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1 Introduction

The accelerating miniaturization in semiconductor industry had during the last decades a
strong impact on the development of sophisticated semiconductor models and numerical
methods, which are implemented in the common simulation tools. Clearly, this branch of
research will be getting even stronger during the next years, as can be seen from the projec-
tion of the Semiconductor Industry Association (SIA), which says that by 2009 the leading
edge MOS device will employ a 0.05 µm length scale and an oxide thickness of 1.5 nm or
less. This has the direct consequence, that the design cycle for next product generation
will shorten from year to year, such that some optimized design for a semiconductor device
cannot be found straightforwardly using just cumbersome and time consuming simulations.

During the last years a new branch of research developed aiming at the automated optimal
design of semiconductor devices, where we can distinguish mainly two approaches. The
engineering community was focussing on black box algorithms and nonlinear least squares
approaches [Cia01, DKKS96, Kha95, KFBS95, PSSS98, LWT99, Sto00, SSP+98, SSP+99],
which were attached to advanced simulation tools. Meanwhile, the applied mathemat-
ics community employed techniques from infinite dimensional constrained optimization,
which are also exploiting the special structure of the underlying semiconductor models
[BEMP01, BEM02, FC92, FI92, BFI93, FI94, HP01, HP02, BP03]. This lead to an signif-
icant improvement concerning the overall simulation times, since the performance of these
methods is by construction independent of the number of design parameters.

Although there exists a whole hierarchy of macroscopic semiconductor models, most of
these optimization approaches are based on the well–known drift diffusion (DD) model
for semiconductor devices [Sze81, Sel84, MRS90, Jün01]. This is clearly related to the
great success of this model and to the fact that there exists a vast literature on analytical
and numerical results concerning the underlying model equations (cf. [CPB00] and the
references therein).

The main objective in optimal semiconductor design is to get an improved current flow
at a specific contact of the device, e.g. focusing on the reduction of the leakage current
in MOSFET devices or maximizing the drive current [SSP+98]. In both cases a certain
working point is fixed and one tries to achieve the objective by a change of the doping
profile. An overview on the mathematical tools employed for the solution of this design
question can be found in [HP05].

So far, most numerical optimization approaches were using steepest descent methods rely-
ing on first–order derivative information. Although performing already very successfully,
they show as expected only first order convergence. Here, we will go one step further and
devise a numerical algorithm based on Newton’s method, which shows the desired second
order convergence behavior. Using the adjoint variables we construct the algorithm in such
a way that we only need applications of the Hessian avoiding storage restrictions. This ap-
proach ensures that the overall method is independent of the number of design parameters,
in contrast to black box methods based on sensitivities.
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The paper is organized as follows. In the remainder of this section we will introduce the
DD model including generation–recombination rates. Then, in Section 2 we specify the
optimal control problem, its analytical setting and give an existence result. The first–order
and second–order optimality system is studied in Section 3, where we also analyze second
order sufficiency conditions. The Newton algorithm is introduced in Section 4 and its
local convergence is proved. Lastly, numerical results for an unsymmetric n–p–diode are
presented in Section 5, which underline the feasibility of our approach.

1.1 The Drift Diffusion Model

The stationary standard DD model for semiconductor devices stated on a bounded domain
Ω ⊂ R

d, d = 1, 2, or 3 reads

Jn = q (Dn∇n + µn n∇V ) , (1.1a)

Jp = −q (Dp∇p − µp p∇V ) , (1.1b)

div Jn = qR(n, p), (1.1c)

div Jp = −qR(n, p), (1.1d)

−ε∆V = q(n − p − C). (1.1e)

The unknowns are the densities of electrons n(x) and holes p(x), the current densities of
electrons Jn(x) and holes Jp(x), respectively, and the electrostatic potential V (x). The
total current density is given by

J = Jn + Jp. (1.1f)

The doping profile is denoted by C(x). The parameters Dn, Dp, µn, µp are the diffusion
coefficients and mobilities of electrons and holes respectively. The physical constants are
the elementary charge q and the materials permittivity constant ε.

The function R(n, p) models the rate of generation and recombination of electron–hole car-
rier pairs. There exist various energy transition processes which can lead to recombination–
generation, which can be modeled e.g. by the Shockley–Read–Hall term

RSRH(n, p) =
np − n2

i

τ l
p(n + ni) + τ l

n(p + ni)
,

where τ l
n and τ l

p are the electron and hole lifetimes, respectively. Another recombination–
generation process is described by the Auger term

RAU (n, p) = (a1n + a2p)(np − n2
i ).

Remark 1.1. There are also sole generation processes like impact ionization [Sze81] which
we will not consider here.
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In the following we only consider regimes in which we can assume the Einstein relations

Dn = UT µn, Dp = UT µp,

where UT = kB T/q is the thermal voltage of the device and T denotes its temperature and
kB the Boltzmann constant. Further, let the mobilities be constant excluding a dependence
on the electric field.

System (1.1) is supplemented with the following boundary conditions: We assume that the
boundary ∂Ω of the domain Ω splits into two disjoint parts ΓD and ΓN , where ΓD models
the Ohmic contacts of the device and ΓN represents the insulating parts of the bound-
ary. Let ν denote the unit outward normal vector along the boundary. First, assuming
charge neutrality and thermal equilibrium at the Ohmic contacts ΓD and, secondly, zero
current flow and vanishing electric field at the insulating part ΓN yields the following set
of boundary data

n = nD, p = pD, V = VD on ΓD, (1.1g)

Jn · ν = Jp · ν = ∇V · ν = 0 on ΓN , (1.1h)

where nD, pD, VD are the H1(Ω)–extensions of

nD =
C +

√

C2 + 4 n2
i

2
, pD =

−C +
√

C2 + 4 n2
i

2
,

VD = −UT log

(

nD

ni

)

+ U, on ΓD.

Here, U denotes the applied biasing voltage and ni the intrinsic carrier density of the
semiconductor.

To rewrite the equations in nondimensional form we employ the following diffusion scaling

n → Cm ñ, p → Cm p̃, x → L x̃,

C → Cm C̃, V → UT Ṽ , Jn,p →
q UT Cm µn,p

L
J̃n,p

where L denotes a characteristic device length, Cm the maximal absolute value of the
background doping profile and µn,p a characteristic value for the respective mobilities.
Defining the dimensionless Debye length

λ2 =
ε UT

q Cm L2

the scaled equations read

div Jn = R(n, p), Jn = ∇n + n∇V, (1.2a)

div Jp = −R(n, p), Jp = −(∇p − p∇V ), (1.2b)

−λ2∆V = n − p − C, (1.2c)
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where we omitted the tilde for notational convenience. The Dirichlet boundary conditions
transform to

nD =
C +

√
C2 + 4 δ4

2
, pD =

−C +
√

C2 + 4 δ4

2
, (1.2d)

VD = − log
(nD

δ2

)

+ U, on ΓD, (1.2e)

where δ2 = ni/Cm denotes the scaled intrinsic density.

Remark 1.2. Clearly, also the scaled parameter function R has to be expressed in terms
of the scaled variables. The scaled Schokley–Read–Hall recombination–generation term
then reads for example

RSRH(n, p) =
np − δ4

τ l
p(n + δ2) + τ l

n(p + δ2)
.

For the subsequent considerations we pose the following assumptions.

A.1 Let Ω ⊂ R
d, d = 1, 2 or 3 be a bounded domain with boundary ∂Ω ∈ C0,1. The

boundary ∂Ω is piecewise regular and splits into two disjoint parts ΓN and ΓD. The
set ΓD has nonvanishing (d − 1)–dimensional Lebesgue–measure. ΓN is closed.

A.2 Let ΓD =
⋃M

l=1 Γl
D, M ≥ 2 and dist(Γl1

D, Γl2
D) > 0 for l1 6= l2 and l1, l2 ∈ {1, . . . , M}.

It holds ΓO =
⋃N

k=1 Γlk
D for 1 ≤ N ≤ M .

A.3 The boundary data fulfill (nD, pD, VD) ∈ H1(Ω).

A.4 The recombination–generation term is of the form R(n, p) = R1(n, p)(np−δ4), where
R1 : R

2 → R
+
0 is twice continuously differentiable with locally Lipschitz continuous

second derivatives.

Remark 1.3. Assumptions A.1–A.3 are necessary for the regularity of solutions of the
state system. Note, thatA.2 is also physically reasonable, since it prevents short–circuiting.
Further, the Schockley–Read–Hall and the Auger recombination–generation terms clearly
fulfill A.4.

1.2 Properties of the State System

In [HP02] system (1.2) was treated after eliminating the current densities Jn and Jp, which
was most convenient for a first–order approach and which is also the standard treatment
for the analysis of this system [Mar86]. Considering the numerical treatment of system
(1.2), we want to point out that the standard Scharfetter–Gummel discretization [SG69]
can be interpreted as a mixed finite element discretization of the state system [GMS98].
For the second–order approach we are going to introduce here, we also use this mixed
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formulation, since this has several advantages for the analytical study. For this reason we
redefine a new state space as follows

X
def
=
[

L2(Ω)
]d ×

[

L2(Ω)
]d × (xD + X0),

where xD
def
= (nD, pD, VD) denotes the boundary data introduced in (1.2) and X0

def
=

[

H1
0,ΓD

(Ω) ∩ L∞(Ω)
]3

. Then, the space X is equipped with the norm

‖x‖X
def
= ‖(x1, x2)‖[L2(Ω)]2d + ‖(x3, x4, x5)‖[H1(Ω)]3 + ‖(x3, x4, x5)‖[L∞(Ω)]3

yielding a Banach space, where we define the space of Sobolev functions with vanishing
trace along ΓD via

H1
0,ΓD

(Ω)
def
=
{

φ ∈ H1(Ω) : φ|ΓD
= 0
}

.

The set of co–states will then be Z
def
= [L2(Ω)]

d × [L2(Ω)]
d × [H1(Ω)]3 and the set of

admissible controls is given by

C def
= {C ∈ H1(Ω) : C = C̄ on ΓD}. (1.3)

We abbreviate the state variables as x
def
= (Jn, Jp, n, p, V ) and rewrite the state equations

(1.2) in the operator form e(x, C) = 0, where the nonlinear mapping e : X × C → Z∗ is
defined by

e(x, C)
def
=













Jn − (∇n + n∇V )
Jp + (∇p − p∇V )
div Jn − R(n, p)
div Jp + R(n, p)

−λ2∆V − n + p + C













. (1.4)

There are various results on the solvability of the state system for different assumptions on
the mobilities and on the recombination–generation terms (c.f. [Moc83, Mar86, MRS90]
and the references therein). For completeness we state the the following existence results,
for which the proof can be found in [NW91].

Proposition 1.4. Assume A.1–A.4. Then for each C ∈ H1(Ω) and all boundary data
(nD, pD, VD) with

1

K
≤ nD(x), pD(x) ≤ K, x ∈ Ω, and ‖VD‖L∞(Ω) ≤ K

for some K ≥ 1, there exists a solution (Jn, Jp, n, p, V ) ∈ [L2(Ω)]
2 × (H1(Ω) ∩ L∞(Ω))

3
of

system (1.2) fulfilling

1

L
≤ n(x), p(x) ≤ L, x ∈ Ω, and ‖V ‖L∞(Ω) ≤ L

for some constant L = L(Ω, K, ‖C‖Lp(Ω)) ≥ 1, where the embedding H1(Ω) ↪→ Lp(Ω) holds.
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Remark 1.5. Compared to the existence result given in [Mar86] we need this refined
version, since the doping profile is acting as the control parameter in our setting and the
coercivity of the cost functional will later on allow to derive precisely the bounds on C
stated in the proposition.

Next, we state a result on the differentiability properties of the mapping e which extends
the result given in [HP02, Theorem 3.3] to the mixed formulation including now also
recombination–generation terms. We omit the proof since it is a straightforward extension
of the previously mentioned result.

Theorem 1.6. The mapping e defined in (1.4) is infinitely often Fréchet differentiable
with derivatives vanishing for order greater than 2. The actions of the first derivatives at
a point (x, C) ∈ X × C in a direction x̂ = (Ĵn, Ĵp, n̂, p̂, V̂ ) ∈ [L2(Ω)]

d × [L2(Ω)]
d × X0 are

given by

〈ex(x, C)x̂, z〉Z∗,Z =
〈

Ĵn −
(

∇n̂ + n̂∇V + n∇V̂
)

, zn
〉

L2,L2

+
〈

Ĵp +
(

∇p̂ − p̂∇V − p∇V̂
)

, zp
〉

L2,L2

+
〈

div Ĵn − Rnn̂ − Rpp̂, z
Jn

〉

(H1)∗,H1

+
〈

div Ĵp + Rnn̂ + Rpp̂, z
Jp

〉

(H1)∗,H1

+
〈

−λ2∆V̂ − n̂ + p̂, zV
〉

(H1)∗,H1

(1.5)

for all z = (zn, zp, zJn , zJp, zV ) ∈ Z.

Further, we have
〈

eC(x, C)Ĉ, z
〉

(H1)∗,H1

=
〈

Ĉ, zV
〉

(H1)∗,H1

(1.6)

for all Ĉ ∈ H1
0,ΓD

(Ω) and z ∈ Z.

The second derivatives exC(x, C), eCx(x, C) and eCC(x, C) vanish, the action of the sec-
ond derivative w.r.t. x at point (x, C) in directions x̂1 = (Ĵn1, Ĵp1, n̂1, p̂1, V̂1), x̂2 =

(Ĵn2, Ĵp2, n̂2, p̂2, V̂2) ∈ X0 is given by

〈exx(x, C)(x̂1, x̂2), z〉Z∗,Z =
〈

n̂1 ∇V̂2 + n̂2 ∇V̂1, z
n
〉

L2,L2

−
〈

p̂1 ∇V̂2 + p̂2 ∇V̂1, z
p
〉

L2,L2

+
〈

Rnnn̂1n̂2 + Rnpn̂1p̂2 + Rnpn̂2p̂2 + Rppp̂1p̂2, z
Jp − zJn

〉

(H1)∗,H1
(1.7)

for all z = (zn, zp, zJn , zJp, zV ) ∈ Z.

Here, we denote the duality pairing of a Banach space W with its dual W ∗ by 〈·, ·〉W ∗,W .

2 The Optimization Problem

In this section we want to give the precise mathematical statement of the optimization
problem under investigation.
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We are going to minimize cost functionals of the form

Q(Jn, Jp, n, p, V, C)
def
= Q1(Jn, Jp) +

γ

2

∫

Ω

∣

∣∇(C − C̄)
∣

∣

2
dx, (2.1)

where C̄ is a given reference doping profile and the parameter γ allows to adjust the
deviations from C̄. One is mainly interested in functionals Q1, which depend only on the
values of the outflow current density on some contact ΓO

Q1(Jn, Jp) = S(J · ν|ΓO
). (2.2)

Remark 2.1. In [HP02], the functional under investigation was

S(J · ν|ΓO
) =

1

2
‖(J − J∗) · ν‖2

(H
1/2

00
(ΓO))∗

, (2.3)

corresponding to the objective of finding an outflow current density J · ν close to a desired
density J∗ · ν. In [BP03] the total current flow on a contact is studied, i.e.

S(J · ν|ΓO
) =

1

2

∣

∣

∣

∣

∫

ΓO

J · ν ds − I∗

∣

∣

∣

∣

2

(2.4)

(for some desired current flow I∗). Note that especially in the one dimensional setting
these two functionals are equivalent.

The objective of the optimization, the current flow over a contact ΓO, is given by

I =

∫

ΓO

J · ν ds =

∫

ΓO

(Jn + Jp) · ν ds. (2.5)

In [HP05] it was pointed out that there might be multiple solutions if this objective is
considered, since in the optimum one might change the roles of electrons and holes, which
both contribute to the total current density J . Clearly, this can lead to significant conver-
gence problems in the numerical algorithms. For this reason we split the desired current
flow into two parts

In =

∫

ΓO

Jn · ν ds, Ip =

∫

ΓO

Jp · ν ds (2.6)

and consider especially in the numerical investigations the following objective

S(Jn · ν|ΓO
, Jn · ν|ΓO

) =
1

2

∣

∣

∣

∣

∫

ΓO

Jn · ν ds − I∗

n

∣

∣

∣

∣

2

+
1

2

∣

∣

∣

∣

∫

ΓO

Jp · ν ds − I∗

p

∣

∣

∣

∣

2

(2.7)

Although this is sound from the mathematical point of view one has to emphasize that it
is physically impossible to measure the electron and hole current separately.

The optimization problem we investigate in the present research is then given by

min
X×C

Q(x, C) s.t. e(x, C) = 0. (2.8)

For the following analytical and numerical investigations we also need some regularity
assumptions on the cost functional:
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A.5 Let Q : X × C → R denote a cost functional which is twice continuously Fréchet
differentiable with Lipschitz continuous second derivatives. Further, let Q be of
separated type, i.e. Q(x, C) = Q1(x) + Q2(C) and radially unbounded w.r.t. C for
every x ∈ X, bounded from below and weakly lower semi–continuous.

Remark 2.2. Assumption A.5 is standard for the construction of second–order optimiza-
tion methods [HK01]. We note that it is especially fulfilled for the objective function
(2.7).

The existence of a minimizer is proved in [HP02] under mild assumptions on the cost
functional Q and when the state system is given with repsect to the unknowns (n, p, V )
without recombination–generation terms. This proof can be easily extended to the mixed
formulation including recombination–generation terms given by (1.2) yielding the following
existence result.

Theorem 2.3. The constrained minimization problem (2.8) admits at least one solution
(J∗

n, J∗
p , n∗, p∗, V ∗, C∗) ∈ X × C.

Remark 2.4. In general, we cannot expect the uniqueness of a minimizer, since the op-
timization problem is non–convex due to the nonlinear constraint. Further, there exist
analytical and numerical evidences that the optimization admits multiple solutions at least
for special choices of the cost functional and of the reference doping profile C̄. For details
we refer to [HP05].

3 The First–order Optimality System and Second–

order conditions

In this section we want to study the first–order optimality system and the second–order
conditions for the optimization problem (2.8). We introduce the Lagrangian L : X × C ×
Z → R associated to the minimization problem (2.8) which is defined by

L(x, C, ξ)
def
= Q(x, C) + 〈e(x, C), ξ〉Z∗,Z .

It is an easy consequence of Theorem 1.6 and A.5 that the Lagrangian L is twice contin-
uously Fréchet differentiable with Lipschitz continuous second derivatives.

3.1 The First Order Optimality System

The first order optimality condition corresponding to problem (2.8) is given by

L′(x∗, C∗, ξ∗) = 0. (3.1)
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Rewriting (3.1) componentwise we get

e(x∗, C∗) = 0 in Z∗, (3.2a)

e∗x(x
∗, C∗)ξ∗ + Qx(x

∗, C∗) = 0 in X∗, (3.2b)

e∗C(x∗, C∗)ξ∗ + QC(x∗, C∗) = 0 in C∗. (3.2c)

Here, e∗C(x, C) ∈ L(Z, C∗) and e∗x(x, C) ∈ L(Z, X∗) are continuous linear mappings de-
noting the adjoint operators associated to the linearized operators eC(x, C) and ex(x, C),
respectively.

To write these equations in a more concise form we assume from now on that the cost
functional Q is given via (2.7). Then, a direct calculation employing several integrations by
parts leads to the following linear system for the adjoint variables ξ = (ξn, ξp, ξJn, ξJp, ξV ) ∈
Z

ξn = ∇ξJn, (3.3a)

ξp = ∇ξJp, (3.3b)

div ξn − ξn∇V = ξV + RnξJn − RnξJp, (3.3c)

div ξp + ξp∇V = ξV − Rpξ
Jn + Rpξ

Jp, (3.3d)

−λ2∆V + div(nξn) + div(pξp) = 0, (3.3e)

supplemented with the following set of boundary conditions

ξJn =

{

∫

ΓO
Jn · ν ds − I∗

n, on ΓO,

0, on ΓD \ ΓO,
(3.4)

ξJp =

{

−
(

∫

ΓO
Jp · ν ds − I∗

p

)

, on ΓO,

0, on ΓD \ ΓO,
(3.5)

ξV = 0, on ΓD, (3.6)

as well as

ξn · ν = ξp · ν = ∇ξV · ν = 0 on ΓN . (3.7)

Remark 3.1. Note, that it is possible to eliminate the Lagrange multipliers ξn and ξp

employing the first two equations, which yields the system

∆ξJn −∇ξJn∇V = ξV + RnξJn − RnξJp,

∆ξJp + ∇ξJp∇V = ξV − Rpξ
Jn + Rpξ

Jp,

−λ2∆V + div(n∇ξJn) + div(p∇ξJp) = 0.
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For the existence of an Lagrange multiplier associated to an optimal solution (x∗, C∗) ∈
X × C of (2.8) it is sufficient that the operator e(x,C)(x

∗, C∗) is surjective. In general,
this cannot be ensured for the drift diffusion model, since this system allows for multiple
solutions, e.g. when one is considering thyristor devices [Moc83, Mar86]. Hence, we assume
that the optimal solution is at least an isolated one, which excludes turning points in the
current voltage characteristics.

A.6 For every minimizer (x∗, C∗) ∈ X × C of Q the operator ex(x
∗, C∗) : X → Z∗ admits

a bounded inverse e−1
x (x∗, C∗) ∈ L(Z∗, X).

Remark 3.2. For the action of ex(x
∗, C∗) see Theorem 1.6. One can prove that A.6 holds

near to the thermal equilibrium state, since there the solution is indeed unique. We note
that for every minimizer (x∗, C∗) equation (3.2b) admits a unique solution ξ∗ ∈ Z due to
assumption A.6. The function ξ∗ is called Lagrange multiplier (associated to (x∗, C∗)).

3.2 The Second–order Condition

In order to formulate second–order conditions second derivatives of L are required. It holds
that

L′′(x, C, ξ) =





Qxx(x, C) + 〈exx(x, C)(·, ·), ξ〉Z∗,Z 0 ex(x, C)∗

0 QCC(x, C) ec(x, C)∗

ex(x, C) eC(x, C) 0



 .

For notational convenience we define the state–control pair y
def
= (x, C) and Y

def
= X × C.

On the abstract level we get immediately the following result.

Theorem 3.3. Let assumptions A.1–A.6 be satisfied and let y∗ = (x∗, C∗) be an optimal
solution to problem (2.8) with ξ∗ denoting the associated Lagrange multiplier. Further,
let Qxx(y

∗) be positive semi-definite and QCC(y∗) be positive definite. Then, Lyy(y
∗, ξ∗) is

positive definite on ker ey(y
∗), provided ‖Qx(y

∗)‖X∗ is sufficiently small.

Remark 3.4. Note, that the functional (2.1) with Q1 given by (2.7) fulfills the assumptions
of the theorem. Here, it is necessary to use the mixed formulation to get a functional which
is quadratic in the current densities Jn and Jp, respectively. For the direct formulation
with respect to (n, p, V ) the functional S would be of fourth order with respect to the state
variables and hence one would need to impose further assumptions on the observation to
ensure the positive semi-definiteness of Qxx(y

∗).

Proof: Let y∗ be a minimizer of Q and denote the associated Lagrange multiplier by
ξ∗. Since e(y∗) is linear with respect to C we have LCC(y∗, ξ∗) = QCC(y∗). Now let
y = (x, C) ∈ ker ey(y

∗). Then x and C satisfy

ex(y
∗)x = −eC(y∗)C in Z∗.
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By Assumption A.6 ex(y
∗) admits a bounded inverse, such that the unique solution x of

this equation satisfies
‖x‖X ≤ κ ‖C‖C

with some positive constant κ. Now since with e−1
x (y∗) ∈ L(Z∗, X) one has e−∗

x (y∗) ∈
L(X∗, Z) such that using a similar argument as above we deduce from equation (3.2b)

‖ξ∗‖Z ≤ κ̃ ‖Qx(y
∗)‖X∗.

Utilizing these estimates we obtain together with Assumptions A.1–A.6

〈Lyy(y
∗, ξ∗)y, y〉Y ∗,Y = 〈Lxx(y

∗, ξ∗)x, x〉X∗,X + 〈QCC(y∗)C, C〉C∗,C

≥ 〈Qxx(y
∗)x, x〉X∗,X + 〈exx(y

∗)(x, x), ξ∗〉 + γ ‖C‖2
C,

since QCC(y∗) is positive definite,

≥ −c ‖x‖2
X‖ξ∗‖Z + γ ‖C‖2

C,

due to (1.7),

≥ −c ‖C‖2
C‖ξ∗‖Z +

γ

2
‖C‖2

C +
γ

2
‖C‖2

C,

since ex(y
∗) is continuous,

≥
(

−c‖Qx(y
∗)‖X∗ +

γ

2

)

‖C‖2
C +

γ

2
√

κ
‖x‖2

X

due to x ∈ ker ex(y
∗)

≥ C ‖y‖2
Y ,

if ‖Qx(y
∗)‖X∗ is sufficiently small. This concludes the proof.

4 Newton’s Method for the Reduced Problem

It follows from assumption A.6 together with the implicit function theorem that every
solution (x∗, C∗) of problem (2.8) is locally unique. The same theorem then guarantees

the unique solvability of the state equation e(x, C) = 0 in a neighborhood U(x∗, C∗)
def
=

Ux(x
∗) × UC(C∗) and that x = x(C) ∈ X for all (x, C) ∈ U(x∗, C∗) with x as function

of C is as smooth as e(x, C). In this case we can introduce the reduced cost functional

Q̂(C)
def
= Q(x(C), C) and problem (2.8) can locally be rewritten as

min
UC(C∗)

Q̂(C), (4.1)

12



where x(C) is determined by e(x(C), C) = 0. Then, the derivative of the reduced cost
functional is given by

Q̂′(C) = QC(y(C)) + e∗C(y(C))ξ, (4.2)

where ξ ∈ Z solves the adjoint equation e∗x(y(C))ξ = −Qx(y(C)) in Z∗.

We now derive Newton’s method for problem (4.1). To begin with let T : C → Y ,

T (y)
def
=

[

−e−1
x (y)eC(y)

IdC

]

.

Then, for ξ ∈ Z the reduced Hessian is defined by

H(y, ξ)
def
= T ∗(y)Lyy(y, ξ)T (y), H : C → C, (4.3)

and it holds that

H(y, C) = QCC(y) + e∗C(y)e−∗

x (y) {Qxx(y)(·, ·) + 〈exx(y)(·, ·), ξ〉Z∗,Z} e−1
x (y)eC(y).

Proposition 4.1. Let the assumptions of Theorem 3.3 be satisfied. Further, let y∗ =
(x(C∗), C∗) denote a solution of problem (2.8), denote by ξ∗ the associated Lagrange mul-
tiplier and let U(y∗) = Ux(x

∗) × UC(C∗) be defined as above.

Then there exists a neighborhood of C∗ in C, which we again denote by Uc(C
∗) such that

H(y(C), ξ) is positive definite for all C ∈ UC(C∗). Here, for given C and x(C) the function
ξ ∈ Z denotes the unique solution of e∗x(y(C))ξ = −Qx(y(C)) in Z∗.

Proof: It is sufficient to show that H(y∗, ξ∗) is positive definite. Positive definiteness of
H(y(C), ξ) for all C ∈ Uc(C

∗) with a suitably small neighborhood Uc(C
∗) then follows from

a continuity argument. Now set x
def
= e−1

x (y∗)eC(y∗)C for C ∈ C. Similar arguments as in
the proof of Theorem 3.3 yield directly

〈H(y∗, ξ∗)C, C〉C ≥ γ‖C‖2
C − c ‖x‖2

X‖ξ∗‖Z ≥ (−c‖Qx(y
∗)‖X∗ + γ) ‖C‖2

C,

which gives the claim.

With these preparations we are in the position to prove the local quadratic convergence of
Newton’s method.

Theorem 4.2. Let the assumptions of Theorem 3.3 be satisfied. Further, let y∗ = (x(C∗), C∗)
denote a solution of problem (2.8) and let ξ∗ be the associated Lagrange multiplier. Then
there exists a neighborhood U(y∗) = Ux(x

∗)× Uc(C
∗) ⊂ X × C such that for every starting

point C0 ∈ Uc(C
∗) the Newton iterates {Ck}k∈N remain in Uc(C

∗) and converge quadrat-
ically to C∗. Furthermore, the corresponding states xk = x(Ck) remain in Ux(x

∗) and
converge to x∗.
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Proof: By Proposition 4.1 H(y(C∗), ξ∗) is positive definite. Therefore, C∗ is a local min-
imum of Q̂. By a continuity argument a neighborhood UC(C∗) ⊂ C exists, such that
H(y(C), ξ) is Lipschitz continuous for all C ∈ UC(C∗), where ξ = ξ(C). Therefore the as-
sumptions for both, the Newton-Mysovskii and the Newton-Kantorovitch Theorem [Deu04]
are satisfied, so that the claim follows for the convergence of the Newton iterates {Ck}k∈N.
Since the state x depends continuously on C this concludes the proof.

Remark 4.3. Assumptions A.1–A.6 together with Theorem 3.3 now also imply local
quadratic convergence of the basic SQP algorithm applied to problem 2.8. For details we
refer to [HK01, IK96].

We are now in the position to formulate Newton’s method for the numerical solution of
equation Q̂′(C∗) = 0, which is the first order necessary condition of problem (4.1), and to
prove local quadratic convergence of the algorithm.

Algorithm 1. (Newton’s algorithm)
Let C0 ∈ UC(C∗) be given.

i) Set k = 0 and C0 = C0.

ii) Do while the stopping criterion is violated

(1) Set yk = (x(Ck), Ck) and ξk = −e−∗
x (yk)Qx(y

k)

(2) Solve H(yk, ξk)δCk = −Q̂′(Ck)

(3) Set Ck+1 = Ck + δCk, k = k + 1

iii) C∗ def
= Ck, y∗ def

= yk, STOP.

Remark 4.4. We note that due to the structure of the reduced Hessian the Newton system
in step ii)(2) has to be solved iteratively. Let us refer to this as the inner iteration. To
provide the right hand side in ii)(2) one has to solve the nonlinear equation e(xk, Ck) = 0
in Z∗ for xk ∈ X, and one needs to solve the adjoint equation ξk = −e−∗

x (yk)Qx(y
k). These

are all ingredients for the calculation of Q̂′ from (4.2).

Every application of H(yk, ξk) in the j–th inner iteration amounts to two linear solves,
namely

vk
j = e−1

x (yk)eC(yk)δCk
j

and
wk

j = e∗C(yk)e−∗

x (yk)
{

Qxx(y
k) + 〈exx(y

k)(vk
j , vk

j ), ξ〉Z∗,Z

}

.

We give now the precise systems of linear equations which have to be solved for the eval-
uation of the Hessian. For the computation of vk

j = (vJn, vJp, vn, vp, vV ) one needs in fact
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to solve the linear system

vJn −
(

∇vn + vn∇V + n∇vV
)

= 0, (4.4a)

vJp +
(

∇vp − vp∇V − p∇vV
)

= 0, (4.4b)

div vJn − Rnvn − Rpv
p = 0, (4.4c)

div vJp + Rnvn + Rpv
p = 0, (4.4d)

−λ2∆vV − vn + vp = δCk
j , (4.4e)

supplemented with homogeneous Dirichlet and Neumann data along ΓD and ΓN , respec-
tively.

Remark 4.5. Again, two variables can be eliminated using the first two equations, which
yields the system

div
(

∇vn + vn∇V + n∇vV
)

= Rnvn + Rpv
p,

div
(

∇vp − vp∇V − p∇vV
)

= Rnvn + Rpv
p,

−λ2∆vV − vn + vp = δCk
j .

Further, for the computation of wk
j = (wJn, wJp, wn, wp, wV ) one needs to solve the linear

system

wn = ∇wJn, (4.5a)

wp = ∇wJp, (4.5b)

div wn − wn∇V = wV + RnwJn − RnwJp + ∇vV ξn + (Rnnvn + Rnpv
p)(ξJp − ξJn), (4.5c)

div wp + wp∇V = wV − Rpw
Jn + Rpw

Jp −∇vV ξp + (Rnpv
n + Rppv

p)(ξJp − ξJn), (4.5d)

−λ2∆wV + div(nwn) + div(pwp) = − div(vnξn) + div(vpξp), (4.5e)

supplemented with the following set of boundary conditions

wJn =

{

vn, on ΓO,

0, on ΓD \ ΓO,
(4.5f)

wJp =

{

−vp, on ΓO,

0, on ΓD \ ΓO,
(4.5g)

wV = 0, on ΓD, (4.5h)

as well as

wn · ν = wp · ν = ∇wV · ν = 0 on ΓN . (4.5i)
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Remark 4.6. Also in this system two variables can be eliminated using the first two
equations, which yields the system

∆wJn −∇wJn∇V = wV + RnwJn − RnwJp + ∇vV ξn + (Rnnvn + Rnpv
p)(ξJp − ξJn),

∆wJp + ∇wJp∇V = wV − Rpw
Jn + Rpw

Jp −∇vV ξp + (Rnpv
n + Rppv

p)(ξJp − ξJn),

−λ2∆wV + div(n∇wJn) + div(p∇wJp) = − div(vnξn) + div(vpξp).

Finally, we state the desired algorithm.

Algorithm 2. (Newton’s method with inner iteration)

1. Choose C0 in a neighborhood of C∗.

2. For k = 0, 1, 2, . . .

(a) Evaluate Q̂′(Ck), choose δCk
0 and set j = 0.

(b) Solve step ii)(2) of Algorithm 1 iteratively:

δCk = Iteration(H(yk, ξk), δCk
0 , j)

(c) Set Ck+1 = Ck + δCk

5 Numerical Results

In this section we want to study the numerical performance of Algorithm 2. We apply the
algorithm for the optimization of an unsymmetric n–p–diode, whose reference doping profile
C̄ can be found in Figure 5.1. For the computations we chose the following nondimensional
parameters for the state system (1.2):

λ2 = 10−3, δ2 = 10−2, U = 10,

which are typical for standard devices. The computations were performed on a uniform
one dimensional grid with 1000 points and the state system was discretized using the
well–known Scharfetter–Gummel discretization [SG69], which is essentially an exponen-
tially fitted scheme allowing for the resolution of the steep gradients near to the junction
[GMS98, BMP89]. Also for the adjoint system (3.3) and the linearized state system (4.4)
we used an adapted Scharfetter–Gummel discretization [BP]. This is essential to ensure
the convergence of the inner loop in the Newton algorithm.

Remark 5.1. In general, we cannot expect the global convergence of Newton’s method
far away from the minimizer. Hence, we require an additional globalization strategy to
ensure its convergence, owing to the fact that we only have local convexity near to the
minimizer. There are good strategies at hand (ranging from a standard damped Newton’s
method [Kel95] to sophisticated trust–region modifications that can be implemented using
Steihaug’s variant of the CG algorithm, cf. [Ste83, Kel99]). Thus, we shall not go into
further details.
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5.1 Influence of the Regularization Parameter γ

First, we tried to achieve an increase of the electron and hole current by 50 % and studied
the influence of the regularization parameter γ. The different resulting optimal doping
profiles can be found in Figure 5.1. As expected we get larger deviations from C̄ for
decreasing γ, which on the other hand also allows for a better reduction of the observation
as can be seen in Figure 5.2. For all three cases we already get a significant reduction after
two steps and the algorithm terminates rather quickly. Only for the smallest value of γ we
need two more iterations to meet the stopping criterion, which can be explained by a loss
of convexity or, equivalently, a weaker definiteness of the Hessian.
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The conjugate gradient algorithm in the inner loop was terminated when the norm of the
gradient became sufficiently small; to be more precise, in the j-th conjugate gradient step
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for the computation of the update in Newton step k we stop if the residual rk
j satisfies

‖rk
j ‖

∥

∥

∥
Q̂′(C0)

∥

∥

∥

≤ min

{(

‖Q̂′(Ck)‖
‖Q̂′(C0)‖

)q

, p
‖Q̂′(Ck)‖
‖Q̂′(C0)‖

}

or j ≥ 100. (5.1)

Note, that q ∈ (1, 2) determines the convergence order of the outer Newton algorithm. The
value of p ∈ (0, 1) is important for the first step of Newton’s method, as for k = 0 the
norm quotients are all 1; for later steps, the influence of q becomes increasingly dominant.

To get deeper insight into the convergence behavior of the algorithm, we present in Fig-
ure 5.3 the norm of the residual during the iteration for different values of γ. Here, we
used q = 2 to get the desired quadratic convergence behavior. Again, one realizes that the
convergence deteriorates with decreasing γ. Since the overall numerical effort is spent in
the inner loop, we show the number of conjugate gradient steps in Figure 5.4. Here, one
realizes the drastic influence of the regularization parameter.
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5.2 Influence of the Stopping Criterion

The next numerical test was devoted to the stopping criterion of the inner iteration and
the influence of the exponent q. In Figure 5.5 the decrease of the residual is depicted for
different values of q = 1, 1.5, or 2. As predicted by the general theory [Kel95] one gets
linear, superlinear and quadratic convergence. Clearly, the parameter q strongly influences
the number of conjugate gradient steps, which can be seen from Figure 5.6. While in the
linear case (q = 1) we have an almost constant amount of CG steps in each each iteration,
we get, as expected, a drastic increase towards the end of the iteration for the quadratic
case (q = 2). Hence, the overall numerical effort in terms of CG steps is despite of the
quadratic convergence much larger compared to the relaxed stopping criterion, which only
yields linear convergence!
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5.3 Influence of the Grid Size

Finally, we study the performance of Algorithm 2 with respect to the grid spacing h. We
keep the stopping criterion and the regularization parameter fixed and just vary the grid
size h from 1/500 over 1/1000 down to 1/2000. The evolution of the residual for these
three cases is depicted in Figure 5.7. The numerical results suggest that the algorithm is
grid independent, which is essential for large scale optimization purposes. Nevertheless,
there is a negligible dependence of the number of CG iterations on the grid spacing as can
be seen from Figure 5.8.
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