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Abstract: We consider an elliptic optimal control problem with pointwise state constraints. The

cost functional is approximated by a sequence of functionals which are obtained by discretizing

the state equation with the help of linear finite elements and enforcing the state constraints in the

nodes of the triangulation. The corresponding minima are shown to converge in L2 to the exact

control as the discretization parameter tends to zero. Furthermore, error bounds for control and

state are obtained both in two and three space dimensions. Finally, we present numerical examples

which confirm our analytical findings.
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1 Introduction

The aim of this paper is to analyze a finite element discretization of a control problem with
pointwise state constraints. Let Ω ⊂ Rd (d = 2, 3) be a bounded, convex domain with a
smooth boundary. For a given function u ∈ L2(Ω) we denote by y = G(u) the solution of the
Neumann problem

−∆y + y = u in Ω,

∂νy = 0 on ∂Ω.

Here ν denotes the outward pointing unit normal to ∂Ω. It is well known that y ∈ H 2(Ω)
and

(1.1) ‖y‖H2 ≤ C‖u‖L2.

We now consider the following control problem

(1.2)
min

u∈L2(Ω)
J(u) =

1

2

∫

Ω

|y − y0|2 +
α

2

∫

Ω

|u− u0|2

subject to y = G(u) and y(x) ≤ b(x) in Ω.

Here, α > 0 and y0, u0 ∈ H1(Ω) as well as b ∈ W 2,∞(Ω) are given functions. We denote by
M(Ω̄) the space of Radon measures which is defined as the dual space of C0(Ω̄) and endowed
with the norm

‖µ‖M(Ω̄) = sup
f∈C0(Ω̄),|f |≤1

∫

Ω̄

fdµ.
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The analysis of (1.2) is well understood and sketched in [14, Section 6.2.1] for the problem
under consideration. Since the state constraints form a convex set and the cost functional is
quadratic it is not difficult to establish the existence of a unique solution u ∈ L2(Ω) to this
problem. Moreover, from [3, Theorem 5.2] we infer (compare also [2, Theorem 2])

Theorem 1.1. A function u ∈ L2(Ω) is a solution of (1.2) if and only if there exist µ ∈
M(Ω̄) and p ∈ L2(Ω) such that with y = G(u) there holds

∫

Ω

p
(
−∆v + v

)
=

∫

Ω

(y − y0)v +

∫

Ω̄

vdµ ∀v ∈ H2(Ω) with ∂νv = 0 on ∂Ω(1.3)

p+ α(u− u0) = 0 a.e. in Ω(1.4)

µ ≥ 0, y(x) ≤ b(x) a.e. in Ω and

∫

Ω̄

(b− y)dµ = 0.(1.5)

The study of (1.2) is complicated by the presence of the measure µ on the right hand side
of (1.3). As a consequence, the solution p of this problem is no longer in H1(Ω) but only in
W 1,s(Ω) for all 1 ≤ s < d

d−1
. This fact also accounts for the form of the weak formulation

(1.3).
The aim of the present paper is to develop a finite element approximation of problem (1.2).
The underlying idea consists in approximating the cost functional J by a sequence of func-
tionals Jh where h is a mesh parameter related to a sequence of triangulations. The definition
of Jh involves the approximation of the state equation by linear finite elements and enforces
constraints on the state in the nodes of the triangulation. We shall prove that the minima of
Jh converge in L2 to the minimum of J as h → 0 and that the states convergence strongly
in H1 as well as uniformly and derive corresponding error bounds.
To the authors knowledge only few attempts have been made to develop a finite element
analysis for state constrained elliptic control problems. In [4] Casas proves convergence of
finite element approximations to optimal control problems for semi-linear elliptic equations
with finitely many state constraints. Casas and Mateos extend these results in [5] to a less
regular setting for the states and prove convergence of finite element approximations to
semi-linear distributed and boundary control problems.
Let us comment on further approaches that tackle optimization problems for pdes with
state constraints. A Lavrentiev-type regularization of problem (1.2) is investigated in [11].
In this approach the state constraint y ≤ b in (1.2) is replaced by the mixed constraint
εu+ y ≤ b, with ε > 0 denoting a regularization parameter. It turns out that the associated
Lagrange multiplier µε belongs to L2(Ω). The resulting optimization problems are solved
either by interior-point methods or primal-dual active set strategies, compare [10]. The
development of numerical approaches to tackle (1.2) is ongoing. An excellent overview can
be found in [8, 9], where also further references are given.

The paper is organized as follows: in §2 we describe our discretization and establish conver-
gence of controls and states to their continuous counterparts for two- and three–dimensional
domains. An error analysis is carried out in §3. We obtain

‖u− uh‖L2 , ‖y − yh‖H1 =





O(h1−ε), if d = 2

O(h
1
2
−ε), if d = 3

(ε > 0 arbitrary) where uh and yh are the discrete control and state respectively. Roughly
speaking, the idea is to insert the discrete solution into the continuous functional and vice

2



versa. An important tool in the analysis is the use of L∞–error estimates for finite element
approximations of the Neumann problem developed in [13]. The need for uniform estimates
is due to the presence of the measure µ in (1.3).

2 Finite element discretization

Let Th be a triangulation of Ω with maximum mesh size h := maxT∈Th diam(T ) and vertices
x1, . . . , xm. We suppose that Ω̄ is the union of the elements of Th so that element edges lying
on the boundary are curved. In addition, we assume that the triangulation is quasi-uniform
in the sense that there exists a constant κ > 0 (independent of h) such that each T ∈ Th is
contained in a ball of radius κ−1h and contains a ball of radius κh. Let us define the space
of linear finite elements,

Xh := {vh ∈ C0(Ω̄) | vh is a linear polynomial on each T ∈ Th}.

In what follows it is convenient to introduce a discrete approximation of the solution operator
G. For a given function v ∈ L2(Ω) we denote by zh = Gh(v) ∈ Xh the solution of the discrete
Neumann problem

∫

Ω

(
∇zh · ∇vh + zhvh

)
=

∫

Ω

vvh for all vh ∈ Xh.

It is well–known that for all v ∈ L2(Ω)

‖G(v)− Gh(v)‖ ≤ Ch2‖v‖,(2.1)

‖G(v)− Gh(v)‖L∞ ≤ Ch2− d
2 ‖v‖.(2.2)

Here, ‖ · ‖ denotes the L2–norm. We propose the following approximation of the control
problem (1.2):

(2.3)
min

u∈L2(Ω)
Jh(u) :=

1

2

∫

Ω

|yh − Phy0|2 +
α

2

∫

Ω

|u− Phu0|2

subject to yh = Gh(u) and yh(xj) ≤ b(xj) for j = 1, . . . , m.

Here, Ph denotes the L2–projection, i.e.

(2.4)

∫

Ω

Phz vh =

∫

Ω

z vh ∀vh ∈ Xh.

It is well–known that

(2.5) ‖z − Phz‖ ≤ Ch‖z‖H1 ∀z ∈ H1(Ω).

Problem (2.3) represents a convex infinite-dimensional optimization problem of similar struc-
ture as problem (1.2), but with only finitely many equality and inequality constraints which
form a convex admissible set. Again we can apply [3, Theorem 5.2] which together with [2,
Corollary 1] yields (compare also the analysis of problem (P) in [4])
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Lemma 2.1. Problem (2.3) has a unique solution uh ∈ L2(Ω). There exist µ1, . . . , µm ∈ R
and ph ∈ Xh such that with yh = Gh(uh) and µh =

∑m
j=1 µjδxj we have

∫

Ω

(
∇ph · ∇vh + phvh

)
=

∫

Ω

(yh − Phy0)vh +

∫

Ω̄

vhdµh for all vh ∈ Xh,(2.6)

ph + α(uh − Phu0) = 0 in Ω,(2.7)

µj ≥ 0, yh(xj) ≤ b(xj), j = 1, . . . , m and

∫

Ω̄

(
Ihb− yh

)
dµh = 0.(2.8)

Here, δx denotes the Dirac measure concentrated at x and Ih is the usual Lagrange interpo-
lation operator.

Remark 2.2. From (2.7) we deduce that in problem (2.3) it is sufficient to minimize over
controls u ∈ Xh instead of u ∈ L2(Ω) in order to obtain the same unique solution uh. For
the resulting finite dimensional optimization problem the result of Lemma 2.1 then follows
from e.g. [12, Theorem 12.1].

We have the following convergence result.

Theorem 2.3. Let uh ∈ L2(Ω) be the optimal solution of (2.3) with corresponding state
yh ∈ Xh and adjoint variables ph ∈ Xh and µh ∈ M(Ω̄). Then, as h→ 0 we have

uh → u in L2(Ω), yh → y in H1(Ω) and in C0(Ω̄),

where u is the solution of (1.2) with corresponding state y.

Proof. Let b := minx∈Ω̄ b(x). Since b = Gh(b) and b ≤ b(xj) for j = 1, . . . , m we have

1

2

∫

Ω

|yh − Phy0|2 +
α

2

∫

Ω

|uh − Phu0|2 = Jh(uh) ≤ Jh(b) ≤ C(y0, u0, b).

This implies that there exists a constant C which is independent of h such that

(2.9) ‖yh‖, ‖uh‖, ‖ph‖ ≤ C for all 0 < h ≤ 1.

Note that the bound on ph follows from (2.7). In order to estimate µh we use vh ≡ 1 in (2.6)
and obtain for every f ∈ C0(Ω̄), |f | ≤ 1

∫

Ω̄

fdµh ≤
m∑

j=1

µj|f(xj)| ≤
m∑

j=1

µj =

∫

Ω̄

1dµh =

∫

Ω

(
ph + Phy0 − yh

)
≤ C

by (2.9). This yields

(2.10) ‖µh‖M(Ω̄) ≤ C for all 0 < h ≤ 1.

In view of (2.9), (2.10) there exists a sequence h→ 0 and û, p̂ ∈ L2(Ω) as well as µ̂ ∈ M(Ω̄)
such that

(2.11) uh ⇀ û, ph ⇀ p̂ in L2(Ω), and µh ⇀ µ̂ in M(Ω̄).
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Since G is compact as an operator from L2(Ω) into C0(Ω̄) we have, after passing to a further
subsequence if necessary,

(2.12) G(uh)→ G(û) in C0(Ω̄)

and hence

‖yh−G(û)‖L∞ ≤ ‖Gh(uh)−G(uh)‖L∞+‖G(uh)−G(û)‖L∞ ≤ Ch2− d
2 ‖uh‖+‖G(uh)−G(û)‖L∞

so that yh → G(û) =: ŷ in C0(Ω̄) as h → 0 by (2.9) and (2.12). A similar argument shows
that yh → ŷ in H1(Ω).

Let us now pass to the limit in (2.6)–(2.8). To begin, let v ∈ H2(Ω) with ∂νv = 0 on ∂Ω and
denote by Rhv the Ritz projection of v. Recalling (2.11), (2.6) and the fact that Rhv → v in
C0(Ω̄) we obtain

∫

Ω

p̂
(
−∆v + v

)
←

∫

Ω

ph
(
−∆v + v

)
=

∫

Ω

(
∇ph · ∇v + phv

)

=

∫

Ω

(
∇ph · ∇Rhv + phRhv

)
=

∫

Ω

(yh − Phy0)Rhv +

∫

Ω̄

Rhvdµh

→
∫

Ω

(ŷ − y0)v +

∫

Ω̄

vdµ̂.

Using (2.11) we may pass to the limit in (2.7) and deduce p̂+α(û−u0) = 0 a.e. in Ω. Clearly,
µ̂ ≥ 0; since yh ≤ Ihb in Ω̄ and yh → ŷ in C0(Ω̄) we have ŷ ≤ b in Ω̄. Furthermore, recalling
that

∫
Ω̄

(Ihb− yh)dµh = 0 we obtain in the limit

∫

Ω̄

(b− ŷ)dµ̂ = 0.

Lemma 1.1 now implies that û is a solution of (1.2); as the solution of this problem is unique
we must have u = û and hence y = ŷ and the whole sequence is convergent.
Let us finally prove that uh → u in L2(Ω). To begin, note that by (2.2)

Gh
(
u− γh2− d

2

)
= Gh(u)− G(u) + G(u)− γh2− d

2 ≤ Ch2− d
2 ‖u‖+ b− γh2− d

2 ≤ b

in Ω̄, provided that γ is large enough. Evaluating the above inequality at the nodes x1, . . . , xm
we see that Gh(u− γh2− d

2 ) is admissible for the discrete problem and hence Jh(uh) ≤ Jh(u−
γh2− d

2 ) or

α

2
‖uh − Phu0‖2 ≤ α

2
‖u− γh2− d

2 − Phu0‖2 +
1

2
‖Gh(u)− γh2− d

2 − Phy0‖2 − 1

2
‖yh − Phy0‖2.

Since yh → y, Gh(u)→ G(u) = y in L2(Ω) we infer that

lim sup
h→0

‖uh − Phu0‖2 ≤ ‖u− u0‖2 ≤ lim inf
h→0

‖uh − Phu0‖2,

where the second inequality is a consequence of the weak convergence uh − Phu0 ⇀ u− u0.
Thus, ‖uh−Phu0‖2 → ‖u−u0‖2 which implies uh−Phu0 → u−u0 in L2 and hence uh → u0

in L2.
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3 Error analysis

Let us now turn to the error analysis and start with a couple of auxiliary results.

Lemma 3.1. Suppose that u, uh ∈ L2(Ω) are the optimal solutions of (1.2) and (2.3) respec-
tively with corresponding states y ∈ H2(Ω), yh ∈ Xh. Let v ∈ L2(Ω) and z = G(v), zh = Gh(v).
Then

J(u) +
1

2

∫

Ω

|z − y|2 +
α

2

∫

Ω

|v − u|2 +

∫

Ω̄

(b− z)dµ = J(v)(3.13)

Jh(uh) +
1

2

∫

Ω

|zh − yh|2 +
α

2

∫

Ω

|v − uh|2 +

∫

Ω̄

(
Ihb− zh

)
dµh = Jh(v)(3.14)

Proof. An elementary calculation using (1.3) shows

J(v)− J(u) =
1

2

∫

Ω

|z − y|2 +
α

2

∫

Ω

|v − u|2 +

∫

Ω

(z − y)(y − y0) + α

∫

Ω

(u− u0)(v − u)

=
1

2

∫

Ω

|z − y|2 +
α

2

∫

Ω

|v − u|2 +

∫

Ω

p
(
−∆(z − y) + (z − y)

)

−
∫

Ω̄

(z − y)dµ+ α

∫

Ω

(u− u0)(v − u).

Since z = G(v), y = G(u) we have

∫

Ω

p
(
−∆(z − y) + (z − y)

)
=

∫

Ω

p(v − u),

so that (1.4) and (1.5) finally imply

J(v)− J(u) =
1

2

∫

Ω

|z − y|2 +
α

2

∫

Ω

|v − u|2 +

∫

Ω̄

(b− z)dµ.

The second claim follows in a similar way.

Remark 3.2. Note that in the above z = G(v), zh = Gh(v) do not necessarily have to be
admissible for the minimization problems.

The next lemma examines in more detail the approximation of J by Jh.

Lemma 3.3. Suppose that v ∈ W 1,s(Ω) for some 2d
d+2
≤ s ≤ 2. Then

|J(v)− Jh(v)| ≤ Ch2+ d
2
− d
s

(
‖u0‖H1‖v‖W 1,s + ‖v‖2 + ‖y0‖2

H1 + ‖u0‖2
H1

)
.

Proof. Let z = G(v), zh = Gh(v). Then

J(v)− Jh(v) =
1

2

∫

Ω

(
|z − y0|2 − |zh − Phy0|2

)
+
α

2

∫

Ω

(
|v − u0|2 − |v − Phu0|2

)
.
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Using (2.4), (2.5), (2.1) and (1.1) we obtain

|
∫

Ω

(
|z − y0|2 − |zh − Phy0|2

)
| = |

∫

Ω

(z − y0 − zh + Phy0)(z − y0 + zh − Phy0)|

= |
∫

Ω

(
(z − zh)(z − y0 + zh − Phy0)− (y0 − Phy0)(z − y0 − Ph(z − y0)

)
|

≤ C‖z − zh‖
(
‖z‖ + ‖zh‖+ ‖y0‖

)
+ Ch2‖y0‖H1

(
‖z‖H1 + ‖y0‖H1

)

≤ Ch2
(
‖v‖2 + ‖y0‖2

H1

)
.

For the second term we obtain in a similar way

∫

Ω

(
|v − u0|2 − |v − Phu0|2

)
=

∫

Ω

(u0 − Phu0)w =

∫

Ω

(u0 − Phu0)(w − Phw),

where w = u0 + Phu0 − 2v and where we have used (2.4). Applying Lemma 5.1 from the
Appendix we infer

|
∫

Ω

(
|v − u0|2 − |v − Phu0|2

)
| ≤ Ch2+ d

2
− d
s ‖u0‖H1‖w‖W 1,s

≤ Ch2+ d
2
− d
s ‖u0‖H1

(
‖u0‖H1 + ‖v‖W 1,s

)
.

This proves the lemma.

Lemma 3.4. Suppose that v ∈ W 1,s(Ω) for some 1 < s < d
d−1

. Then

‖G(v)− Gh(v)‖L∞ ≤ Ch3− d
s | log h| ‖v‖W 1,s.

Proof. Let z = G(v), zh = Gh(v). Elliptic regularity theory implies that z ∈ W 3,s(Ω) from
which we infer that z ∈ W 2,q(Ω) with q = ds

d−s using a well–known embedding theorem.
Furthermore, we have

(3.15) ‖z‖W 2,q ≤ c‖z‖W 3,s ≤ c‖v‖W 1,s.

Using Theorem 2.2 and the following Remark in [13] we have

(3.16) ‖z − zh‖L∞ ≤ c| log h| inf
χ∈Xh

‖z − χ‖L∞,

which, combined with a well–known interpolation estimate, yields

‖z − zh‖L∞ ≤ ch2− d
q | log h|‖z‖W 2,q ≤ ch3− d

s | log h|‖v‖W 1,s

in view (3.15) and the relation between s and q.

Our next aim is to derive a uniform bound on ‖uh‖W 1,s for s < d
d−1

.

Lemma 3.5. Let 1 < s < d
d−1

. Then there exists a constant c, which is independent of h,
such that

‖uh‖W 1,s ≤ c for all 0 < h ≤ 1.
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Proof. In view of (2.7) we have

‖uh‖W 1,s ≤ 1

α
‖ph‖W 1,s + ‖Phu0‖H1 ≤ 1

α
‖ph‖W 1,s + c,

so that it is sufficient to bound ‖ph‖W 1,s.
Let s′ be such that 1

s
+ 1

s′ = 1 and suppose that φ ∈ Ls′(Ω). Let us denote by ψ ∈ W 2,s′(Ω)
the unique solution of the Neumann problem

−∆ψ + ψ = φ in Ω

∂νψ = 0 on ∂Ω.

Integration by parts and (2.6) yield

∫

Ω

ph φ =

∫

Ω

(
∇ph · ∇ψ + phψ

)
=

∫

Ω

(
∇ph · ∇Rhψ + phRhψ

)

=

∫

Ω

(yh − Phy0)Rhψ +

∫

Ω̄

Rhψdµh,(3.17)

where Rhψ is the Ritz projection of ψ. Arguing similarly as in Theorem 1 of [1] one shows
that there exists a unique solution ph ∈ W 1,s(Ω) of the problem

(3.18)

∫

Ω

ph
(
−∆v + v

)
=

∫

Ω

(yh − Phy0)v +

∫

Ω̄

vdµh ∀v ∈ H2(Ω) with ∂νv = 0 on ∂Ω.

Furthermore, there exists a constant c = c(s) > 0 such that

(3.19) ‖ph‖W 1,s ≤ c
(
‖yh − Phy0‖+ ‖µh‖M(Ω̄)

)
≤ c

uniformly in h in view of (2.9) and (2.10). If we use v = ψ in (3.18) and combine it with
(3.17) we obtain

∫

Ω

(ph − ph)φ =

∫

Ω

(yh − Phy0)(ψ −Rhψ) +

∫

Ω̄

(ψ − Rhψ)dµh

≤ ch2‖ψ‖H2

(
‖yh‖+ ‖Phy0‖

)
+ ‖ψ − Rhψ‖L∞‖µh‖M(Ω̄)

≤ ch2‖ψ‖H2 + ch2− d
s′ | log h|‖ψ‖W 2,s′

≤ ch2− d
s′ | log h|‖φ‖Ls′ .

Note that we have again applied (3.16) in order to control ‖ψ − Rhψ‖L∞. Since φ ∈ Ls′(Ω)
is arbitrary we infer

‖ph − ph‖Ls ≤ ch2− d
s′ | log h|.

Interpolation and inverse estimates then give

‖∇ph‖Ls ≤ c‖∇ph‖Ls + ch1− d
s′ | log h| ≤ c

by (3.19) and since 1− d
s′ = d−1

s

(
d
d−1
− s
)
> 0.

Let us finally turn to an error estimate for the optimal controls and the optimal states.
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Theorem 3.6. Let u and uh be the solutions of (1.2) and (2.3) respectively. For every ε > 0
there exists Cε > 0 such that

‖u− uh‖+ ‖y − yh‖H1 ≤ Cεh
2− d

2
−ε.

Proof. Let us define ỹh := G(uh) ∈ H2(Ω) and ỹh := Gh(u) ∈ Xh. Then Lemma 3.1 implies

J(u) +
1

2

∫

Ω

|ỹh − y|2 +
α

2

∫

Ω

|uh − u|2 +

∫

Ω̄

(b− ỹh)dµ = J(uh)

Jh(uh) +
1

2

∫

Ω

|ỹh − yh|2 +
α

2

∫

Ω

|u− uh|2 +

∫

Ω̄

(
Ihb− ỹh

)
dµh = Jh(u).

Since u = u0 − 1
α
p ∈ W 1,s(Ω) for all 2d

d+2
≤ s < d

d−1
we obtain with the help of Lemma 3.3

1

2

∫

Ω

|ỹh − y|2 +
1

2

∫

Ω

|ỹh − yh|2 + α

∫

Ω

|uh − u|2

= J(uh)− J(u) + Jh(u)− Jh(uh)−
∫

Ω̄

(b− ỹh)dµ−
∫

Ω̄

(
Ihb− ỹh

)
dµh(3.20)

≤ Ch2+ d
2
− d
s

(
‖u0‖H1

(
‖u‖W 1,s + ‖uh‖W 1,s

)
+ ‖u‖2 + ‖uh‖2 + ‖y0‖2

H1 + ‖u0‖2
H1

)

+

∫

Ω̄

(ỹh − b)dµ+

∫

Ω̄

(ỹh − Ihb)dµh.

Let us first consider the last two integrals. We have for x ∈ Ω̄

ỹh(x)− b(x) = (ỹh(x)− yh(x)) + (yh(x)− (Ihb)(x)) + ((Ihb)(x)− b(x))

≤ ‖G(uh)− Gh(uh)‖L∞ + ‖Ihb− b‖L∞ ,

since yh(xj) ≤ b(xj), j = 1, . . . , m implies that yh ≤ Ihb in Ω̄. If we combine Lemma 3.4 with
Lemma 3.5 we infer

∫

Ω̄

(ỹh − b)dµ ≤ ch3− d
s | log h| ‖uh‖W 1,s + Ch2|b|W 2,∞ ≤ ch3− d

s | logh|.

Similarly we have from (1.5)

ỹh(x)− (Ihb)(x) = (ỹh(x)− y(x)) + (y(x)− b(x)) + (b(x)− (Ihb)(x))

≤ ‖Gh(u)− G(u)‖L∞ + ‖b− Ihb‖L∞,

so that (2.10) and Lemma 3.4 give

∫

Ω̄

(
yh − Ihb

)
dµh ≤ ch3− d

s | log h| ‖u‖W 1,s + Ch2|b|W 2,∞ ≤ ch3− d
s | log h|.

Inserting these estimates into (3.20) and applying again Lemma 3.5 we derive

‖u− uh‖2 + ‖y − yh‖2 ≤ ch3− d
s | logh|.

If we now choose s sufficiently close to d
d−1

we obtain

‖u− uh‖2 + ‖y − yh‖2 ≤ Cεh
4−d−2ε.
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Finally, in order to obtain the error bound for y in H1 we note that
∫

Ω

(
∇(y − yh) · ∇vh + (y − yh)vh

)
=

∫

Ω

(u− uh)vh

for all vh ∈ Xh, from which one derives the desired estimate using standard finite element
techniques and the bound on ‖u− uh‖.
In general we only expect weak convergence of µh to µ. Nevertheless we have the following
partial result.

Corollary 3.7. Let K ⊂ Ω̄ be compact with K ∩ suppµ = ∅. For every ε > 0 there exists a
constant Cε such that

µh(K) ≤ Cεh
2− d

2
−ε.

Proof. By Lemma 5.2 in the Appendix there exists a nonnegative function φ ∈ C2(Ω̄) which
satisfies

φ ≥ 1 on K, φ = 0 on suppµ, ∂νφ = 0 on ∂Ω.

Since µh ≥ 0 we obtain from (2.6)

µh(K) ≤
∫

Ω̄

φ dµh =

∫

Ω̄

(φ− Rhφ)dµh +

∫

Ω̄

Rhφ dµh

=

∫

Ω̄

(φ− Rhφ)dµh +

∫

Ω

(
∇ph · ∇Rhφ+ phRhφ

)
−
∫

Ω

(yh − Phy0)Rhφ

=

∫

Ω̄

(φ− Rhφ)dµh +

∫

Ω

(
∇ph · ∇φ+ phφ

)
−
∫

Ω

(yh − Phy0)Rhφ

=

∫

Ω̄

(φ− Rhφ)dµh +

∫

Ω

ph(−∆φ+ φ)−
∫

Ω

(yh − Phy0)Rhφ,

where Rh is again the Ritz projection. On the other hand, (1.3) and the fact that φ = 0 on
suppµ imply ∫

Ω

(y − y0)φ−
∫

Ω

p(−∆φ+ φ) = 0.

Combining this relation with the first estimate we derive

µh(K) ≤
∫

Ω̄

(φ− Rhφ)dµh +

∫

Ω

(ph − p)(−∆φ+ φ) +

∫

Ω

(yh − Phy0)(φ− Rhφ)

+

∫

Ω

(y − yh − y0 + Phy0)φ

≤ ‖φ−Rhφ‖L∞‖µh‖M(Ω̄) + ‖p− ph‖‖φ‖H2 +
(
‖yh‖+ ‖Phy0‖

)
‖φ− Rhφ‖

+
(
‖y − yh‖+ ‖y0 − Phy0‖

)
‖φ‖

≤ C‖φ−Rhφ‖L∞ + Cεh
2− d

2
−ε ≤ Cεh

2− d
2
−ε

in view of (1.4), (2.7) and Theorem 3.6.

Remark 3.8. We mention here a second approach that differs from the one discussed above
in the way in which the inequality constraints are realized. Denote by D1, . . . , Dm the cells
of the dual mesh. Each cell Di is associated with a vertex xi of Th and we have

Ω̄ = ∪mi=1Di, int(Di) ∩ int(Dj) = ∅, i 6= j.
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In (2.3), we now impose the constraints

(3.21) −
∫

Dj

(yh − Ihb) ≤ 0 for j = 1, . . . , m

on the discrete solution yh = Gh(u). Here, we have abbreviated −
∫
Dj
f = 1

|Dj |
∫
Dj
f . The

measure µh that appears in Lemma 2.1 now has the form µh =
∑m

j=1 µj−
∫
Dj
· dx, and the

pointwise constraints in (2.8) are replaced by those of (3.21). The error analysis for the
resulting numerical method can be carried out in the same way as shown above with the
exception of Theorem 3.6, where the bounds on ỹ−b and ỹh−Ihb require a different argument.
In this case, additional terms of the form

‖f −−
∫

Dj

f‖L∞(Dj)

have to be estimated. Since these will in general only be of order O(h), this analysis would
only give ‖u− uh‖, ‖y− yh‖H1 = O(

√
h). The numerical test example in §4 suggests that at

least ‖u− uh‖ = O(h), but we are presently unable to prove such an estimate.

4 Numerical examples

Example 4.1. The following test problem is taken - in a slightly modified form - from [10],
Example 6.2. Let Ω := B1(0), α > 0,

y0(x) := 4 +
1

π
− 1

4π
|x|2 +

1

2π
log |x|, u0(x) := 4 +

1

4απ
|x|2 − 1

2απ
log |x|

and b(x) := |x|2 + 4. We consider the cost functional

J(u) :=
1

2

∫

Ω

|y − y0|2 +
α

2

∫

Ω

|u− u0|2,

where y = G(u). By checking the optimality conditions of first order one verifies that u ≡ 4
is the unique solution of (1.2) with corresponding state y ≡ 4 and adjoint states

p(x) =
1

4π
|x|2 − 1

2π
log |x| and µ = δ0.

The finite element counterparts of y, u, p and µ are denoted by yh, uh, ph and µh.
For an error functional E(h) we define the experimental order of convergence as

EOC =
lnE(h1)− lnE(h2)

ln h1 − ln h2
.

To investigate EOCs for our model problem we choose a sequence of uniform partitions of Ω
containing five refinement levels, starting with eight triangles forming a uniform octagon as
initial triangulation of the unit disc. The corresponding grid sizes are hi = 2−i for i = 1, . . . , 5.
As error functionals we take E(h) = ‖(u, y)− (uh, yh)‖ and E(h) = ‖(u, y)− (uh, yh)‖H1 and
note, that the error p− ph is related to u− uh via (2.7). We solve problems (2.3) using the
QUADPROG routine of the MATLAB OPTIMIZATION TOOLBOX. The required finite
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element matrices for the discrete state and adjoint systems are generated with the help
of the MATLAB PDE TOOLBOX. Furthermore, for discontinuous functions f we use the
quadrature rule ∫

Ω

f(x)dx ≈
∑

T∈Th
f
(
xs(T )

)
|T |,

where xs(T ) denotes the barycenter of T . In all computations we set α = 1.
In Table 1, we present EOCs for problem (2.3) (case S = D) and the approach sketched in
Remark 3.8 (case S = M). As one can see, the error ‖u − uh‖ behaves in the case S = D
as predicted by Theorem 3.6, whereas the errors ‖y − yh‖ and ‖y − yh‖H1 show a better
convergence behaviour. On the finest level we have ‖u − uh‖ = 0.003117033, ‖y − yh‖ =
0.000123186 and |y − yh|H1 = 0.000083757. Furthermore, all coefficients of µh are equal to
zero, except the one in front of δ0 whose value is 0.62820305383493. The errors ‖u − uh‖,
‖y−yh‖ and ‖y−yh‖H1 in the case S = M show a better EOC than in the case S = D. This
can be explained by the fact that the exact solutions y and u are very smooth, and that the
relaxed form of the state constraints introduce a smearing effect on the numerical solutions
at the origin. On the finest level we have ‖u− uh‖ = 0.001020918, ‖y − yh‖ = 0.000652006
and |y− yh|H1 = 0.000037656. Furthermore, the coefficient of µh corresponding to the patch
containing the origin has the value 0.66505911271141.
Figures 1 and 2 present the numerical solutions yh and uh for h = 2−5 in the case S = D
and S = M , respectively. We note that using equal scales on all axes would give completely
flat graphs in all four figures.

(S=D) (S=M) (S=D) (S=M) (S=D) (S=M)

Level ‖u− uh‖ ‖u− uh‖ ‖y − yh‖ ‖y − yh‖ ‖y − yh‖H1 ‖y − yh‖H1

1 0.788985 0.654037 0.536461 0.690302 0.860516 0.688531

2 0.759556 1.972784 1.147861 2.017836 1.272400 2.015602

3 0.919917 1.962191 1.389378 2.004383 1.457095 2.004286

4 0.966078 1.856687 1.518381 1.989727 1.564204 1.990566

5 0.986686 1.588722 1.598421 1.979082 1.632772 1.979945

Table 1: Experimental order of convergence

Example 4.2. The second test problem is taken from [11], Example 2. It reads

min
u∈L2(Ω)

J(u) =
1

2

∫

Ω

|y − y0|2 +
1

2

∫

Ω

|u− u0|2

subject to y = G(u) and y(x) ≥ b(x) in Ω.

Here, Ω denotes the unit square,

b(x) =





2x1 + 1, x1 <
1
2
,

2, x1 ≥ 1
2
,

y0(x) =





x2
1 − 1

2
, x1 <

1
2
,

1
4
, x1 = 1

2
,

3
4
, x1 >

1
2
,
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Figure 1: Numerically computed state yh (left) and control uh (right) for h = 2−5 in the case
S = D.
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Figure 2: Numerically computed state yh (left) and control uh (right) for h = 2−5 in the case
S = M .

and

u0(x) =





5
2
− x2

1, x1 <
1
2
,

9
4
, x1 ≥ 1

2
.

The exact solution is given by y ≡ 2 and u ≡ 2 in Ω. The corresponding Lagrange multiplier
p ∈ H1(Ω) is given by

p(x) =





1
2
− x2

1, x1 <
1
2
,

1
4
, x1 ≥ 1

2
.

The multiplier µ has the form

(4.22)

∫

Ω̄

fdµ =

∫

{x1= 1
2
}
fds+

∫

{x1>
1
2
}
fdx, f ∈ C0(Ω̄).

In our numerical computations we use uniform grids generated with the POIMESH func-
tion of the MATLAB PDE TOOLBOX. Integrals containing y0, u0 are numerically evalu-
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ated by substituting y0, u0 by their piecewise linear, continuous finite element interpolations
Ihy0, Ihu0. The grid size of a grid containing l horizontal and l vertical lines is given by
hl =

√
2

l+1
. Fig. 3 presents the numerical results for a grid with h =

√
2

36
in the case (S=D).

The corresponding values of µh on the same grid are presented in Fig. 4. They reflect the
fact that the measure consists of a lower dimensional part which is concentrated on the line
{x ∈ Ω | x1 = 1

2
} and a regular part with a density χ|{x1>

1
2
}. We again note that using equal

scales on all axes would give completely flat graphs for yh as well as for uh.
We compute EOCs for the two different sequences of grid-sizes so = {h1, h3, . . . , h19} and
se = {h0, h2, . . . , h18}. We note that the grids corresponding to so contain the line x1 = 1

2
. Ta-

ble 2 presents EOCs for so, and Table 3 presents EOCs for se. For the sequence so we observe
super-convergence in the case (S=D), although the discontinuous function y0 for the quadra-
ture is replaced by its piecewise linear, continuous finite element interpolant Ihy0. Let us note
that further numerical experiments show that the use of the quadrature rule (4.1) for integrals
containing the function y0 decreases the EOC for ‖u−uh‖ to 3

2
, whereas EOCs remain close

to 2 for the other two errors ‖y− yh‖ and ‖y− yh‖H1 . For this sequence also the case (S=M)
behaves twice as good as expected by our arguments in Remark 3.8. For the sequence se the
error ‖u− uh‖ in the case (S=D) approximately behaves as predicted by our theory, in the
case (S=M) it behaves as for the sequence so. The errors ‖y−yh‖ and ‖y−yh‖H1 behave that
well, since the the exact solutions y and u are very smooth. For h19 we have in the case (S=D)
‖u− uh‖ = 0.000103428, ‖y − yh‖ = 0.000003233 and |y − yh|H1 = 0.000015155, and in the
case (S=M) ‖u−uh‖ = 0.011177577, ‖y− yh‖ = 0.000504815 and |y− yh|H1 = 0.001547907.
We observe that the errors in the case S = M are two magnitudes larger than in the case
(S=D). This can be explained by the fact that an Ansatz for the multiplier µ with a linear
combination of Dirac measures is better suited to approximate measures concentrated on sin-
gular sets than a piecewise constant Ansatz as in the case (S=M). Finally, Table 4 presents∑
xi∈{x1=1/2}

µi and
∑

xi∈{x1>1/2}
µi for so in the case (S=D). As one can see

∑
xi∈{x1=1/2}

µi tends

to 1, the length of {x1 = 1/2}, and
∑

xi∈{x1>1/2}
µi tends to 1/2, the area of {x1 > 1/2}. These

numerical findings indicate that µh =
m∑
i=1

µiδxi well approximates µ, since
∫

Ω̄
dµh =

m∑
i=1

µi,

and that µh also well resolves the structure of µ, see (4.22). For all numerical computations
of this example we have µi = 0 for xi ∈ {x1 < 1/2}.

5 Appendix

Lemma 5.1. Let 2d
d+2
≤ s ≤ 2 and v ∈ W 1,s(Ω). Then

‖v − Phv‖ ≤ Ch1+ d
2
− d
s ‖v‖W 1,s.

Proof. The assertion is clear if s = 2d
d+2

or if s = 2 so that we may assume 2d
d+2

< s < 2. Let
us write ∫

Ω

|v − Phv|2 =

∫

Ω

|v − Phv|
sd−2d+2s

s |v − Phv|
d(2−s)
s
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Figure 3: Numerically computed state yh (left) and control uh (right) for h =
√

2
36

in the case
S = D.
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Figure 4: Numerically computed multiplier µh for h =
√

2
36

in the case S = D.

and apply Hölder’s inequality with p = s2

sd−2d+2s
, q = s2

(d−s)(2−s) which implies

‖v − Phv‖2 ≤ ‖v − Phv‖
sd−2d+2s

s
Ls ‖v − Phv‖

d(2−s)
s

L
ds
d−s

≤ ‖v − Phv‖
sd−2d+2s

s
Ls

(
‖v‖

L
ds
d−s

+ ‖Phv‖
L
ds
d−s

) d(2−s)
s .

We infer from [6] that

‖v − Phv‖Ls ≤ Ch‖v‖W 1,s, ‖Phv‖
L
ds
d−s
≤ C‖v‖

L
ds
d−s

which, together with the continuous embedding W 1,s(Ω) ↪→ L
ds
d−s (Ω), gives

‖v − Phv‖2 ≤ ch
sd−2d+2s

s ‖v‖2
W 1,s

so that the assertion follows.
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(S=D) (S=M) (S=D) (S=M) (S=D) (S=M)

Level ‖u− uh‖ ‖u− uh‖ ‖y − yh‖ ‖y − yh‖ ‖y − yh‖H1 ‖y − yh‖H1

1 1.669586 0.448124 1.417368 0.544284 1.594104 0.384950

2 1.922925 1.184104 1.990906 1.473143 1.992097 1.239771

3 2.000250 1.456908 2.101633 1.871948 2.080739 1.745422

4 2.029556 1.530303 2.125168 2.427634 2.108241 2.348036

5 2.041913 1.260744 2.124773 2.743918 2.116684 2.563363

6 2.047106 1.142668 2.117184 1.430239 2.117739 1.318617

7 2.048926 1.177724 2.107828 1.503463 2.115633 1.409563

8 2.049055 1.194893 2.098597 1.578342 2.112152 1.497715

9 2.048312 1.194802 2.090123 1.622459 2.108124 1.549495

Table 2: Experimental order of convergence, x1 = 1
2

grid line

(S=D) (S=M) (S=D) (S=M) (S=D) (S=M)

Level ‖u− uh‖ ‖u− uh‖ ‖y − yh‖ ‖y − yh‖ ‖y − yh‖H1 ‖y − yh‖H1

1 0.812598 0.460528 1.160789 2.154570 0.885731 1.473561

2 1.361946 0.406917 2.042731 0.597846 1.918942 0.405390

3 1.228268 1.031763 1.832573 1.392796 1.700124 1.088595

4 1.245030 1.262257 1.678233 1.621110 1.570580 1.392408

5 1.252221 1.416990 1.646124 1.844165 1.554434 1.686808

6 1.256861 1.505759 1.696309 2.128776 1.620231 2.021210

7 1.264456 1.489061 1.627539 2.507863 1.559065 2.415552

8 1.260157 1.316627 1.640964 2.989867 1.580113 2.818148

9 1.265599 1.169109 1.686579 1.601263 1.635084 1.460153

Table 3: Experimental order of convergence, x1 = 1
2

not a grid line

Lemma 5.2. Suppose that K and K̃ are two disjoint compact subsets of Ω̄. Then there exists
a nonnegative function φ ∈ C2(Ω̄) which satisfies

∂νφ = 0 on ∂Ω, φ ≥ 1 on K, φ = 0 on K̃.

Proof. For r > 0 let us define Ωr := {x ∈ Ω̄ | dist(x, ∂Ω) < r}. In view of the smoothness of
∂Ω there exists δ > 0 such that for each x ∈ Ωδ there exists a unique point y = y(x) ∈ ∂Ω
with

x = y − dist(x, ∂Ω)ν(y)
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Level
∑

xi∈{x1=1/2}
µi

∑
xi∈{x1>1/2}

µi

1 1.13331662624081 0.36552954225441

2 1.06315278164899 0.43644163287114

3 1.03989323182608 0.45990635060758

4 1.02893022155910 0.47095098878247

5 1.02265064139378 0.47727091447291

6 1.01855129775903 0.48139306499280

7 1.01569011772403 0.48426838085822

8 1.01359012331610 0.48637773715316

9 1.01198410389649 0.48799027450619

Table 4: Approximation of the multiplier in the case (S=D), x1 = 1
2

grid line

(see [7], 14.6). Since K ∩ K̃ = ∅ we may assume that dist(K, K̃) > δ. Let us define

ΓK := {y(x) | x ∈ K ∩ Ω δ
2
}, ΓK̃ := {y(x) | x ∈ K̃ ∩ Ω δ

2
}.

ΓK and ΓK̃ are disjoint, compact subsets of ∂Ω, since dist(K, K̃) > δ and x 7→ y(x) is
continuous. Let φ1 ∈ C2(∂Ω) be a nonnegative function satisfying φ1 ≥ 1 on ΓK, φ1 = 0 on
ΓK̃ . By setting φ1(x) = φ1(y(x)) we extend φ1 as a C2 function to Ωδ. Clearly, ∂νφ1 = 0 on
∂Ω. Let ψ ∈ C2(Ω̄) be a nonnegative cut–off function with ψ = 1 in Ω δ

4
and ψ = 0 in Ω̄\Ω δ

2
.

Then φ2 := ψφ1 satisfies

∂νφ2 = 0 on ∂Ω, φ2 ≥ 1 on K ∩ Ω δ
4
, φ2 = 0 on K̃.

Finally, choose a nonnegative function φ3 ∈ C2(Ω̄) with

φ3 ≥ 1 on K ∩ (Ω̄ \ Ω δ
4
), φ3(x) = 0 if dist(x,K ∩ (Ω̄ \ Ω δ

4
)) ≥ δ

8
.

Then, ∂νφ3 = 0 on ∂Ω, φ3 = 0 on K̃ and φ := φ2 + φ3 has the required properties.
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