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1 Introduction

In this paper we develop an a posteriori error estimator for PDE-constrained optimization
problems in the presence of state-constraints. For its construction we extend the DWR concept
of [1, 2] to elliptic optimal control problems with state constraints, where the refinement goal
consists in the construction of finite element meshes which allow to resolve well the value
of the cost functional. The main analytical result of this work consists in proving an error
representation for the values of the cost functional of the form

J(y, u) − J(yh, uh) =
1

2
(ρy(p− ihp) + ρp(y − ihy) + 〈µ + µh, yh − y〉) ,

where ρp, ρy denote the dual and primal residual of the underlying PDE, ih denotes an
appropriate interpolation operator, and µ, µh denote the multipliers associated to the state
constraints of the continuous and discrete problem, respectively, compare (4.1). To anticipate
discussion let us point out two basic facts of our approach;

i.) Under common assumptions no residual ρu associated to the optimality conditions
(2.6),(3.5) appears in our approach. This is due to the fact that we do not discretize
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controls explicitly, see [9] for details on this concept. This result remains valid in the
case of control constraints, see Remark 4.2.

ii.) Differences of multipliers do not occur in our concept. This is of particular importance
for multipliers associated to state constraints, since these may be represented by mea-
sures. As a consequence there is no need to construct a computable approximation to
µ which carries more information than µh. In fact we use µ ≡ µh in our numerical
approach.

Let us briefly comment on adaptive approaches in PDE-constrained optimization. For prob-
lems with neither constraints on controls nor on states an excellent overview of the DWR
approach is contained in [1]. Problems also dealing with constraints on the control are dis-
cussed in [10]. A posteriori analysis of an adaptive algorithm for elliptic control problems
with constraints on the control is presented in [8]. An extension of the DWR concept to
PDE-constrained optimization problems in the presence of control constraints is proposed in
[12]. To the best of the authors knowledge the present work presents the first contribution
to adaptive approaches for PDE-constrained optimization problems in the presence of state
constraints.
The rest of this work is organized as follows. In §2 we present the mathematical setting, §3
sketches the finite element discretization of problem (2.3), derives the corresponding optimal-
ity system, and states some properties of the discrete approximations to y, p, u, µa and µb.
In §4 we specify the local error indicators and test their efficiency by means of a numerical
example in §5.

2 Mathematical setting

Let Ω ⊂ R
d (d = 2, 3) be a bounded domain with a smooth boundary ∂Ω and consider the

differential operator

Ay := −
d

∑

i,j=1

∂xj

(

aijyxi

)

+

d
∑

i=1

biyxi
+ cy,

along with its formal adjoint operator

A∗y = −
d

∑

i=1

∂xi

(

d
∑

j=1

aijyxj
+ biy

)

+ cy

where for simplicity the coefficients aij, bi and c are assumed to be smooth functions on Ω̄.
We associate with A the bilinear form

a(y, z) :=

∫

Ω

(

d
∑

i,j=1

aij(x)yxi
zxj

+

d
∑

i=1

bi(x)yxi
z + c(x)yz

)

dx, y, z ∈ H1(Ω)

and subsequently assume that there exists c0 > 0 such that

d
∑

i,j=1

aij(x)ξiξj ≥ c0|ξ|
2 for all ξ ∈ R

d and all x ∈ Ω.

Furthermore we suppose that the form a is coercive on H1(Ω), i.e. there exists c1 > 0 such
that

a(v, v) ≥ c1‖v‖
2
H1(Ω) for all v ∈ H1(Ω). (2.1)
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From the above assumptions it follows that for a given f ∈ (H1(Ω))′ the elliptic boundary
value problem

Ay = f in Ω
∑d

i,j=1 aijyxi
νj = 0 on ∂Ω

(2.2)

has a unique weak solution y ∈ H1(Ω) which we denote by y = G(f). Here, ν is the unit
outward normal to ∂Ω. Furthermore, if f ∈ L2(Ω), then the solution y belongs to H2(Ω) and
satisfies

‖y‖H2(Ω) ≤ C‖f‖,

where we have used ‖ · ‖ to denote the L2(Ω)–norm.
We are interested in goal–oriented adaptive solution strategies for the following control prob-
lem

min
u∈U :=L2(Ω)

J(y, u) =
1

2
‖y − y0‖

2
L2(Ω) +

α

2
‖u− u0‖

2
U

subject to y = G(u) and a(x) ≤ y(x) ≤ b(x) in Ω.

(2.3)

Here, we suppose that α > 0, u0, y0 ∈ H1(Ω), and a, b ∈ W 2,∞(Ω) are given. Under the
assumption

ā := max
x∈Ω̄

a(x) < min
x∈Ω̄

b(x) =: b (2.4)

our problem satisfies the Slater condition or interior point condition, i.e.

∃ ũ ∈ U : a < G(ũ) < b in Ω̄,

since the function ũ := c
2 · (ā + b) ∈ U together with the constant function ỹ := 1

2(ā + b) then
solves the elliptic PDE (2.2) and satisfies a < G(ũ) = ỹ = 1

2(ā + b) < b in Ω̄.
Since the state constraints form a convex set it is not difficult to establish the existence of a
unique solution u ∈ U to problem (2.3). In order to characterize this solution we introduce
the space M(Ω̄) of Radon measures which is defined as the dual space of C0(Ω̄) and endowed
with the norm

‖µ‖M(Ω̄) = sup
f∈C0(Ω̄),|f |≤1

∫

Ω̄
fdµ.

Using [4, Theorem 5.2] we have

Theorem 2.1. Let u ∈ U denote the unique solution to (2.3). Then there exist unique
µa, µb ∈ M(Ω̄) and a unique function p ∈ W 1,s(Ω) for all 1 ≤ s < d

d−1 such that with
y = G(u) there holds

∫

Ω
pAv=

∫

Ω
(y − y0)v +

∫

Ω̄
vd(µb − µa) ∀v ∈ H2(Ω) with

d
∑

i,j=1

aijvxi
νj = 0 on ∂Ω(2.5)

p + α(u− u0) = 0 (2.6)

µa ≥ 0, y(x) ≥ a(x) in Ω and

∫

Ω̄
(y − a)dµa = 0 (2.7)

µb ≥ 0, y(x) ≤ b(x) in Ω and

∫

Ω̄
(b− y)dµb = 0. (2.8)
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3 Finite element discretization

Let Th be a triangulation of Ω with maximum mesh size h := maxT∈Th
diam(T ) and vertices

x1, . . . , xm. Furthermore one defines hmin := minT∈Th
diam(T ). We suppose that Ω̄ is the

union of the elements of Th so that element edges lying on the boundary are curved. In
addition, we assume that the triangulation is quasi-uniform in the sense that there exists a
constant κ > 0 (independent of h) such that each T ∈ Th is contained in a ball of radius κ−1h

and contains a ball of radius κh. Let us define the space of linear finite elements,

Xh := {vh ∈ C0(Ω̄) | vh is a linear polynomial on each T ∈ Th}

with Lagrange basis {vi ∈ Xh : i = 1, . . . ,m} and appropriate modification for boundary
elements. In what follows it is convenient to introduce a discrete approximation of the operator
G. For a given function v ∈ L2(Ω) we denote by zh = Gh(v) ∈ Xh the solution of the discrete
Neumann problem

a(zh, vh) =

∫

Ω
vvh for all vh ∈ Xh. (3.1)

Problem (2.3) is now approximated by the following sequence of control problems depending
on the mesh parameter h:

min
u∈U

Jh(yh, u) :=
1

2
‖yh − y0‖

2
L2(Ω) +

α

2
‖u− u0,h‖

2
U

subject to yh = Gh(u) and a(xj) ≤ yh(xj) ≤ b(xj) for j = 1, . . . ,m.

(3.2)

Here, u0,h denotes an approximation to u0 which is assumed to satisfy

‖u0 − u0,h‖ ≤ Ch. (3.3)

Problem (3.2) represents a convex infinite-dimensional optimization problem of similar struc-
ture as problem (2.3), but with only finitely many equality and inequality constraints for the
state, which define a convex set of admissible functions. Again we can apply [4, Theorem 5.2]
which yields

Lemma 3.1. Problem (3.2) has a unique solution uh ∈ U . There exist unique
µa

1, . . . , µ
a
m, µb

1, . . . , µ
b
m ∈ R and a unique function ph ∈ Xh such that with yh = Gh(uh),

µa
h =

∑m
j=1 µa

j δxj
and µb

h =
∑m

j=1 µb
jδxj

we have

a(vh, ph) =

∫

Ω
(yh − y0)vh +

∫

Ω̄
vhd(µb

h − µa
h) ∀vh ∈ Xh, (3.4)

ph + α(uh − u0,h) = 0, (3.5)

µa
j ≥ 0, yh(xj) ≥ a(xj), j = 1, . . . ,m and

∫

Ω̄

(

yh − Iha
)

dµa
h = 0, (3.6)

µb
j ≥ 0, yh(xj) ≤ b(xj), j = 1, . . . ,m and

∫

Ω̄

(

Ihb− yh

)

dµb
h = 0. (3.7)

Here, δx denotes the Dirac measure concentrated at x and Ih is the usual Lagrange interpo-
lation operator.

Remark 3.2. Problem (3.2) is still an infinite–dimensional optimization problem, but with
finitely many state constraints. By (3.5) it follows that uh ∈ Xh, i.e. the optimal discrete
solution is discretized implicitly through the optimality condition of the discrete problem.
Hence in (3.2) U may be replaced by Xh to obtain the same discrete solution uh, which
results in a finite–dimensional discrete optimization problem instead.
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The finite element analysis of problems (2.3),(3.2) is carried out in [6]. For the convenience of
the reader we in the following summarize the main results. From [6, Theorem 2.3, Theorem
3.6, Corollary 3.7] we have (compare also [7])

Theorem 3.3. Let yh, uh, ph, µa
h and µb

h denote the solutions to (3.4)–(3.7) and let y, u, p, µa

and µb denote the solutions to (2.5)–(2.8). Then

‖µa,b
h ‖M(Ω̄), ‖uh‖W 1,s(Ω) ≤ C for all 0 < h ≤ 1, i.e. µ

a,b
h ⇀ µa,b weak-* in M(Ω̄) (3.8)

for a subsequence h → 0, and for every ǫ > 0 there exists Cǫ > 0 such that

‖u− uh‖+ ‖y − yh‖H1(Ω) ≤ Cǫh
2− d

2
−ǫ. (3.9)

Furthermore, for K ⊂⊂ Ω̄ with K ∩ supp(µa,b) = ∅ there holds

µ
a,b
h (K) ≤ Cǫh

2− d
2
−ǫ. (3.10)

4 Local error indicators

From here onwards let us assume a = Iha, b = Ihb and u0 = u0,h, which is fulfilled for
functions in Xh for instance. Let us further abbreviate

µ := µb − µa, µh := µb
h − µa

h,

and let us use the notation

〈µ, v〉 :=

∫

Ω̄
vdµ for all v ∈ C0(Ω̄) and µ ∈M(Ω̄).

Following [1] we introduce the dual, control and primal residual functionals determined by
the discrete solution yh, uh, ph, µa

h and µb
h of (3.4)-(3.7) by

ρp(·) := Jy(yh, uh)(·) − a(·, ph) + 〈µh, ·〉,

ρu(·) := Ju(yh, uh)(·) + (·, ph) and

ρy(·) := −a(yh, ·) + (uh, ·),

where we have used (·, ·) to denote the L2(Ω) scalar product. In addition we introduce the
error stemming from the complementarity conditions (2.7), (2.8), (3.6) and (3.7), respectively
by

eµ(y) := 〈µ + µh, yh − y〉.

It follows from (3.5) that ρu(·) ≡ 0. This is due to the fact that we do not discretize the
control, so that the discrete structure of the solution uh of problem (2.3) is induced by the
optimality condition (3.5).
We are now in the position to prove the analogue to [11, Theorem 1] for the state constrained
case.

Theorem 4.1 (Compare [11, Theorem 1] and [1]). There holds the error representation

J(y, u)− J(yh, uh) =
1

2
ρp(y − ihy) +

1

2
ρy(p − ihp) +

1

2
eµ(y) (4.1)

with arbitrary quasi–interpolants ihy and ihp ∈ Xh.
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Proof. It follows from (2.6) and (3.5) that

uh − u =
1

α
(p− ph) (4.2)

holds. This yields

2(J(yh, uh)− J(y, u))

= (yh − y0, yh − ihy) + (yh − y0, ihy − y) + (y − y0, yh − y)

+α(uh − u0,
1
α
(p− ph))− α(u− u0,

1
α
(ph − p))

= Jy(yh, uh)(yh − ihy) + (yh − y0, ihy − y) + Jy(y, u)(yh − y)

−(uh, ph − p) + 2(u0, ph − p)− (u, ph − p).

Since by (4.2), (3.1)

(u0, ph − p) = −(uh, p− ihp)− a(yh, ihp) + a(y, ph)

holds, we obtain

2(J(yh, uh)− J(y, u))

= a(yh − ihy, ph)− 〈µh, yh − ihy〉+ (yh − y0, ihy − y)

+a(yh − y, p)− 〈µ, yh − y〉

−(uh, ph − p)− 2(uh, p− ihp)− 2a(yh, ihp) + 2a(y, ph)− (u, ph − p)

= a(yh − ihy, ph)− 〈µh, y − ihy〉+ (yh − y0, ihy − y) + a(yh − y, p)

−(uh, ph − p)− 2(uh, p− ihp)− 2a(yh, ihp) + 2a(y, ph)− (u, ph − p)

+〈µa
h, a− y〉 − 〈µa, a− yh〉+ 〈µb

h, y − b〉 − 〈µb, yh − b〉

= [a(yh, ph)− (uh, ph)] + a(y, ph)− a(ihy, ph)− 〈µh, y − ihy〉

−Jy(yh, uh)(y − ihy) + [(u, p)− a(y, p)] + [(uh, ihp)− a(yh, ihp)] + [a(y, ph)− (u, ph)]

+a(yh, p)− a(yh, ihp)− (uh, p− ihp)− eµ(y),

where we have used

〈µa, a− yh〉 − 〈µa
h, a− y〉 = 〈µa, y − yh〉+ 〈µa

h, y − yh〉, and

〈µb, yh − b〉 − 〈µb
h, y − b〉 = 〈µb, yh − y〉+ 〈µb

h, yh − y〉.

Since the terms within the squared brackets vanish, we finally obtain

2(J(yh, uh)− J(y, u))

= −Jy(yh, uh)(y − ihy) + a(y − ihy, ph)− 〈µh, y − ihy〉

+a(yh, p− ihp)− (uh, p− ihp)− eµ(y)

= −ρp(y − ihy)− ρy(p− ihp)− eµ(y).

Remark 4.2. If we introduce control constraints of the form c ≤ u ≤ d almost everywhere
in Ω with sufficiently smooth bounds c, d satisfying Ihc = c and Ihd = d we obtain the error
representation

J(y, u)− J(yh, uh) =
1

2
(ρp(y − ihy) + ρy(p− ihp) + eµ(y) + (λ + λh, uh − u)) ,

Here, with λc,d, λ
c,d
h ∈ L2(Ω) denoting the multipliers associated to the control constraints,

we set λ := λd−λc and λd
h−λc

h. We emphasize that neither differences of the multipliers µ, µh
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nor differences of the multipliers λ, λh appear in this error representation. We exploit this fact
in the definition of the error estimators, since it now is meaningful to replace the continuous
multipliers µ, λ by their discrete counterparts µh, λh. This idea is different from the one
used in [12] to construct an a posteriori error estimator for control constrained optimization
problems, and takes care of the fact that a better approximation to µ ∈ M(Ω̄) than µh can

hardly be constructed using only the values µ
a,b
1 , . . . , µ

a,b
m of Lemma 3.1.

The goal now consists in deriving an a posteriori error representation of the form

|J(y, u)− J(yh, uh)| ≈
1

2
|

∑

T∈Th

ρ
p
T ((y − ihy)|T ) + ρ

y
T ((p − ihp)|T ) + e

µ
T (y|T )|,

and in an final step to replace continuous quantities by computable analogues. To begin with
let us first consider ρy(p− ihp). It follows from the definition of the bilinear form a that

ρy(p− ihp) = −a(yh, p− ihp) + (uh, p− ihp) =

=
∑

T∈Th

∫

T

(

d
∑

i,j=1

−aij(x)(yh)xi
(p−ihp)xj

−
d

∑

i=1

bi(x)(yh)xi
(p−ihp)−c(x)yh(p−ihp)+uh(p−ihp)

)

dx,

so that we may define

ρ
y
T ((p− ihp)|T ) :=

:=

∫

T

(

d
∑

i,j=1

−aij(x)(yh)xi
(p−ihp)xj

−
d

∑

i=1

bi(x)(yh)xi
(p−ihp)−c(x)yh(p−ihp)+uh(p−ihp)

)

dx.

For ρp(y − ihy) the situation is more involved, since it contains the term 〈µh, y − ihy〉. We
interpret this contribution as a quadrature rule of an integral of a certain function. To begin
with we set for i = 1, . . . ,m

ni := card
(

{T ∈ Th : xi ∈ T̄}
)

∈ N

and introduce the Lagrange-interpolants Nh > 0 and Ihµh ∈ Xh by

Nh :=

m
∑

i=1

nivi and Ihµh :=

m
∑

i=1

µivi.

Denoting by xT
j (j = 1, . . . , d + 1) the finite element nodes of a simplex T and by µT

j the
corresponding coefficients of µh we have

〈µh, y − ihy〉 =

m
∑

i=1

µi(y − ihy)(xi) =
∑

T∈Th

|T |

d + 1

d+1
∑

j=1

d + 1

|T |

(y − ihy)(xT
j )µT

j

Nh(xT
j )

,

so that 〈µh, y − ihy〉 may be considered as the application of the quadrature rule

∫

T

g(x) dx ≈
|T |

d + 1

d+1
∑

j=1

g(xT
j ) (4.3)

to the expression
∑

T∈Th

∫

T

d + 1

|T |

(y − ihy)Ihµh

Nh

(x) dx.
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We use the quadrature rule (4.3) since the quadrature weights µT
j (j = 1, . . . , d + 1) are only

given in the vertices of a simplex T . The previous considerations motivate to define the local
adjoint residual by

ρ
p
T ((y − ihy)|T ) :=

:=

∫

T

(

d
∑

i,j=1

−aij(x)(y − ihy)xi
(ph)xj

−
d

∑

i=1

bi(x)(y − ihy)xi
(ph)− c(x)(y − ihy)ph

)

dx+

+

∫

T

(yh − y0)(y − ihy)dx +
d+1
∑

j=1

(y − ihy)(xT
j )(µb,T

j − µ
a,T
j )

Nh(xT
j )

.

Let us finally consider eµ(y). Remark 4.2 motivates to approximate this term according to

eµ(y) = 〈µ + µh, yh − y〉 ≈ 2〈µh, yh − y〉 =

= 2
m

∑

i=1

µi(yh − y)(xi) =
∑

T∈Th

d+1
∑

j=1

2µT
j

Nh(xT
j )

(yh − y)(xT
j ),

where µi := µb
i − µa

i (i = 1, . . . ,m), and µT
j := µ

b,T
j − µ

a,T
j (j = 1, . . . , d + 1) denote the

discrete multipliers in the element-wise renumbering. We now set

e
µ
T (y|T ) :=

d+1
∑

j=1

2µT
j

Nh(xT
j )

(yh − y)(xT
j ).

In order to obtain computable local indicators, we approximate y− ihy and p− ihp on every

triangle T by (i
(2)
2h yh − yh)|T and (i

(2)
2h ph − ph)|T as suggested in [11, Remark 1]. Here, i

(2)
2h yh

denotes a quadratic Lagrange interpolation of yh on a coarser mesh using function values
of yh at element vertices (similarly for ph). For approximating (yh − y)(xT

j ) we compute

(yh − i(2)yh)(xT
j ). The quadratic interpolation operator i(2) differs from i

(2)
2h in interpolating

the function values of yh in the midpoints of element edges. Its use is caused by the fact
that our approximation to eµ(y) relies on function evaluations in the finite element nodes

xi (i = 1, . . . ,m). If the interpolants i
(2)
2h yh and i(2)yh violate the state constraints we use

max(a,min(b, i
(2)
2h yh)) and max(a,min(b, i(2)yh)), respectively instead.

Our error estimator finally takes the form

η :=

∣

∣

∣

∣

∣

∣

1

2

∑

T∈Th

ρ
p
T ((i

(2)
2h yh − yh)|T ) + ρ

y
T ((i

(2)
2h ph − ph)|T ) + e

µ
T ((i(2)yh)|T )

∣

∣

∣

∣

∣

∣

. (4.4)

In the following numerical example we investigate the efficiency of the estimator η in terms
of

Ieff :=
|J(y, u) − J(yh, uh)|

η
.

5 Numerical example

We set d = 2 and consider the domain Ω := (0, 1)2 with the elliptic differential operator A

defined by aij = δij , bi = 0, (i, j = 1, 2), and c = 1. The regularization parameter in the cost
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(a) u (b) y, a, b

Figure 1: Solution on a uniform mesh with 5772 nodes

functional J is set to α = 1. The desired control and state functions u0 and y0 as well as the
bounds a and b for the state are given by

u0(x) = 60, y0(x) = 0.5,

a(x) = 0.45 and b(x) = min
(

1,max
(

0.5, 50
∣

∣x− (0.3, 0.3)T
∣

∣

2
))

for every x ∈ Ω̄. The corresponding optimal control problem reads

min
u∈L2(Ω)

J(y, u) :=
1

2
‖y − y0‖

2
L2(Ω) +

1

2
‖u− u0‖

2
L2(Ω)

subject to
−∆y + y = u in Ω

∂νy = 0 on ∂Ω
and a(x) ≤ y(x) ≤ b(x) ∀x ∈ Ω̄.

In order to avoid specialties introduced by test problems admitting exact solutions we consider
a fully generic test case by taking the numerical solution (y, u) obtained on an equidistant grid
containing 5572 nodes as substitute for the exact solution, see Fig.1. The reference functional
value J∗ := J(y, u) takes the value J∗ = 1759.04733. The support of the corresponding
multiplier µ is depicted in Fig. 2. We start the numerical run on a uniform triangulation
containing 484 nodes. On a mesh with 113569 nodes obtained by congruent refinement we
obtain |J∗ − J(yh, uh)| ≈ 0.00726. Local refinement using the so called tolerance reduction
strategy (see [2]) together with the estimator η leads to meshes where this value of the error
already is reached with less then a quarter of unknowns. Specifically, for m = 23216 we
already obtain |J∗ − J(yh, uh)| ≈ 0.00516. The development of the error in the objective is
presented in Fig. 3. The efficiency of our estimator is documented in Tab. 2, and Tab. 1
contains the efficiency of global refinement. We observe that the estimator η slightly under-
and overestimates, respectively, the real error, but always has the same magnitude as the true
error. Figure 4 shows two meshes obtained by the tolerance reduction strategy. These meshes
clearly indicate that the largest errors in the numerical approximation have their origin in
the sub-square [0.3, 0.5]2 . In this area the discrete multipliers take their largest values.
All solutions of the discrete optimization problems are computed under Matlab by a Moreau-
Yosida-based active set strategy described in [3].
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Figure 4: Locally refined meshes from η

i m = i2 h =
√

2
i−1 hmin = 1

i−1 |J∗ − J(yh, uh)| Ieff

22 484 0.0673 0.0476 0.43855 2.0
43 1849 0.0337 0.0238 0.06514 0.9
85 7225 0.0168 0.0119 0.04492 2.5
169 28561 0.0084 0.0060 0.02553 5.6
337 113569 0.0042 0.0030 0.00726 6.4

Table 1: Mesh data, error and efficiency index for global refinement

m h hmin |J∗ − J(yh, uh)| Ieff

484 0.0673 0.0476 0.43855 2.0
1013 0.0673 0.0238 0.04606 0.5
2730 0.0673 0.0119 0.03477 1.2
8038 0.0673 0.0060 0.01992 1.9
23216 0.0673 0.0030 0.00516 1.4
69645 0.0673 0.0015 0.00033 0.3

Table 2: Mesh data, error and efficiency index for local refinement
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6 Conclusions

We extend the DWR concept developed by Becker and Rannacher in [1, 2] to optimal control
of elliptic partial differential equations in the presence of state constraints. Our approach
among other things avoids the discretization of controls and the construction of computable
expressions for differences of multipliers. This is of particular importance if the multipliers
happen to appear as measures. Furthermore, our estimator only contains contributions of
PDE residuals, and of errors stemming from complementarity integrals. We present a generic
numerical test which delivers an efficiency close to 1 for our estimator.
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