of cohomology groups defines a functor from topological
spaces to the category of graded rings H* : Top — Ring®" (or the category of graded R-algebras
if we consider coefficients in R).

PROOF. As §(aUp) = daUB+(—1)*laUép by Lemma 4.7/ the cup product of cocycles
is a cocycle. Setting f = dy or a = §7 in this equation shows that the cup product of a
cocycle with a coboundary (and vice versa) is a coboundary. Thus there is an induced cup
product on cohomology. It is associative, unital and functorial and respects degree as it is
on cochains. Note that the constant cochain that takes the value 1 on every 0-chain is a
cocycle. O

We may extend the cup product to relative cohomology. We consider o € HP(X, A; R)
and § € HY(X, B; R), i.e. @ and vanishes on chains taking values in A, and /3 vanishes on
chains with values in B. If A and B are open in AU B we can use the following argument:
Let some homology class ¢ be represented by a chain take values in AU B. Using barycentric
subdvision we may assume ¢ = ¢’ + ¢ with ¢ taking values in A and ¢” taking values in B.
But then (a U f)(c) = 0 as the first factor is 0 on ¢ and the second factor is 0 on ¢’. We
thus find that

U: H?(X,A; R) ® HY(X, B; R) — H*"(X, AU B; R)
is well defined.
In particular H*(X, A) is a graded ring, but note that it is in general non-unital!

ExXAMPLE 4.10. Many cup products are trivial for degree reasons.

(a) Let S™ be a sphere of dimension n > 1. We know that H°(S") & Z = H™(S") and
the cohomology is trivial in all other degrees. We have 1 € H°(S") and v,, € H™(S").
We know that

1y, =v,=r,Ul,1Ul=1

but v, Ur, =0 € H*"(S") = 0. Thus, H*(S") has the structure of a so-called graded
exterior algebra with the generator v,, Az(v,).

(b) More generally, if X is a CW complex of finite dimension, then a U 5 = 0 for all «,
f for |a| 4 | 5| big enough.
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(¢) In particular, if X is a finite-dimensional CW complex then every element in H=!(X)
is nilpotent.

We now compute our first non-trivial cup product.

EXAMPLE 4.11. Consider H*(RP?,Z/2). This is Z/2 in degree 1 and 2. In fact the only
interesting cup product is the product of the generator v of H'(RP?) as H is generated by
1 and all other products must be zero for degree reasons.

So let us compute yU~y. We recall the presentation of RP? as a circle with the two halves
of the boundary identified. Fix a base point *. Let %; be the constant 1-simplex and %, the
constant 2-simplex at the base point *. Let ¢ be the 1-simplex that is half the boundary of
the disk, it is easy to see this is a generator for 7(RP?, %) and thus for H,(RP? Z/2). Finally
let s be the 2-simplex that maps onto the disk homeomorphically, with boundary 2y — ;.
It follows that s — % is a generator for Ho(RP?.

Now we consider a generator v of H'(RP?,Z/2). We then must have v(c) = 1 and ~(x;)
is 0 as *; = 0%, is a boundary.

We compute (7 U7)(s) = v(0as)f(0ps) = 1- 1. Similarly (7 U 7)(*2) = vy(x1)y(*x1) = 0.
We need to show v U~ is not a coboundary. But 65(s) = 5(0s) = B(2¢ *1) = [(*;) using
characteristic 2. But [(x;) = ((0%*y) is a boundary. So any coboundary takes value 0 on s

and ~y U~ is not a coboundary.
As a graded ring H*(RP?) = Z[v]/(7?) with |y| = 1.

We conclude with two more vanishing results:

LEMMA 4.12. If X can be covered as X = X7 U...UX, by open and path-connected sets
with H*(X;) = 0 then in H*(X) all r-fold cup products of elements of positive degree vanish.

ProoOF. We prove the case where r = 2; the general claim then follows by induction. So
assume X = X; U X5 such that the X; have vanishing cohomology groups in positive degrees
and let i;: X; — X be the inclusion of X; into X (j = 1,2). Then for all « € H*(X),

-k

i%(a) = 0. Consider the exact sequence
H* (X, X;) — H*(X) — H*(X)).

Therefore, for all « there is an o/ € H*(X, X;) that is mapped isomorphically to «. Similarly,
for § € H*(X) there is an 8’ € H*(X, X;,) that corresponds to . The cup product o U 3
then corresponds to o’ U 8’ but this is an element of H*(X, X; U X5) = H*(X, X)=0. O

A pointed space (X, %) such that (X, *) is a good pair is also called well-pointed.

~ LEmMA 4.13. If X = X3 VX, and Xy, Xy are well-pointed and connected, then [:I*(X) =
H*(Xy) @ H*(X3)) as nonunital rings, i.e. for « = cq + ay and B = [ + By with oy, 5; €
H*(X;) in positive degrees, the cup product is

alUfB = (a4 a) U (B + F2) = a1 UPy + az U Bs.

PROOF. As X; is well-pointed we have H*( X,V X5) = H*(X; 11X, I1%) € H*(X;11X5)
for x > 2 by the long exact sequence.

So any nonzero product in degree > 2 must map to a nonzero product in H*(X; IT X,),
but by the definition the product of a cochain in S*(X; I1.X;) supported on X; and a cochain
supported on Xj is zero. O

7



5. The cross product

There is another multiplication on cohomology, which relates the cohomologies of two
spaces with the cohmology of their product.

Recall from Proposition that there is an essentially unique natural chain map S, (X x
Y) = Su(X) ® S.(Y). Fix such a map and call it £Z.

We want to work in a bit more generality, so we state here the relative version. There
are some subtleties to consider (and it is perfectly legitimate for you to focus on the absolute
case, which I will do next time I lecture this course).

First, the result we expect is false unless we make some assumption on our pairs (X, A)
and (Y, B). We could assume A and B are open in X and Y respectively or that one of
them is empty.

Then there is a natural map K : S,(X,A4) ® S.(Y,B) = S.( X xY, X x BUAXY)
obtained by composing a map L : S, (X, A)®S.(Y, B) = S.(X xXY)/(S«(X xB)+S.,(AxY))
with M @ Su(X X Y)/(Su(X X B)+ Si(AXY)) = S (X xY, X x BUA xY) which induces
an isomorphism on homology. Some details can be found in Spanier’s “Algebraic Topology”,
Theorem 5.3.9 together with Theorem 4.6.3. Note that Spanier moves from showing the map
M induces an isomorphism on homology (by using barycentric subdivision) to declaring it is
a chain homotopy equivalence. In fact as K induces an isomorphism on homology it follows
by general homological algebra that it is a chain homotopy equivalence as the two complexes
are free and bounded below.

So we shall choose a homotopy inverse of our map K and denote it by EZ, as in the
absolute case above.

DEFINITION 5.1. Let A C X and B C Y be open. For a € SP(X, A) and § € S1(Y, B)
we define the cohomology cross product, x, as

axf:=po(a®B)oEZe P X xY, X x BUAXY)
where EZ is any Eilenberg-Zilber map as above. Thus
Sy (X xY; X XxBUAXY)

g

axf
@p—l—q:n SP(X7 A) ® Sq(}/? B)
SP(X, A) & Sq(Y, B)OL(XJB—> R®R M—> R

We note without proof some useful properties of the cross product, compare similar
statements in Lemma [I5.1t

e The cohomology cross product is natural, i.e., for maps of pairs of spaces f: (X, A) —

(XA, g: (Y,B) = (Y, B')
(f,9)" (axB)=(fa)x(9°8).
e The Leibniz formula holds
5(a x B) = (6a) x B+ (—=1)lla x (68)
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where || denotes the degree of a. Thus the cross product descends to cohomology
and gives HP(X, A) @ HY(Y,B) — HP"(X xY, X x BUAXY).

e For the Kronecker pairing we have for cohomology classes «, 5 and homology classes
a, b of a corresponding degree

(@ x f,a xb) = (a,a){f,b)
where we use the cross product in homology and in cohomology.
e For 1 € R and thus 1 € SY(X, A)
1x B =p3(B), axl=pia)
where p; (i = 1,2) denotes the projection onto the ith factor in X x Y.
e The cohomology cross product is associative
ax (Bxy)=(axp)xy
on the level of cohomology groups.

We may use the cohomology cross product to define the cup product on H*, and con-
versely the cross product may be defined via the cup product.
We recall the diagonal map A: X — X x X and the two projections p;,py : X XY — X.

LEMMA 5.2. For o € H?(X,A) and f € HY(X, B), with A C X and B C X open, the
cup-product of a and [ is given by
aUf=A"axp)=A"po(a®p)o EZ).
Conversely the cross product of a and 3 is given by pi(a) Uph(8) € H*(X x Y, X x BU
AXY).

As a diagram we have:

HP(X,A)® Hi(X,B) —> HP"(X x X, X x BUA x X)

\ A*l
@]
HP(X, AU B)

PROOF. The first statement follows immediately if we recall that our Alexander Whitney
diagonal that defines the cup product a U f(a) = pu(a ® B)AW (a) is a model for the chain
map EZ o A,.

For the second statement let a € HP(X), 5 € HY(Y).

pi(a) Ups(B) = (e x 1)U (1 x ).
Here, o x 1 and 1 x § live in the cohomology of X x Y. By definition, the cup product is the

pull-back of the cross product by the diagonal. Here, Axyy: X xY — (X xY)2. Therefore,
the above is equal to

Axuy (@ x 1) x (1 x f)) =axp.

We prove the following key property of the cross product:

PROPOSITION 5.3. The cross product induces a graded commutative product on cohomol-
oqy, i.e. a X 3 = (_1)\allﬂlﬂ % o
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PROOF. We consider the twist map 7: X xY — Y x X and the swap map 7 : Ci(X) ®
C.(Y) = C.(Y)® C*(X) given by a ® b+ (—1)llblp @ a.
Let EZ : S,(X xY) — S.(X) ® S.(Y) be map as in Prposition [15.4 Then we consider
the map
EZ"=70FEZoT:S (X xY)—= S.(X)®S.(Y).

This is also a chain map (note the sign on 7 that is needed for compatibility with the tensor
differential), and clearly agrees with £Z on Sy. Thus by Proposition the two maps are
chain homotopic and, setting X = Y, we have that the cup product on cohomology may
equivalently be defined using EZ or EZ". But the EZ" definition gives aU” 3 = (—1)PSU«q,
proving the proposition. 0]

COROLLARY 5.4. The cup product on H*(X; R) is graded commutative, i.e. « U =
(_1)|a\lﬁ\5 U a.

This corollary only holds if R is commutative and this is the reason we always we assume
we are working with a commutative coefficient ring.

Proor. This is immediate from Proposition [5.3|and Lemma [5.2] U

COROLLARY 5.5. Assume that o € HP(X; R) with p odd. Assum that R is a field of
characteristic # 2 or a torsion free ring. Then o? = 0.

PrROOF. We compute

o’ = (=1 a? = -
Therefore 2a? = 0 and if R is a field of characteristic not equal to 2 or if R is a torsionfree
commutative ring, then a? = 0. O

REMARK 5.6. Our formula for the cup product in terms of the Alexander-Whitney diag-
onal showed that U is associative on the cochain level and not just on the level of cohomology
groups (this was not obvious from the EZ map). But note that the explicit formula does
not give a (graded) commutative product on singular cochains. The cup product is only
homotopy commutative, in fact it is homotopy commutative up to coherent homotopies, it
is an E.-algebra.)

The cross product looks reminiscent of the Kiinneth theorem. To simplify matters we
work over a field k£ to avoid having to worry about Tor groups.

THEOREM 5.7. Let X,Y be topological spaces such that'Y has finite-dimensional homol-
oqy groups in each degree. The cross product induces an isomorphism of graded commutative

rings H*(X; k) @ H*(Y; k) - H*(X x Y5 k).

Here the notation means that for each p, ¢ we have a map H? ® HY — HP*9 such that
Dprg=nH? @ H? = H™, and the left hand side has the product (¢ ® p) o (id ® 7 ® id), which
on basis elements is defined by (a ® b).(a/ ® V') = (=1)1¥PMaa’ @ bV, (1 ® p) o (id ® 7 ® id).

PROOF. The natural map x : a®p — ax = pj(a)Up;(S) induces a morphism of graded
rings on cohomology groups. This follows as p; is a ring homomorphism by functoriality and
a homomorphism from a tensor product of rings is determined by its restriction to the tensor
functors. (The tensor product is the coproduct in the category of commutative graded rings.)
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It remains to check that X is an isomorphism. We know from Theorem that the
map EZ : S,(X xY) — S,(X) ® S.(Y) induces an isomorphism on homology.

Over a field we may use that the cohomology groups are dual to the homology groups.
Moreover, the dual of the tensor product is the tensor product of the duals as one of the factor
is finite dimensional: we may compute Hom(V&®@W, k) = Hom(®;k@W, k) = &;Hom(W, k) =
V*@ W*if V = ¢,k is a finite sum.

It follows that E'Z also induces an isomorphism on cohomology. But EZ is exactly the
map (unique up to chain homotopy) that we used to induce the cross product. 0]

The Kiinneth theorem gives us a few more non-trivial cup products:

ExAMPLE 5.8. Consider a product of spheres, X = S" x S with n,m > 1. By Theorem
we have
H*(S" x S™) = H*(S") @ H*(S™).
We have three additive generators
Oy =V X 1,60 =1X1vy,, and Ypim = Vp X Up,.
The square o2 is trivial:
=W, x DUy x1)=(r,Uw,) x (1U1) =0.

Similarly, 82, =0 =~2,,,. But the products
oy U ﬁm = VUp X Vpyp = ’7n+myﬁm Ua, = (_1)mn7n+m

are non-trivial.

This determines the ring structure of H*(S" x §™). In particular, the cohomology ring
H*(S™ x S™) is not isomorphic to the cohomology ring H*(S™VS™V S""™), which has trivial
products by Lemma [£.13] Additively, both graded abelian groups are isomorphic, thus the
graded cohomology ring is a finer invariant than the cohomology groups.

6. Cap product

The rough idea of the cap product is to digest a piece of a chain with a cochain of smaller
or equal degree.

DEFINITION 6.1. Let R be an associative ring with unit. We define
N: SYX, A; R)®5,(X, A; R) = Hom(S,(X, A), R)®S,(X, A)QR — S ((X)®R = S,_,(X; R)
using the Kronecker pairing and the Alexander-Whitney diagonal as
BN (a®r) = F*(a) @ (8, Ri(a)r
for a: A™ — X and extend the definition linearly to S, (X, 4; R).

This definition does indeed make sense: we claim that § N a is a well-defined chain in
S,(X), not just in S, (X, A). But if we modify a by adding a chain a’ taking values in A it
will not affect 5N a as § vanishes on all faces of a'.

Here we recall that (n — ¢)-dimensional front face of a is

F"%a) = 0p—g10...00,(a).
Similarly,
Rq(a) = 80 0...0 80<Cl)
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where 0, is repeated n — ¢ times.

Analogously with the cup product we may also express this for a general EZ map as
(id® p) o EZ o A(a). The map N is well-defined: for a = a’ € S,,(X, A), i.e., a = ¢’ + b with
im(b) C A we get

BNa@r)=pn(d +bd)@r)=p8N(d@r)+ F(b)® (8, R(D)r
The image of R(b) is contained in A, but 8 € Hom(S,(X, A), R), thus 8: S,(X) — R with
Bs,a) = 0 and (B, R(b)) = 0.

PROPOSITION 6.2. There is a Leibniz formula for the cap product, i.e. for f € S X, A; R)
and a € S, (X, A) we have

IpNaxr)=(-1)"1B)N(axr)+ LN (Jar)

For the proof we suppress the tensor product with R. It just adds to notational com-
plexity.

PROOF. We check the equation (BN (a®@7))+ (=1)" 1 (5B)N(a@7r) = SN (Da®T)).
For this we consider

(6.1) (B Na)=0(F"""a) ® (8, R(a))) = 0(F"*(a)) @ (B, R*(a))
and

(6.2)
(—1)" (8 Na = (1) F 0 (0) @ (58, R (a)) = (=1)" " @) (0) @ (B,0R" ()

Finally,

n

BNoa=>» (~1YBN0d5a
=Y (1Y F"95a) @ (8, RY(9;a))

j=0
= (~1)0n—g2-+On_1 0050 ® (8,0 "0;a).
j=0

We examine the summands of this last expression in turn and distinguish cases. If j < n—qg—2
we use that 0;_10; = 0;0; for i > j to show that the summand is

(=1)0j0n—q++ Ona ® (8,05 "a) = (1) 0;F" "a & (B, R*(a))

so we recover exactly the summands of equation |6.1
If j > n—q—1 we use that 0,0; = 0,_10; as i < j, and after relabelling j' = j—(n—q¢—1)
the summand is

(~)7Hm00, gy 8u(a)@(B, 0505 (@) = (—1)" T (1) F T @) @(B, 0y R (a).

and thus we find the summands of equation [6.2]
O
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PROPOSITION 6.3. For a map of pairs of spaces f: (X, A) — (X, B) and classes a €
H.(X,A), pe H (Y, B) we have
L B)na®r)) =80 (f(a)@r)
where fio: S (X, A) = S.(Y,B) and f*: S*(Y,B) — S*(X,A).
PROOF. We plug in the definitions (skipping r for legibility) and obtain

S (f7(B) Na) = f.(F(a) ® (f*5, R(a)))
= f.(F(a) ® (8, fR(a)))
= F(fi(a)) ® (8, R(f+(a))))
= BN fi(a)
as F' and R are natural. OJ
PROPOSITION 6.4. The cap product induces a map
N: HY(X,A;R)® H,(X,A; R) — H,_,(X; R)
Via
(8] N la] := [F(a) ® (B, R(a))]
This defines an action of the graded ring H*(X, A; R) on the graded R-module H.(X, A; R).
Here a graded module M = ®M?® over a graded ring R = ®R’ is an R-module M
satisfying R/.M* C M®™. The sign arises as H* is graded cohomologically while H, is
graded homologically. To put them on the same footing we should consider the degree ¢
cohomology as living in homological degree —q.
PROOF. From the Leibniz formula we get that the cap product satisfies that

e a cocycle cap a cycle is a cycle,
e a cocycle cap a boundary is a boundary,
e a coboundary cap a cycle is a boundary.

This implies the first result.

Next consider 1 € S°(X; R), i.e. 1(a) = 1 for all a: A” — X. We claim that 1Na = a. We
have F'(a) = a because ¢ = 0 and R(a)(ey) = a(e,). Therefore, 1Na=a® (1,a(e,)) =a®1
and we identify the latter with a.

For the associativity we compute that (o U ) Nec and (a N (B Nc¢)) are both given by
a(FP(c))B(Mi(c))R"P~9(c) when |a| = p, |5| = ¢ and |¢|] = n, and M9(c) denotes the
“middle face” again. O

The cap product also interacts well with the Kronecker product:

PROPOSITION 6.5. Far o € H?(X),5 € HY(X) and ¢ € H,4(X) we have
(U B, c) ={a,fNc).

Note that if o = 1 this says (5,¢) = fNe.

PROOF. Both sides are equal to a(F?(c)).8(R%(c)). O
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EXAMPLE 6.6. Let us consider a non-trivial example. So let T' be a torus, take a 1-chain
given by a meridian b C T and another 1-chain given by the longitude a. We also consider
a 1-cocycle given by 8 € H'(T) that is dual to [b] € H,(T), so that 8(a) = 0.

Let ¢ be a generator of Hy(T). Our first guess might be a surjection from A? to the
square such that 9yA? is the vertical and 9,A? is the horizontal edge. However, this is not a
cycle, as 0y is not equal to Jy+ds. So instead we cover the square with two triangles and take
their difference as our 2-chain. It is a cycle and for degree reasons cannot be a boundary. So
we have ¢ = x — y and Jp(x) = a = 0x(y) and Os(z) = b = Jy(y). (Here 0;(x) = 0;1(y) is the
diagonal.)

Then we identify edges to obtain the torus such that the the vertical edge is the meridian
and the horizontal edge is the longitude.

Then fNec= BNz —BNyis (B8,0:(2))d(zx) — (B, 0:(y))0(y) = L.a— 0.

Thus SNc is exactly the longitude, transversal to b = S*. The cap notation is reminiscent
of the symbol M that denotes transversality.

One can compute that similarly a N ¢ = —b. Thus the computation also takes account
of orientation of the intersection.

REMARK 6.7. An alternative notation for F%(c) is ¢|o. 4, indicating the restriction of the
simplex to the subsimplex spanned by the first ¢ + 1 vertices. Similarly R?(c) = c\(n,qﬂ)mn.

7. Suspensions

We recall the following constructions:

DEFINITION 7.1. Let X be a topological space. Then the cone on X, denoted by C'X is
defined as X x [0,1]/X x {1}.

The (free) suspension of X, denoted by SX is defined as X x [0, 1]/ ~ where ~ identifies
X x {1} to a point and X x {0} to point.

The reduced suspension of a pointed space (X, xg) is defined as

(X > [0,1]) /(X x {0} U {zo} x [0,1] U X x {1})
i.e. it is the quotient of SX where we also identify {zo} x [0, 1] to a point.
If (X, z0) is a good pair then one can show there is a homotopy equivalence ¥X ~ SX.
We will mostly talk about the free suspension in this course. The suspension can also be

written as the colimit of * IT %« X IT X — X x [0, 1].
It is clear that C'X is contractible and that SX = CX Iy CX.

EXAMPLE 7.2. For any n we have SS" & S"+1,
THEOREM 7.3 (Suspension isomorphism). If A C X is a good pair then for all n > 0
H,(SX,SA) = H, |(X,A), and H"(SX,S5A)~ H"(X,A)

Proor. We prove the result for homology, the proof for cohomology is identical.
Picking open neighbourhoods of the two copies of CX C SX, e.g. the images of X x (%, 1]
and X x [0, %), we obtain from the Mayer-Vietoris sequence on reduced homology that
6 : Hyyy(SX) =2 Hy(X) for all n, i.e. the boundary map provides an isomorphism.
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The same is true for A C X and for the relative case we apply the 9-Lemma to the
quotient of the following short exact sequences of complexes

0—— C,A——C.(CA)® C,(CA) —— C.(SA) —— 0

| l l

0— C. X — Ci(CX) ® Cu(CX) —— C(SX) — 0
to obtain a short exact sequence of chain complexs
0— Cu(X,A) = C(CX)/C(CA) & CL(CX)/CL(CA) = C.(SX,SA) — 0.

Here we use CX and C'A to mean the open neughbourhoods for better legibility. As
C.(CX)/C.(CA) is acyclic the result follows from the long exact sequence on homology. [

REMARK 7.4. Note, that the corresponding statement is terribly wrong for homotopy
groups. We have SS? = §*, but 73(S?) = Z, whereas m4(S?) = Z/27Z, so homotopy groups
(unlike homology groups) don’t satisfy such an easy form of a suspension isomorphism. There
is a Freundenthal suspension theorem for homotopy groups, but that’s more complicated.
For the above case it yields:

Z)27 = 71 5(SH) 24 (SYH 2. =7
where 77 denotes the first stable homotopy group of the sphere.

The suspension construction is in fact functorial and if f: S® — S™ is continuous, then
S(f): SS™ — SS™ is given as SS" 3 [z,t] — [f(x),t].

LEMMA 7.5. Suspensions leave the degree invariant, i.e., for f: S — S™ we have

deg(S(f)) = deg(f).

PROOF. The suspension isomorphism of Theorem is induced by a connecting homo-
morphism. Using the isomorphism H,,,(S"*!) = H, (SS"), the connecting homomorphism
sends i1 € Hyy1(S™Y) to —u, € H,(S™) by definition. But then the commutativity of

o

(ST o Hyy (SS™) —0 Hyy (SS7) e Hypir (S™H)

l I

Hn(f) r n
H, (s H,(S")
ensures that deg(f)dun1 = 0deg(Sf)i,, which becomes —def(f)u, = —deg(S[f)in. O

n+1 Sf)

This gives another proof that for every k € Z and n > 1 there is an f: S® — S™ with
deg(f) = k. We just define the k-fold loop on S! and suspend it n — 1 times.
Finally we note that suspension immediately kills all cup products:

PROPOSITION 7.6. The cup product structure on SX s trivial for any toplogical space
X.

PRrROOF. This follows immediately from Lemma as C'X is contractible. 0
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Note that the cohomology rings of S(S™ x S™) and S(S™ V S™ V §""™) are isomorphic
(namely here cup products of elements of positive degree are trivial due to Proposition .
You may wonder if

S(S™ x ™) ~ S(S" v S™ v ™).
8. Orientability of manifolds

DEFINITION 8.1. A topological space X is called locally euclidean, if every point z € X
has an open neighborhood U which is homeomorphic to an open subset V' C R™.

e A homeomorphism ¢: U — V is called a chart.

e A set of charts is called atlas, if the corresponding U C X cover X.

e The number m is the dimension of X if it is independent of x, for example if X is
connected.

ExaMPLE 8.2. Consider the line with two origins, i.e. let
X =A(z, )|z e R} U{(x,-1)|z e R}/ ~, (z,1) ~ (x,—1) for z # 0.
Then X is locally euclidean, but X is not a particularly nice space. For instance, it is not

Hausdorff: you cannot separate the two origins.

DEFINITION 8.3. A topological space X is an m-dimensional (topological) manifold (or
m-manifold for short) if X is a locally euclidean space of dimension m that is Hausdorff and
has a countable basis for its topology.

With this definition, topological manifolds are paracompact: any open cover has a locally
finite refinement.

EXAMPLE 8.4. (a) Let U C R™ an open subset, then U is a topological manifold of
dimension m.
(b) The n-sphere S® C R"™! is an n-manifold and S = (S" \ N) U (S™\ S) is an atlas
of S™.
(c) The 2-dimensional torus 7' 2 S! x S! is a 2-manifold and more generally, the surfaces
F, are 2-manifolds. Charts can be easily given via the 4g-gon whose quotient F} is.
(d) The open Mébius strip [—1,1] x (=1,1)/ ~ with (—1,¢) ~ (1, —t) is a 2-manifold.
(e) For k = R,C,H let d = 1,2,4 respectively. The projective space kP" defined in
Example [12.8| is a manifold of dimension dn. The open sets U; C kP™ defined by
(20, ..., T,] with ; # 0 in projective coordinates provide a chart as U; = k" = R,

Let M be a connected manifold of dimension m > 2. We denote the open charts by
U, C M. Without loss of generality we can assume that

w: Uy = D™ c R™
and for an x € M we can choose charts with ¢(z) = 0. Excision tells us that for all z € M
H,(M, M\ z) = H,, (D™, D™\ {0}) = H,,_; (D™ \ {0}) 2 Z
for m > 2.
For a triple B C A C M there are maps of pairs
opa: (M,M\ A) — (M, M\ B).
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DEFINITION 8.5. An m-manifold M is orientable (with respect to Z) if there is a coherent
choice of generators o, € H,,,(M, M \ z), i.e. for all z € M there is an open neighbourhood
U of z and a class oy € H,,(M, M \ U) such that for all y € U we have that (g, ).0v = oy,.

Note that this implies that for all z,y € U we have the compatibility condition

Oy = Ogy,U © (Qx,U)_l(Oz)~

H,,(M,M\U)

y %y,U

0y € Hp(M, M\ x) H, (M, M\ y)> o,
DEFINITION 8.6. If such a choice is possible, then (o,|x € M) is an orientation of M.

Note that for an orientation (o,|x € M) the family (—o,|z € M) is an orientation of M
as well.

ExXAMPLE 8.7. Let M be an open Mobius strip and x a point on it. We pick a generator
0 € Ho(M,M \ x) and walk once around the Mobius strip, always picking compatble
orientations in Ho(M, M \ y) as y moves along the meridian of M. After one circle around
the Mobius strip we end up at —o,.

If we choose other coefficients, these problems can disappear. For instance for G = Z /27
there is no choice in local generators, and thus there is automatically a choice of coherent
generators for Hy(M, M \ x;Z/2Z) for any manifold M.

Now, we consider integral coefficients again. The easiest way to get an orientation is to
have a global class oy € H,,(M;Z) = H,,(M). Then with

Oz,M =: Oz Hm<M) —>Hm(M,M\JI), Qm(0M> = Oy
we have that (o,|x € M) is an orientation of M — provided that p, is injective everywhere.

EXAMPLE 8.8. If M = RP? then Hy(RP?) =0, but Hy(RP? RP?\ z) 2 Z, so here we
cannot have such a class. We will show later that in fact there is no orientation on RP2.

DEFINITION 8.9. Let K C M be a compact subset of M. We call an o € H,,,(M, M\ K)
an orientation of M along K, if the classes 0, := (0, k)« (0x) constitute a coherent choice of
generators for all x € K. Here p, i : (M, M \ K) — (M, M \ x) is the natural restriction.

Of course, if we have a global class oy, € H,,,(M) then we get coherent generators o, for
all v € M and also a class ox as above for all compact K C M.

LEMMA 8.10. Let M be a connected topological manifold of dimension m and assume
that M 1is orientable. Let K C M be compact. Then
(1) H(M, M\ K) =0 for all ¢ > m, and
(i1) if a € Hp (M, M\ K), then a is trivial if and only if (04 x)«(a) =0 for all x € K.
The following method of proof is a standard method in the theory of manifolds.

PROOF.
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(a) First, let M = R™ and let K be convex (and thus in particular contractible) and

compact in M. In this case we can assume without loss of generality that K C D™,
We calculate

Hy (M, M\ K) = H(R™ R™\ K) = H, (D", D™\ z) = 0, for ¢ > m.

All identifications are isomorphisms and this gives the second claim as well.
(b) Let M be again R™ and let K = K; U K, with K;, K, as in (a). In this case the
claims follow with the help of the relative Mayer-Vietoris sequence (Theorem [9.7)):

Hy (M, M\ Ko)——H,(M, M\ K)i—>Hq(M7 M\ Ky)® H,(M, M\ Ky)——H,(M,M\ Ko)—...

where Ky = K7 N K,. Here K;, Ky and K; N K, satisfy the assumptions as in (a)
and we can deduce (i) from the exact sequence 0 — H (M, M \ K) — 0.
To show (ii) consider a class a in H,,,(M, M \ K). By the exact sequence it is 0
if pr, k(a) = pr,x(a) =0, and by (a) this is the case if and only if p, x(a) = 0 for
all z € K.
(c¢) An induction shows the case of M = R™ and K = K; U...U K, with K; as in (a).
(d) Let M = R™ and let K be an arbitrary compact subset and let a € H,(M, M \ K)
with ¢ > m. Choose a ¢ € S,(R™) representing the class a. The boundary of 1,
d(v), has to be of the form

l
O() =D NiT;
j=1

with 7;: A1 — R™\ K. As A?! is compact, the union
¢
Unarh) cr\ K
j=1
is compact.
There exists an open neighborhood U of K in R™ with
¢

Un@ar)nu =g
j=1
Therefore ¢ gives a cycle in S,(R™,R™ \ U) and we let o’ € H,(R™,R™\ U) be
the corresponding class. Thus
(oxv)+(d) = a.

Choose closed balls By, ..., B, C R™ with B; C U for all i and K N B; # @ such
that K C |J;_, B;. Consider the restriction maps

oy B;,U OK,U B;

(R™, R™\ U) (R™,R™\ Uiy Bi) (R™, R™\ K).

Define a” as a” := (o B,,v)«(a’). Note that (ok,j5,)«(a") = a.
The B; are convex and compact and therefore

(oyB.v)«(a)=0=4d", forall ¢ >m
and hence a = 0, showing (i).
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To show (ii) let ¢ = m and assume that (0, x)«(a) = 0 for all z € K. We have
to show that a is trivial. We express (0. x)«(a) as above as

(0a.1)+(a) = (0o.x)x © (KU B.)+(0") = (€eiyB)+(a") =0

for all x € K. For every z € B; N K the above composition is equal to (0; p,)« ©
(0B, uB,)«(@"), but (04p,)« is an isomorphism and hence (gp,5,)«(a”) = 0. This
implies (0y,8,) © (08, Un:)«(a”) = 0 for all y € B; and in addition (o, p,)«(a") =0
for all y € |JB;. According to case (c) this implies that a” = 0 and therefore
a = (0k,B,)«(a") is trivial as well.

(e) Now let M be arbitrary and suppose that K is contained in a domain of a chart
K c U, 2 R™. Therefore

Hy(M, M\ K) = H,(Uy, U \ K) = H,(R™, R™ \ im(K)).

As the image of K is compact in R™, the claim follows from (d).

(f) If M and K are arbitrary, then K = K,, U...UK,, with K, C U,,. (Proving this
decomposition is an exercise in non-algebraic topology.) An induction as in (c) then
proves the claim. O

PROPOSITION 8.11. Let K C M be compact and assume that M s connected and oriented
with (o, € Hy (M, M\ x) | x € M). Then there is a unique orientation of M along K, which
is compatible with the orientation of M, i.e., there is a class ox € Hy (M, M \ K) such that
(02K )«(0K) = 0, for all x € K.

PROOF. First we show uniqueness. Let ox and 0x be two orientations of M along K.
By assumption we have that

(QxK)*(OK) - (QzK)*(aK) = (QzK)*(OK — 5[() = 0.

According to Lemma this is only the case if o — 0 = 0. )
In order to prove existence we first consider the case where K C U, = D™ and hence
M\U, C M\ K. Let x € K. We denote the isomorphism H,,(M, M\ U,) = H,,(M, M\ z)

by ¢.
We define o as

ox = (0x,v.)+((67)(0x)).

For K = K, U K, with K; contained in the source of a chart we get that og, and og,
exist. Let Ky = K7 N K5 and consider the Mayer-Vietoris sequence
0——H,, (M, M\ K)i—>Hm(M, M\ K,)® H,, (M, M\ Ko)—"~H,,(M, M\ Ko)—...
The uniqueness of the orientation along K, implies that
k(0K 0K,) = (Ko, k1 )+ (0Ky) — (0K, K2 )+(0K,) = 0.

Therefore there is a unique class ox € H,,,(M, M \ K) with i(ox) = (0k,, 0K,)-
For the last case we consider a compact subset K and we know that K = K; U ... UK,
with K; C U,,. An induction then finishes the proof. O

THEOREM 8.12. Let M be a connected and compact manifold of dimension m. The
following are equivalent

(a) M is orientable,
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(b) there is an orientation class oyy € H,,(M;7Z),
(¢) Hn(M;Z) = Z.

PROOF. Proposition yields that (a) implies (b). Now assume that (b) holds, thus
there is a class oy € Hp, (M) restricting to the local orientation classes o,. Then the class
opr satisfies, that oy is not trivial, because its restriction (0, ar)«0n = 0, is a generator and
hence non-trivial. Furthermore, o, cannot be of finite order: if koy, = 0, then this would
imply ko, = 0 for all z € M contradicting the generating property of the o,. Let a € H,,(M)
be an arbitrary element. Thus (g, a).(a) = ko, for some integer k. As the o, are coherent
in z, this k has to be constant and if we set b := kop — a then (0,.r).b = 0 for all x and
this implies that b = 0. Therefore a = ko, thus every element in H,,(M) is a multiple of
oy and H,,,(M) =2 Z.

Assuming (c) there are two possible generators in H,,(M). Choose one of them and call
it ops. Then we claim that ((0zar)«0n | © € M) is an orientation of M. To show this we first
need to know that p, is an injection. From the long exact sequence in relative homology the
kernel is given by H, (M \ z;Z) and must be 0 or Z. But it follows from Corollary below
that H,(M \ z;Z/2) = 0, and this is impossible if H,(M \ z;Z) = Z. Note that we will use
the first implication of this theorem to prove that corollary, but not this implication!

Next we need surjectivity, so let us consider (o,ar)«0nm) | © € M) = (ko) | x € M)
for some collection k,. But k, is locally constant on M and thus constant, and if there
is a coherent choice (ko, | x € M) it follows that (o, | x € M) is a coherent choice of
orientation. U

The oy as in Theorem [8.12] is also called fundamental class of M and is often denoted

ExAMPLE 8.13. For the m-sphere, M = S™ we can choose i, € H,,(S™) as a generator,
thus

[S™] = ogm = pim.

All results about orientations can be transferred to a setting with coefficients in a com-
mutative ring R with unit 1g.

e Then M is called R-orientable if and only if there is a coherent choice of generators
H, (M, M\ z; R) for all x € M.

e The results we had have formulations relative R: Lemma [8.10| goes through, and
if M has an R-orientation (of|x € M), then for all compact K C M there is an
R-orientation of M along K, i.e., a class oft € H,,(M, M \ K;R) that restricts to
the local classes. The R-version of Theorem yields a class of, € H,,(M;R)
restricting to the off. The class of}; is then called the fundamental class of M with
respect to R and is denoted by [M; R].

If the manifold M is triangulated then there is a different way of viewing orientation:
It is a coherent choice of orientation of all the n-simplices making up the manifold. An
orientation of an n-simplex is a sign given by an ordering of all the vertices, and swapping
two vertices changes the orientation.

Coherence just means that if we consider the simplicial n-chain given by the sum of all
the n-simplices the boundary will contain each (n — 1)-simplex twice. If it appears twice
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with opposite sign and cancels the sum of all n-simplices is an n-cycle, and as it can’t be a
boundary this generates simplicial H,,(M).

If we have such a triangulated manifold with an orientation we may construct a dual
cell decomposition: Each n-simplex becomes a 0-cell (the barycenter), each (n — 1)-simplex
that is a common face of two n-simplices becomes a 1-cell connecting the barycenters, an
(n — 2)-simplex becomes a 2-cell (things are already harder to visualize here, unless n = 2).
Note that this dual cell decomposition is not necessarily a triangulation.

What happens to the boundary operation? As we dualize the decomposition the homolog-
ical operator C}, — C%_; must become some operator from (n—k)-chains to (n—k+1)-chains,
i.e. a coboundary operator.

One can thus turn the simplicial chain complex upside down and obtain a cellular cochain
complex of the same manifold with a different cell decomposition. With some more work,
this shows that if M is a compact R-oriented connected manifold then

H,(M;R) = H" ?(M;R).

This is Poincaré duality. We will prove it in a different way, that avoids triangulations (which
are not unique and may not even exist) and allows for a number of generalizations.

9. Cohomology with compact support

Our setting for Poincaré duality is as follows: if M is a compact connected oriented
manifold of dimension m, then taking the cap product with [M] = oy, gives a map

(=)Non: H(M;R) = Hp—y(M; R).

We want to show this is an isomorphism.

One of our best strategies for proving theorems has been to chop manifolds into open
pieces and prove the result locally first. However, Poincaré duality as stated is visibly wrong
for non-compact manifolds. Thus if we want to prove a local version of Poincaré duality, we
first need to extend the statement to non-compact M. To this end we define the following
notion.

DEFINITION 9.1. Let X be an arbitrary topological space and let R be a commutative
ring with unit 1. Then the singular n-cochains with compact support of X are

SHX5R) ={¢: Sp(X) = R|3K, C X compact: Vo: A" = X, 0(A")NK, =2 (o) =0.}
The nth cohomology group with compact support of X with coefficients in R is
HI(X; R) == H"(S:(X; R)).

Note that S*(X; R) C S*(X; R) is a sub-complex. This inclusion of complexes induces a

map on cohomology
HYX;R) — H"(X;R).

If X is compact, then we may pick K, = X for all ¢ and H(X; R) = H"(X;R) for all
n.

Is there a map from singular cohomology to singular cohomology with compact support?
Not in general, but there is a map in a relative setting. Let K C X be compact. The
restriction map

okx: (X, X\X)=(X,9) — (X, X\ K)
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induces a map
Ok x: S"(X, X\ K;R) — S"(X; R)
whose image is contained in S”(X; R): for a ¢ in the image there is a ¢ € S™(X, X \ K; R)
with o (1) = ¢. The functional 1 is trivial on all simplices 0: A" — X with o(A")NK =
&. Therefore,
(o) = Gk x(¥)(0) =0
for such o.

LEMMA 9.2. (a) For all compact K C X the map g} x is a cochain map S*(X, X \
K; R) — S*(X; R) and in particular we get an induced map

H"(0x x): H'(X, X \ K; R) — H/(X; R).
(b) For compact subsets K C L C X we have

OK,L © 0L, X = OK.X

and therefore

S*(X,X \ K;R)

S*(X, X\ L; R)
commutes.

Lemma (9.2 says that there is a functor from the poset of compact subsets of K to the

category of cochain complexes.
For K C L C L' we have
Q;(,L’ = QE,L’ © Q;(,L'
Our index category also has the property that for compact K and L we can consider the
inclusions K C K UL and L C K U L, thus these maps meet again.

A poset with the special property that any two elements have a common bound is called
a directed set. A functor from a directed set, viewed as a category, is called a direct system.
So this is nothing but a special kind of diagram and we may take the colimit of this diagram,
it is called the direct limit (even though it is a colimit), and denoted by thl

We recall some facts about direct limits of R-modules and (co)chain complexes of R-
modules.

First we spell out the definitions: Let I be a partially ordered set which we consider as
a diagram, i.e. for all 4 < j there is a unique map fj;: ¢« — j and for ¢« = j we have f;; = id;.
all 7,5 € I thereis a k € I with i,7 < k.

Consider a functor from I to R-modules. Unravelling the definitions this means: Let M;
for i € I be a family of R-modules together with maps f;;: M; — M; with fi; o f;; = fr for
i < j < k. Then we call (M,;);er a direct system.

The direct limit is then the R-module that is determined (up to canonical isomorphism)
by the following universal property: there are R-linear maps h;: M; — hgl M; such that for
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every family of R-module maps ¢;: M; — M that satisfy g; o f;; = g; for all ¢ < j, there is a
unique morphism of R-modules g: hﬂMZ — M such that go h; = g; for all i € I.
For a direct system (M;,i € I) of R-modules we can explicitly construct 11_n>qMZ as

ling M; = (EBM@-) /U

iel
where U is the submodule of @,_; M; generated by all m; — fji(m;),i < j.
For (co)chain complexes the construction is similar. For a direct system of chain com-
plexes ((C;)«)ier we set
The boundary operators d;: (C;), — (C;),—1 induce a boundary map
d: (m(C))n — (m(C5))n1-
Let (A;)ier, (Bi)ier and (C;);er be three direct systems of R-modules. If

o b

is a short exact sequence for all i € I and if f5o¢; = ¢jo fi}, f5 othy = ;0 fF for all i < j,
then we call

(¢4) (i)

0 (As) (Bi) (C3) 0
a short exact sequence of direct systems.
LEMMA 9.3. (a) If
(4) (¥:)
0——(A)——(B:))——(C;)—0
1s a short exact sequence of directed systems of R-modules, then the sequence of

R-modules
0—>th¢—>@31-—>@€¢—>0
s short exact.
(b) If (A)ier is a directed system of chain complezes, then

ling H,,,(4;) & H,, (limg A,).

PROOF. The maps ¢;: A; — B; give — via composition with h;: B; — ligB,- — maps
A — hgrl B; and by the universal property this yields a unique map
One has to show that i) ¢ is injective, ii) the kernel of v is the image of ¢ and iii) ¢ is
surjective.

We show i) and leave ii) and iii) as an exercise.

Let a € lim A; with ¢la) =0 € lim B;. Write a = 351 Ajas] with a; € A;,. Choose
k > i1,...,1,, then a = [ag] for some a; € Ay, using the definition of the direct limit as a
quotient. (The inedex k exists as [ is directed.). By assumption ¢(a) = [¢r(ax)] = 0. Thus
there is an N > k with fyrdr(ar) = 0 and by the coherence of the maps ¢, we have 0 =
fneoor(ar) = dno far(ag). But ¢ is a monomorphism and therefore fyy(ax) =0 € hﬂAi,
hence a = [ag] = [fnr(axr)] = 0.
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For (b) we fix m and apply (a) to the short exact sequences 0 — B,,(4;) = Zn(4;) —

We can use this algebraic result to approximate singular cohomology with compact sup-
port via relative singular cohomology groups.

PRrROPOSITION 9.4. For all spaces X we have
lim §*(X, X'\ K; R) = 57(X; R)
and hence
@H*(X,X\K;R) = HX(X;R).
Here the directed system runs over the poset of compact subsets K C X.

PROOF. A cochain ¢ € S™"(X;R) is an element of S7(X; R) if and only if there is a
compact K = K, such that ¢(o) = 0 for all o with ¢(A") N K = @& and this is the case if
and only if ¢ € S™(X, X \ K; R). We obtain a well-defined map

S(X; R) = limg S"(X, X \ K R)

in this way. But by Lemma S?(X; R) is a cocone under the direct system and the maps
to the colimit factor through it. By the universal property of the colimit this is only possible
if S?(X; R) is isomorphic to the colimit.

The second statement now follows from Lemma (b). O

To the eyes of compact cohomology R looks like a sphere:

PROPOSITION 9.5.

R, *x=m,

HZ(R™; R) = H*(R™,R"™ \ {0}; R) = {0 « 7 m.

Proor. If K C R™ is compact, then there is a closed ball of radius rx around the origin,
B, (0), with K C B,,(0). Without loss of generality we can assume that rx is a natural
number.

Instead of considering the colimit over all compact K it now suffices to consider the
colimit over all closed balls with integer radius. To see this note that there are natural maps
between the colimits of the two diagrams and it is not hard to see they are inverse (we say
the diagram H*(R™,R™ \ B,(0); R),en is cofinal in H*(R™,R™ \ K; R)k compact- Lhus we
have )

@H*(Rm,Rm \ K;R) = hﬂH*(Rm,Rm \ B-(0); R)
where the direct system on the right runs over all natural numbers r. But
H*(R™ R™\ B.(0); R) = H*(R™,R™\ {0}; R)
for all » and the diagrams

H*(Rmv R™ \ Br(()); R) - H*(Rmv R™ \ B?"Jrl(o); R)

| |

H*(R™,R™\ {0}; R) ——— H*(R™,R™\ {0}; R)
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commute. Therefore we have an isomorphism of direct systems and this induces an isomor-
phism of direct limits:

liﬂH*(Rm,Rm \ B.(0); R) = liﬂH*(Rm,Rm \ {0}; R).
But the system on the right is constant and therefore

H;(R™; R) = lig H*(R™, R™ \ B,(0); R) = H*(R™,R™ \ {0}; R).

10. Poincaré duality

Let M be a connected m-dimensional manifold with an R-orientation (o, | = € M). For
a compact L C M let of = oy, € H,(M, M \ L) be the R-orientation of M along L. (We
omit R from the notation.) For K C L compact we have that

(QK,L)*(OL) = Ok

because (0, x)«(0k) = 0r = (02.0)«(0r) = (02.k)« © (0K.1)«(0r) and ok is unique with this
property. Consider

(=)Nogx: H" P (M, M\ K;R) — H,(M;R), a— aNox = F(ok) ® (a, R(ok)).
For K C L and a € H™ P(M,M \ K; R) we have (0x )" (o) € H™P(M,M \ L; R) and
(or,r) (@) Mor = aN(or,r)«(or) = aNog.

because the cap product is natural, see Proposition . (There is no (pg,)« on the left
hand side as the cap product takes values in H,(M; R) regardless which compact set we
start with.)

This compatibility ensures that the cap product yields a map

ligq(— Nog): ligHm_p(M,M\K; R)=H!P(M;R) — H,(M;R)
where the colimit goes over all the compact subsets K of M.
DEeFINITION 10.1. The map
lim(— 1 0ff): H"?(M; R) — H,(M; R)
is called Poincaré duality map and is denoted by PD or PD,,.

THEOREM 10.2 (Poincaré Duality). Let M be a connected m-manifold with R-orientation
(0z | x € M). Then PD is an isomorphism PD: H* P(M; R) — H,(M; R) for all p € Z.

COROLLARY 10.3 (Poincaré duality for compact manifolds). Let M be a connected com-
pact manifold of dimension m with an R-orientation (o, | x € M) and let [M] = oy be the
fundamental class of M, then

PD = (—) N [M]: H"*(M;R) — H,(M;R)

s an isomorphism for all p € 7Z.
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ExXAMPLE 10.4. Any connected compact manifold of dimension m possesses a Z/27Z-
orientation and a fundamental class 0%4/% € H,(M;Z/27) = 7/27. Thus for all p

(=) N 2*%. H™P(M, Z/2Z) = H,(M;Z/27.).

For instance the cohomology of RP" and its homology satisfy Poincaré duality with Z/27Z-
coefficients regardless of the parity of n.

PROOF OF THEOREM [10.2] (a) First we consider the case of M = R™ and we know
that

m— m\ ~v R7 p: 07

and this is isomorphic to H,(R™; R). Therefore, abstractly, both R-modules are
isomorphic. Let B, be the closed r-ball centered at the origin. We have to understand

(=) Nog.: H*(R™) — Ho(R™; R).
We know that (1,aNog,) = (a,0p,) for all « € H™(R™ , R™ \ B,; R). But
(—,0p,): H"(R™",R™\ B,;R) — R, uw (u,o0p,)

is bijective because the Kronecker pairing induces the first map in the isomorphism
from the universal coefficient theorem

H™R™ R™\ B,; R) = Hom(H,,(R™,R™\ B,), R) & Ext(H,,_1(R™,R™\ B,), R).

The second summand is trivial because H,,—1(R™,R™\ B,) = 0. Thus we obtain
that for all » the map (=) Nog, is bijective and therefore its direct limit

hﬂ(_) Nog,: liﬂHm(Rm,Rm \ B,; R) — Ho(R™; R)

is an isomorphism as well.

(b) Now assume that M = U UV such that the claim holds for the open subsets U, V'
and UNV, ie. the maps PDy, PDy and PDyny are isomorphisms and each of them
uses the orientation that is induced from the orientation of M.

On the example sheet you can show there is a Mayer-Vietoris sequence for com-
pactly supported cohomology. We use it together with the Mayer-Vietoris sequence
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to build the following diagram

H™(UNV;R) PPuav=evav H,(UNV;R)
Hp=#(U; R) & HP P (V; R) —— 2 H,(U; R) @ H,(V; R)
H*?(M; R) - H,(M; R)
H™ "YU NV;R) rovnv H, ((UNV:R)
Aoy ®noy

HP =P (U R) ® H PV R)

Hp_l(U; R) S¥) Hp_l(V; R)

I claim this diagram commutes up to signs and then the five lemma proves Poincaré
duality in the case M = U U V. Note here that commutativity up to sign is enough
to apply the five lemma: just change the signs of the horizontal maps to make
everything commute on the nose, and if —MNo,, is an isomorphism then so is —Noyy.

The fact that the first two squares of this diagram are in fact commutative
follows by unravelling the definitions. Commutativity of the third square, involving
the boundary maps, is significantely more involved. We prove it in Lemma [10.5
below.

By induction this extends to unions of finitely many open sets such that PD is
an isomorphism on the sets and their intersections.
Now assume M = Ufil U; with open U; such that U; C Uy C .... We will show that
if the claim holds for all U; with the orientation induced by the one of M, then the
claim holds for M. To that end, let U C M be an arbitrary open subset and let
K C U be compact. Excision gives us

HP(M,M\ K;R) = H?(U,U \ K;R)
and we denote by g the inverse of this map. The direct limit of these ¢k induces
a map
py = limpg: HY(U; R) — HY(M; R).
In general, this map is not an iso (U is 'too small’), but now we let U vary. For
UcCV CW we get
pU =9y opy, pp = id.
As the excision isomorphism is induced by the inclusion (U, U \ K) — (M, M \ K),
we get that the following diagram commutes:

M
HP(U; R) — HI"?(M; R)

lPDU lPDM
(i)«

H,(U: R) —“ H,(M; R)
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and hence the corresponding diagram

lim M
. _ E@Ui _
lim H"P(Uy; R) ————— H" ?(M; R)
TEPDUZ. lPDM
I'E(i%)*

ling(Ui; R) ——— H,(M;R)

commutes as well. Now the limit of the (iff), is an isomorphism. To show this
note that chains on UU; are the direct limits of chains on the U; as the n-simplex is
compact. Then we apply Lemma to deduce the isomorphism on homlogy. (This
should have been a lemma in the last section.)

The map hﬂgp% is an isomorphism as every K lands in some U; eventually, so
by excision H™ P(M,M \ K) = H™ ?(U;,U; \ K) and taking the direct limit over
K C M or simultaneously over K and 7 gives the same result.

By assumption, each PDy, is an isomorphism and so is their limit by Lemma 0.3
Putting all this together PD,, is also an isomorphism.

(d) We show that the claim is valid for arbitrary open subsets M C R™. We express M
as a union M = U:’;l éT where the B, are m-balls. This is possible because R™ has

a countable basis of its topology. Set U, := Uizl ér, then of course
UpcU,C...

The claim holds for the U; and because of (c) it then holds for M. (Note that the
U; may be disconnected, but applying (b) in the special case where the intersection
is empty the claim still holds in this case.)

(e) Finally we assume that M is as in the theorem with some fixed R-orientation.
Every point in M has a neighborhood which is homeomorphic to some open subset
of R™ and we can choose the homeomorphism in such a way that it preserves the
orientation. We know that M has a countable basis for its topology and thus there
are open subsets Vi, Vs, ... C M such that V; = W; C R™ and the V; cover M. Define
Ui := ;- Vj, thus M = J; U;. The claim holds for the Vj by (a), and it holds for
their intersections (which are open subsets of R™ not necessarily homeomorphic to
balls) by (d). Therefore the claims holds for the U; by (b) and thus for M by (c).

O

LEMMA 10.5. The following diagram is commutative up to sign:

PDar

H™?(M;R) H,(M;R)
| I
H 7 (U N V; R) —2u H, \(UNV;R)
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PROOF. It suffices to prove commutativity befor passinng to the limit, so we consider
the diagram:

H™ (M, M\ K UL) Moot H,(M)

l I

H™P Y (M, M\ KNL) iHmpr(UmV,UmV\KﬂL) mOK—OL>HP_1(UOV; R)

where the unlabelled isomorphism comes from excision.

We represent oxyr by a chain o = ain g, + apny + oy g € C*(M), where the summands
liein C*(U\ L), C*(UNV) and C*(V \ K) respectively. We use that those three opens form
a cover of M and use barycentric subdivison to ensure the decomposition of «.

We observe that ayny represents oxny as the other two summands vanish in H,, (M, M\
U NV). Similarly ayny + agr represents og.

To compute the boundary map in the relative Mayer-Vietoris sequence on cohomology we
take a cocycle ¢ and represent it as ¢ + ¢ with ¢ € C*(M, M\ K), ¢ € C*(M, M\ L).
Then we find by definition that d[¢] is represented by d¢px = dop, € C*(M, M \ KN L).

So we can compute (0¢) N oxnr = ddx N ayny in homology. Then we use the Leibniz
formula

Iox Nayny) = (=1)""P(dok) Nayay + ox N (Oauny)

and as ¢x N ayny is a chain on U NV the left hand side is zero on homology and we find

(0¢) Noxnr = (—1)" P N dayny

in homology

Then we compute 6(¢ Nokur) = 6(¢ N (anr + avny + k). We may compute the
boundary map by applying 0 to the first summand and obtain 9(¢ N ain ).

As ¢ is a cycle this is ¢ N dagn r by the Leibniz formula.

Again we wirte ¢ = ¢x + ¢, and note that as ¢y, is zero on chains in M \ L it sends
dagn 1, to zero.

Thus we are left with ¢x N dagnr. We are close now. We recall that oy + apny
represents ok, thus its boundary is a chain in M \ K and and by construction ¢y vanishes
on chains in M \ K. Thus we havve

§(¢p Nogur) = —or N Oayny

in homology and the diagram commutes up to the sign (—1)""P. O

The following corollary holds for general coefficients, but we only need this version:
COROLLARY 10.6. Let M be a non-compact connected manifold. Then H,(M;Z/2) = 0.

PROOF. As M is orientable with respect to Z/2 we may apply Poincaré duality and find
that H,(M;Z/2) = HY(M;Z/2). But unravelling definitions H?(M) are exactly functions
with compact support that are constant along any continuous path. But on a non-compact
manifold there are no compactly supported constant functions. 0
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11. Duality and cup products

Let M be a connected closed m-manifold with an R-orientation for some commutative
ring R. We consider the composition

H*(M; R) @ H™*(M; R) —— H™(M; R)
et
Ho(M;R) = R
DEFINITION 11.1. For o € H*(M; R), 3 € H™ *(M; R) the map
(v, B) = (U B, o)
is called cup product pairing of M.

PROPOSITION 11.2. The cup product pairing is non-singular if R is a field or if R = Z
and all homology groups of M are torsion-free.

Here, non-singular means that the induced maps
H*(M; R) — Homg(H™ *(M; R),R) and H™ *(M; R) — Homg(H"*(M; R), R)

are both isomorphisms.
Proposition[I1.2]holds as long as one restricts attention to the free part of the cohomology
groups: let FH*(M; R) denote the free part of H*(M; R) then there is a non-singular pairing

FH"(M;R)®@r FH™*(M;R) — R.

In geometric applications the ground ring is often R = R, so then you are dealing with
a pairing over the real numbers and methods of linear algebra apply.

PrROOF. The Kronecker pairing yields a map
k: H*(M; R) — Homp(H,(M; R), R)
and Poincaré duality tells us that capping with o} is an isomorphism between Hy(M; R)
and H™ *(M; R). The composite is
H*(M:; R) — Hompg(Hy(M; R), R) =2 Homgr(H™ *(M; R),R), a — {(a, (=) Nol,).
Over a field x is an isomorphism, and then so is the composite. In the torsion-free setting x
is an isomorphism as well. 0

REMARK 11.3. Note that we have not assumed finite rank of homology groups anywhere.
In fact, we can deduce it from our results. Let’s make the sattement over a field k: If M is a
compact connected orientable manifold then H;(M;k) is finite-dimensional in each degree.
Suppose H;(M; k) = @&>*k. Then by Poincaré duality H" (M) = &>k and by the Universal
coefficent theorem this means that H,,_;(M) is some vector space whose linear dual is ©*k.
But this is impossible.

Dual to the cup product pairing there is the intersection form:
Hy(M) © (M) — Z

with @ ® b+ (PD""(a) UPD ' (b), 0;). For even-dimensional manifolds we may restrict to

m

p = 5. Then the signature of this form is an important invariant in differential topology.
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For instance one can show that for a compact oriented manifold W such that oW = M
with a 4n-dimensional manifold M the signature of the intersection form on M is trivial.
One can also show that up to homeomorphism there is exactly one simply connected smooth
4-manifold with a given unimoduler symmetric bilinear form as its intersection form on H,.

ExXAMPLE 11.4. In the case of a torus with meridian a and longitude b we find (a,b) =
(U B, 0r2) = 1 and (b,a) = —1. (The overall sign may change if we change the orientation.)

Thus the intersection does indeed count the signed points of intersection of two cycles.
This holds in general, but it is not easy to prove. One approach can be found in the book
“Differential forms in algebraic topology” by Bott & Tu.

LEMMA 11.5. Let M be as in with torsion-free homology groups. If HP(M) = 7 =
H™P(M) and if « € HP(M), 8 € H™ P(M) are generators, then o U 8 is a generator of
H™(M) =1Z.

PROOF. For « there exists a 5/ € H™ P(M) with
(aU B oy) = 1.
As [ is a generator we know that 5 = kS for some integer k and hence
1={aUpf, on)={(aUkB,on) =k{aU B, on).
But (U 3, 0p) is an integer, so k has to be £1 and therefore o U 8 generates H™(M). O

We will use this result to calculate the cohomology rings of projective spaces.

LEMMA 11.6. If « € H*(CP™) is a generator, then a? € H?/(CP™) is a generator as
well for g < m.

PROOF. We have to show by induction that a?~! is an additive generator of H?7~2(CP™)
and we do that by induction over m because we will use the argument in this proof later
again.

For m = 1 there is nothing to prove because CP! = S? and there o = 0.

Consider the inclusion i: CP™ ! < CP™. The CW structure of CP™ is CP™ 1 U, D*™.
For m > 1 ¢*: H*(CP™) — H*(CP™ 1) is an isomorphism for 1 < i < m — 1 and *(«)
generates H?(CP™™1). Induction over m then shows that (i*(«))? generates H??(CP™ 1)
for all 1 < ¢ < m — 1. But (i*(«))? = i*(a) and therefore a? generates H*(CP™) for
1<¢g<m-—1. Lemma then shows that a U a™ ! = o™ generates H?*™(CP™). O

COROLLARY 11.7. As a graded ring
H*(CP™) = Zla]/a™" with |a| = 2.
Similarly,
H*(RP™,7/27) = 7./2Z[3]/ 3™ with |3| = 1
and
H*(HP™ Z) = Z[y) /™" with |y] = 4.

PRrOOF. The first statement follows immediately from the lemma, the other two state-
ments are shown by first proving analogous lemmas in the same way. 0

There are two geometric consequences that follow from this calculation.

101



COROLLARY 11.8. For 0 < m < n the inclusion j: CP™ — CP" is not a weak retract.

PROOF. Let us assume that there is an r: CP" — CP™ with r o j ~ id. On second
cohomology groups j induces an isomorphism
j*: H*(CP™) — H*(CP™).
Let a € H*(CP™) be a generator, then 8 := r*(a) is a generator as well. As a™™! = 0 we
. B = ¥ (@)™ = ¥ (™) = r*(0) = 0.
But H*(CP") = Z[3]/™ and hence 8™ £ 0. O

COROLLARY 11.9. The attaching map of the 2n-cell in CP™ is not null-homotopic.

PROOF. Let ¢: S*»~! — CP"! be the attaching map, thus
cpP"=C,=CP"'uU,D™.
If ¢ were null-homotopic, then
cpPty, D ~CP* v S

since homotopic attaching maps give rise to homotopy equivalent CW complexes, see Propo-
sition 0.18 in [Hatcher].

Thus CP" ! would be a weak retract of CP", contradicting Corollary . (Or we note
there is a direct contradiction to the strucutre of the cohomology rings.) U

ExaMPLE 11.10. A famous example of this phenomenon is the Hopf fibration ¢ =
n:S* - CP' =§? = CUoo. Consider S* C C? and send S? > (u,v) to

n(u,v) = {%’ v Oi

00, V=

Then this map is not null-homotopic, : S* — §?, and in fact it generates 73(S?) = Z.
A similar consideration for the attachment map S7 — HP! = S* shows that m7(S*) is
non-trivial.

12. Further applications

The product structure on H*(RP™) has some interesting consequences.
A famous application of topology to algebra is the classification of finite dimensional
division algebras.

DEFINITION 12.1. A n-dimensional division algebra over R is a bilinear multiplication
map R" x R" — R", denoted (a, b) — ab satisfying

(a) a(b+c) = ab+ ac and (a + b)c = ac + be for a,b, c € R™ (distributivity),

(b) A(ab) = (Aa)b = a(Ab) for a,b € R™ and A € R (scalar associativity)
such that az = b and za = b always have a solution for a,b € R™ and a # 0.

We de not assume commutativity or associativity!

You have already met the division algebras R, C and H in deminsions 1, 2, 4. These are
the only associative ones. There is also the non-associative divison algebra of octonions in
dimension 8.
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THEOREM 12.2. Any finite-dimensional division algebra over R has dimension 2% for
some nonnegative integer k.

PROOF. The multiplication induces a map m : S ! xS" ! — §"~! by (z,y) — roo which
is continuous (as a bilinear map is continuous) and well-defined (as there are no zero-divisors
in a divison algebra). Moreover m(z, —y) = —m(z,y) = m(—=z,y) by scalar associativity,
thus there is an induced map h : RP" ! x RP* ! — RP" !,

We now investigate h* on cohomology with coefficients in Z/2. We have H*(RP"™! x
RP"17Z/2) = Z/2[a, B]/(a™ = B = 0) where the generators are pulled back from the
generators of cohomology from the two factors. Let v generate H*(RP" 1 ,Z/2). The key
claim now is that h*(y) = a + .

We investigate the map h, on m first. We may assume n > 2 so that m (RP",*)
H(RP",Z/2). So consider a loop w in RP""! representing the generator of m;(RP"! )
with base point z = w(0) € RP"!. The loops (w,c,) and (c,, w) that together generate
m (RP" x RP" ! (x,2)) map to x.w and w.z, respectively. We claim that z.w and w.x
are non-trivial, and then they must be homotopic as there is only one non-trivial element in
the fundamental group.

For this we consider that w lifts to a path @ in S*~! connecting a point to its antipode.
Multiplication with @w(0) gives a continuous self map of S"!, and we have w(0).w(0) #
w(1).10(0) as there are no zero divisors. Thus w.z also lifts to a path in S*~! connecting two
antipodel points, and thus it is non-trivial in the fundamental group. The same argument
applies to z.w.

(The argument from lectures does not work as it was tacitly assuming the existence of a
unit in our division algebra.)

Similarly the map on H;(RP",7Z/2) sends both generators (0, [w]) and ([w],0) to [w]. If
we dualize this stament we obtain that h*(y) = a + 5.

With the claim in hand we consider (a + 3)" = h*(y") = 0 and thus

zn: (7;) aifl = 0.

=0

>~

This can only be zero if all coefficients for ¢ # 0, n vanish, thus (’Z) is even for all 7. It is an
exercise in basic number theory to show that this implies n = 2*.

Let n = 3, 2% for some integers k; and consider (14 z)” = 3, (7)#" modulo 2. This
may be rewritten [[,;(1 + x)2kj =LA+ 22"). But multiplying this out there can be no
cancellation as the powers are too far apart. Thus all the binomial coefficients can only
vanish if there is only one factor and n = 2*. O

Next we turn to the Borsuk-Ulam theorem. It has several formulations, several proofs
and many applications. One of the most natural proofs uses cohomology of projective space.

LEMMA 12.3. For n > m there is no map RP" — RP™ that is nontrivial on H'(—,7Z/2)

PROOF. Assum f is such a map and let 3 generater H*(RP™,7Z/2). Then f(5) # 0 by
assumption and thus it generates H*(RP™). In particular f*(5)" = f*(5") = 0 generates
H"(RP™), which is a contradiction. O
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THEOREM 12.4 (Borsuk-Ulam theorem). Let f : S* — R™ be an odd map, i.e. f(—x) =
—f(x) for allx € S™. Then f has a zero.

The following alternatiev formulation is useful: Given an arbitrary continuous map ¢ :
S™ — R™ we may consider g(z) — g(—z) which is always odd. Thus it has a zero and g takes
the same value on two antipodal points.

PROOF. We only prove the case n > 3 and leave n = 1,2 as exercises (solvable with
the methods of a first topology course). Suppose the theorem is false. Then we may define
x— f(2)/||f(2)]| : S* — S"~! which is also odd. Thus it induces h : RP™ — RP"~!. This
map induces an isomorphism on fundamental groups. To see this consider that the lift of a
generator of 7 (RP™, %) is a path from north to south pole of S™, which maps to a path from
south to north pole of S"~ !, which is the lift of a non-trivial loop in RP"~!. It follows that
h is also an isomorphism on H' and by Lemma we have the desired contradiction. [J

The Borsuk-Ulam theorem has many applications, there is a whole book about them.
Possibly the most famous one is the “Ham sandwich theorem”, named after the special case
of n = 3, where it expresses the (theoretical) possibility that the two slices of bread and the
ham in a sandwich may be sliced into equal parts with a singl stroke of a knife.

THEOREM 12.5. Lett {p1,...,un} be a collection of finite Borel measures on R™ such
that all hyperplanes have measure 0. Then there is a single hyperplane that bisects each u;,
i.e. the opposite half spaces defined by the hyperplane have equal measure.

A finite Borel measure is a measure on R" such that all opens are measurable and the
meausure of R"™ itself is positive and finite. An example would be the restriction of the usual
Lebesgue measure to some compact subset of R™.

PROOF. The proof in its proper generality needs some topology, which we have available
now, and a little bit of analysis.

We write an arbitrary point u € S™ as (ug, u') with vy € R and «’ € R". Then we define
the half-space

ht(u) :={z € R" | v'.x <up}.}
One sees that h™(—u) is the opposite half space of h™(u). The only exception is u =
(£1,0,...,0) when A™(u) = R", respectively (.

Let f : S" — R" be given in coordinates by f;(u) = u;(h*(u)) where p is the Borel
measure. (In fact, instead of specifying A; we could specify an arbitrary finite measure on
R™ such that no hyperplane has positive measure!)

It is an exercise in analysis to rigorously show that the f; are continuous (see e.g. Theorem
3.1.1 of Matousek ‘Using the Borsuk-Ulam Theorem’).

Now if f(u) = f(—u) for some u then the corresponding hyperplane v'.x = hy exactly
bisects all A;. (We cannot have f(1,0,...,0) = f(—1,0,...,0).) But such a poin must exist
as h(u) = f(u) — f(—u) is antipodal, so it has a zero by Theorem [12.4] O

13. Lefschetz duality

A number of topological applications can be deduced from a relative version of Poincaré
duality. W'l give a very general statement and then prove two special cases and give their
applications.
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A space X is a Euclidean neighbourhood retract if it is homeomorphic to subspace of R"”
which is a retract of a neighbourhood.

THEOREM 13.1 (Alexander-Lefschetz duality). Let M be a connected m-dimensional
manifold and let K C L C M be compact subspaces that are Euclidean neighbourhood retracts.
Let M be oriented along L with respect to R. Then there is a well-defined map

PD=(—)Nor: HY(L,K;R) — H,,,_,(M \ K, M \ L; R)
which s an isomorphism for all integers q.

REMARK 13.2. The statement remains to true without the Euclidean neighbourhood
assumption, but one has to replace cohomology by Cech cohomology which we won’t have
time to introduce.

The first special case is if M is a manifold with boundary.
Let
R™ = {(x1,...,xm),z; € Ryx; <0}

be an m-dimensional half-space. Its topological boundary is
OR™ = {(z1,...,2m),x; € R,z1 = 0}.

DEFINITION 13.3. An m-dimensional topological manifold with boundary is a Hausdorft
space M with a countable basis of its topology together with an open cover {U;};c; and
homeomorphisms h;: U; — V; with V; C R™ open.

An x € M is a boundary point of M if it has an open neighbourhood U with a homeo-
morphism h: U — V with V open in R™ and h(z) in OR™. The set of boundary points of
M is its boundary, denoted by OM.

EXAMPLE 13.4. (a) The closed n-dimensional ball is a manifold with boundary S"~.
In this case the boundary agrees with the boundary in the sense of elementary
topology if we embed the ball into R™, but in general this is not possible!

(b) Removing two open disks with disjoint closures from a closed disk produces a disk
with two holes, whose boundary is S! II S* IT S'. This manifold with boundary is
called the pair of pants.

Sometimes the word manifold is used to mean a manifold with boundary. A closed
manifold is a compact manifold which has empty boundary.
An orientation of a manifold M with boundary is just orientation of the interior M\ OM.

PROPOSITION 13.5 (Lefschetz duality). Let M be a a compact connected orientable m-
manifold with boundary, then there is a natural isomorphism

HY(M,0M) = H,,_,(M).
PRrROOF. We may glue a collar along M to M, i.e. consider
W = M gy (OM x [0,1)).

Then one can check that W is an oriented m-manifold (without boundary) which is homotopy
equivalent to M. Thus Poincaré duality applies and we obtain

HYW) 22 Hy (W) = Hy_o(M).
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It remains to show that HI(W) = H?(M,0M). By homotopy equivalence H?(M,0M) =
HIY(W,0M x[0,1)). As M Ugp (OM x[0,d]) for 0 < d < 1 is an exhaustion of W by compact
subsets which are homotopy equivalent we see that

HY(W) = ligan(VKW \ M Tgp OM x [0,d)) = @H%W, OM x (d, 1))
and moreover the inverse limit computing compactly supported cohomology becomes con-
stant. The last group is then isomorphic to H?(M, M) by homotopy equivalence. U

PROPOSITION 13.6. Let M be a compact connected and orientable m-manifold and let (;
be the ith Betti number of M, 8; = dimgH,;(M;Q). Then
ﬁi = Bmfi-
In particular the Euler characteristic x(M) =" (=1)'8; of M wvanishes if the dimen-
sion of M is odd.

PRroOF. Note that orientability implies Q-orientability. Theorem then tells us that
dimgH,, ;(M;Q) = dimgH"(M; Q)
As Q is divisible, there is no Ext-term arising in the universal coefficient theorem and thus
dimgH'(M; Q) = dimg(Hom(H;(M),Q))

but this is equal to the dimension of the vector space of the homomorphisms from the free
part of H;(M) to Q which is equal to the rank of H;(M) and this in turn is equal to ;.
The second statement is immediate. U

COROLLARY 13.7. If M is a compact connected oriented manifold then the Fuler char-
acteristic of OM is always even.

PROOF. We consider the collared version W of M again. As M ~ W we have x(M) =
X(W) and the long exact sequence of the pair W\ M C W gives

X(W) = x(W\ M) + x(W, W\ M)
as Fuler characteristic is additive on long exact sequences. Here the relative Euler char-
acteristic is x(W, W \ M) = > (—1)"dimg H;(W,W \ M;Q). Homotopy invariance yields
X(W\ M) = x(0M) and Proposition guarantees that (W, W \ M) = (=1)"x(M).
Therefore
X(OM) = (1+ (=1)")x(M)

and this is always an even number. 0
We compute
2m
X(CP™) =) (1" =2m +1
i=0
and
2m
XHP™) =) (=1)* =2m + 1
i=0

by recalling the cell structure of complex and quaternionic projective space.
Thus no even complex or quaternionic projective spaces can occur as the boundary of a
connected compact orientable manifold.
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It also follows that RP?™ can never be a boundary of a compact connected oriented
manifold, because its Euler characteristic is 1. However, this is less interesting, as the
boundary of an oriented manifold always inherits an orientation. However, we may adapt
Corollary to coefficients in Z/2 and deduce that RP*™ which has Euler characteristic 1
cannot be the boundary of any compact connected manifold.

This is important in bordism theory: one can introduce an equivalence relation on mani-
folds by saying that two m-manifolds M and N are cobordant, if there is an (m+ 1)-manifold
W whose boundary is the disjoint union of M and N, OW = M U N. We then call W a
cobordism from W to M.

One can then define, for example, the (oriented) bordism groups €2; (respectively Q7¢),
freely generated by closed (oriented) manifolds of dimension 4, up to (oriented) cobordism.

Thus g is Z/2 generated by a point. It has order 2 as a pair of points is cobordant to
the empty set via a line.

By contrast Q5 is the group of integers generated by a point.

), and Q79 on the other hand are trivial, as the only closed 1-manifold is the circle which
is bordant to the empty set via a disk! In low degrees one finds the following unoriented
bordism groups:

Group | Generators

QO Z/2 *
1 0 0
0| 7/2 |RP?
Qs 0 |0

Q| /292 | RPY RP? x RP?

Qs | Z/2 | SU(3)/SO(3)

O | Z/293 | RP/6,RP? x RP* RP? x RP? x RP?
and the following oriented bordism groups:

Group | Generators
05© Z *
%9, o |0
00 | 7z |cP?

00 Z)2 | SU(3)/SO(3)
Qi | o0 ¢
050 | Z@®Z | CP? x CP?,CP*

In fact the cartesian product gives a natural ring structure to €2, and QY. The unoriented

bordism ring was computed by Thom: It is a polynomial algebra Z/2Z[p;] over Z/2 with

generators p; in degree i for each 7 # 2¢ — 1.

The oriented bordism ring is more complicated, but also known.

14. Alexander Duality

This is another special case of Alexander-Lefschetz duality.

PROPOSITION 14.1 (Alexander duality). Let K C M be a compact, locally contractible,
nonempty, proper subspace of a orientable n-manifold M. Then

H{(M, M\ K:7) = H (K 7).
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COROLLARY 14.2. For K as above a subspace of S™ we have
Hy(S"\ K) = H" YK, 7).

REMARK 14.3. This tells us that the homology of the complement is unaffecetd by how
we embed our copy of K into M. In particular, we cannot study knots (i.e. homeomorphic
impages of S' in R?) by the homology of the complement. The fundamental group of the
knot complement does a better job. Here the un-knot gives the integers, but for instance
the complement of the trefoil knot has a fundamental group that is not isomorphic to the
integers, but is isomorphic to the group (a, bla* = b®). This group is actually isomorphic to
the braid group on three strands.

PROPOSITION 14.4. Let M be a compact oriented connected m-manifold and let K C

M be nonempty, proper, compact, locally contractible subspace. If Hy(M) is trivial, then
H™ Y K) is free abelian and M \ K has rank (H™ (K)) + 1 components.

PROOF. Let k = |mo(M \ K)| be the number of components of the complement of K in
M. Therefore .
k =rankHy(M \ K) =1+ rankHy(M \ K).

By assumption H;(M) = 0 = Hy(M) and therefore we know from the long exact sequence
and Alexander duality that

Ho(M\ K) = H (M,M\ K)= H"(K).

We have the following famous corollary:

COROLLARY 14.5 (Jordan curve theorem). Let C' be a simple curve in R?, i.e. a subset
homeomorphic to S. Then R?\ C' has two components.

PROOF. Add a point to turn R? into S? and apply Proposition for M = §?. O

As a historical aside, Jordan proved this theorem in 1887, without any use of algebraic
topology. Brouwer then proved the n-dimensional version in 1910, an early triumph of
topology. There was some consensus that Jordan’s proof was incomplete or even flawed, but
later authors (notably Thomas Hales) declared the proof essentially correct. Nevertheless,
the topological proof is much more concise and generalizes easily. All of this is at the cost
of introducing some serious machinery.

Preparing the last proposition I noticed some gaps in the previous notes: In Theorem |8.12
we claimed that if M is a connected and compact manifold of dimension m with H,,(M;Z) =
Z then M is orientable.

There are two possible generators in H,,(M) we choose one of them and call it 0y;. Then
we claim that ((gga)«0n | © € M) is an orientation of M. But this needs proof!

To show this we need to know that g, is an injection. From the long exact sequence in
relative homology the kernel is given by H,, (M \ z;Z) and must be 0 or Z. But it follows from
Corollary below that H,(M \ x;Z/2) = 0, and this is impossible if H,(M \ z;Z) = Z.
Note that we used the first implication of Theorem to prove that corollary, but not this
implication.

COROLLARY 14.6. Let M be a non-compact connected manifold. Then H,(M;Z/2) = 0.
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PROOF. As M is orientable with respect to Z/2 we may apply Poincaré duality and find
that H,(M;Z/2) = H°(M;Z/2). But unravelling definitions H?(M) are exactly functions
with compact support that are constant along any continuous path. But on a non-compact
manifold there are no nonzero compactly supported constant functions. 0

PROPOSITION 14.7. Let M be a non-orientable compact manifold. Then H,(M;Z) =0
and H"(M;Z) has torsion.

PRroOF. This is true in general, but we will only prove the case that M has a finite
cell structure, e.g. a triangulation. In this case it is immediate from cellular homology that
H,(M;Z) is torsion-free, so it is isomorphic to Z" and r cannot be 1, else M would be
orientable by Theorem But if » > 1 the universal coefficient theorem implies that
H,,(M;Z/2) has rank greater than 1, contradicting Theorem for Z/2-coefficients.

Thus H,,(M;Z) = 0. But then Tor(H,_1(M;Z);Z/2) = 7Z/2 by Z/2-orientability. This
implies that H,_1(M;Z) has Z/2-torsion and then Ext(H,_1(M;Z),Z/2) # 0. (In fact it
equals H,_1(M;Z) =7/2.) O

PROPOSITION 14.8. If M is a compact connected orientable m-manifold and if the first

homology group of M with integral coefficients vanishes, then all compact submanifolds with-
out boundary of dimension m — 1 are orientable.

PROOF. A submanifold N C M satisfies the assumptions of Alexander duality, thus we
have

H™ '(N) = H\(M, M\ N) 2 Hy(M\ N)
and H™*(N) is free abelian. This implies that the components of N are orientable by
Corollary O

COROLLARY 14.9. It is not possible to embed RP? or K into R3.

PROOF. If one could, then one could also embed RP? or K into S? as the one-point
compactification of R?. Due to H;(S?) = 0, the 2-manifold RP? would be orientable, but we
know that it’s not. 0

At the math institute in Oberwolfach there is a model of the Boy surface, see Figure [I]
That is a model of an immersion of RP? into three-space.
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APPENDIX A

Some background

A.1. Quotient homotopies

We recall the following key result about the compact open topology on spaces of maps
between topological spaces, details are for example in the Appendix of [Hatcher|, startin on
p. 529.

LEMMA A.1.1. Fix three topological spaces X,Y,Z. Denote by Map(X,Y) the set of
continous maps from X toY equipped with the compact open topology. Whenever Y is
locally compact Hom(X x Y, Z) = Hom(X,Map(Y, Z2)).

LEMMA A.1.2. Let i : A = U be a deformation retract, i.e. there isr : U — A such
that i = id4 and ir ~ idy via a homotopy H fizing A. Then i : AJA — U/A is also a
deformation retract.

PROOF. The canonical projection gives 7 : U/A — A/A and necessarily 7o i =1idy4. It
remains to show that 7 o 7 is homotopic to idya. Let H : U x [0,1] — U be the homotopy
from ir to idy. We want to define H : U/A x [0,1] — U/A. For any fixed t € [0, 1] we have
H, : U/A — U/A by the properties of the quotient topology, but it is not at all clear that
these maps are continuous in ¢!

Let ¢ : U — U/A be the projection and consider ¢ o H € Hom(U x [0,1],U/A).
As [0,1] is locally compact we may apply Lemma and rewrite our map as H' €
Hom(U, Map([0,1],U/A)). As H'(a) is the constant function with value A/A for all a H’
factors through U/A, and we obtain H' € Hom(U/A, Map([0, 1], U/A)), which gives rise to
H € Hom(U/A x [0,1],U/A) by Lemma again. This is the desired homotopy. O
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