Numerical analysis of a control and state
constrained elliptic control problem with
piecewise constant control approximations

Klaus Deckelnick & Michael Hinze

Abstract We consider an elliptic optimal control problem with contand point-
wise state constraints. The cost functional is approxithbtea sequence of func-
tionals which are obtained by discretizing the state equatiith the help of linear
finite elements and enforcing the state constraints in tliesof the triangulation.
Controls are discretized piecewise constant on every sixngf the triangulation.
Error bounds for control and state are obtained both in twbthree space dimen-
sions.

1 Introduction

Let Q ¢ RY (d = 2,3) be a bounded domain with a smooth boundasy and
consider the differential operator

d

d
Ay:= _i,JZlde (aijyx) —l—i;bi)’xi oY

where for simplicity the coefficients;j, b andc are supposed to be smooth func-
tions on Q. Furthermore, the operatér is assumed to be uniformly elliptic. We
associate witlA the bilinear form

d

. d
a(y,2) = /Q ( Zlau(X)yXizxj +Zlbi(><)ym2+ c(x)yzdx  y,ze HY(Q)
JE= i=
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and suppose that this form is coercive ldh(Q) with constantc; > 0. From the
above assumptions it follows that for a givére (H1(Q))’ the elliptic boundary
value problem

Ay=finQ

1
Zid,j:j_ainXiVj =00ndQ (1)

has a unique weak solutigre H(Q) which we denote by = ¥(f). Here,v is the
unit outward normal t@ Q. Furthermore, iff € L?(Q), then the solutiory belongs
to H?(Q) and satisfies

Yo < CIIf]l. (2)

In the above|| - || = || - || .2 and]| - |[um = || - [[ym2, where|| - ||Lp and]| - [[wmp denote
the norms irLP(Q) andW™P(Q) respectively.
We are interested in the following control problem

m|n J(u / 24 / ul?
subject toy = ¢4 (u) andy(x) )in Q.

Here,Uag = {ve L2(Q)|a < v< aya.e. inQ} C L?(Q) denotes the set of ad-
missible controls, where > 0 anda < a, are given constants. Furthermore, we
suppose thagy € H1(Q) andb € W?*(Q) are given functions.
For the case without control constraints the finite elemeatyesis of problem (3)
is carried out in [7]. In the present work we extend the analisthe case of con-
trol and pointwise state constraints using techniqueshwie applicable to a wider
class of control problems.

From here onwards we impose the following assumption whécfraquently
referred to aslater conditioror interior point condition.

Assumption1  3JliecUyy ¥(0)<binQ.

Since the state constraints form a convex set and the setafsithle controls is
closed and convex it is not difficult to establish the existenf a unique solution
u € Uyq to this problem. In order to characterize this solution vieoiduce the space
#(Q) of Radon measures which is defined as the dual spa@ (@) and en-

dowed with the norm

Il = oo [ ta
feco(Q),[f|<1/R

Using [3, Theorem 5.2] we then infer (compare also [2, Theo2¢)

Theorem 1. Let u € Uyq denote the unique solution ¢B). Then there existt €
A (Q) and pe L?(Q) such that with y= ¢ (Bu) there holds
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. . : d
/ pAv:/ (y—yo)v+/_vdu Vv € H2(Q) with Y ajwvj=00n0Q (4)
Ja Q Q R=

/Q(p+au)(v—u)20 Vv e Uy (5)

u >0, y(x) <b(x)in Q and /é(b—y)du =0. (6)

Our aim is to develop and analyze a finite element approxanaif problem
(3). We start by approximating the cost functioddly a sequence of functionalg
whereh is a mesh parameter related to a sequence of triangulafibesdefinition
of J,, involves the approximation of the state equation by lineatdielements. The
controls are discretized by piecewise constant functidmsinsatisfy the constraints
elementwise. Denoting by, the corresponding minimum Jf, with associate state
yh we shall prove the following error bounds,

Chjlogh|, if d =2
Ju=tnllz, Iy swlh < { o 475

To the authors knowledge only few attempts have been madevedap a finite
element analysis for elliptic control problems in the preseof control and state
constraints. In [4] Casas proves convergence of finite eierapproximations to
optimal control problems for semi-linear elliptic equatsowith finitely many state
constraints. Casas and Mateos extend these results in fb]ess regular setting
for the states and prove convergence of finite element appadions to semi-linear
distributed and boundary control problems. In [9] Meyergiders the same dis-
crete strategy as in the present note to approximate atieltipntrol problem with
pointwise state and control constraints and proves

- Cchi ¢, ifd=2

iz, Iy < { Fry < g5

(¢ > 0 arbitrary). Our analysis differs from the one presentg@jand we obtain a
slighly better approximation order for the state and thambnMoreover we prove
bounds on the discrete multipliers. For numerical tests la@ r@fer to [9]. Numer-
ical analysis for elliptic control problems with pointwis®unds on the state and
general constraints on the control are presented by theuith[8], and for point-
wise bounds on the gradient of the state in [6].

The paper is organized as follows:§2 we describe our discretization and establish
bounds on the relevant discrete quantities which are umifiorthe discretization
parameter. These bounds are used3nin order to carry out the error analysis.
Roughly speaking, the idea is to test (5) withand (13), the discrete counterpart
of (5), with a suitable projection of the continuous solatio An important tool in
the analysis is the use bf—error estimates for finite element approximations of the
Neumann problem developed in [10]. The need for uniforrmestes is due to the
presence of the measyuen (4).
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2 Finite element discretization

Let .7, be a triangulation of2 with maximum mesh sizé := maxrc 5 diam(T)
and verticesq, ..., xm. We suppose tha® is the union of the elements o, so
that element edges lying on the boundary are curved. Iniaddive assume that
the triangulation is quasi-uniform in the sense that thedist® a constank > 0
(independent oh) such that eacli € .%, is contained in a ball of radius*h and
contains a ball of radiush. Let us define the space of linear finite elements

X 1= {Vh € C°%(Q) |y is a linear polynomial on each € .7}
as well as the space of piecewise constant functions
Yi:= {wh € L%(Q) | v, is constant on each € F,}.

LetQy : L?(Q) — Y, be the orthogonal projection ontg so that
@VK)=f v xeTTe,
T

where f; v denotes the average @fover T. In what follows it is convenient to
introduce a discrete approximation of the operétoFor a given functiow € L?(Q)
we denote by, = %,(v) € X, the solution of the discrete Neumann problem

a(zn,vh) = /Q v, forall v, € Xp.

It is well-known that for al € L?(Q)
1% (v) ~ %(v) | < CFP|v]. )
The corresponding estimateliff will be crucial for our analysis.
Lemma 1. There exists a constant C which only depends on the data bath t
4 (V) — %n(V)||L» < CHP|logh|?  forall v & Uyg.

Proof. Let v € Uag,Z = 4(V), zy = %h(v). SinceUyg C L*(Q) with ||V <
max(|a|,|ay|), elliptic regularity theory implies thate W29(Q) for all 1 < q < .
In addition, it is well-known that one has

|zlweq <Callvia  (Cindependent of)
by tracking the constants in the analysis. As a result we have

|Zlwza <Cq  forallve Uyg. ®)

Using Theorem 2.2 and the following Remark in [10] we have
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Z— zy||L» < Cllogh| inf ||z— x||L~, 9
2=zl |loghl inf [|z—xIl (9)

which, combined with a well-known interpolation estimarnel 48), yields

d

|2 2/l < CH~4[logh|l|Z]wzq < Calf~&[logh
for all v € Uaq. Choosingy = | logh| gives the result. O

In order to approximate (3) we introduce a discrete couigigfUq,
UM = {vh e Yhla <vh < ayin Q}.

Note thatU/l, € Uaq and thaiQnv € Ul for v € Upg. SinceQpv — vin L?(Q) as
h — 0 we infer from (2), the continuous embeddidg(Q) — C°(Q) and Lemma
1 that
%h(Qnv) — Z(v) in L*(Q) for all v € Ugg. (10)

Problem (3) is approximated by the following sequence otrmdproblems de-
pending on the mesh parameter

. 1y ar
min Jn(u) := 5 /Q th—yo|2+§/Q u?

ueul,
subject toyn = % (u) andyn(xj) < b(x;) for j=1,....,m.

(11)

Problem (11) represents a convex finite-dimensional optitron problem of
similar structure as problem (3), but with only finitely magguality and inequality
constraints for state and control, which form a convex adifiis set. Again we can
apply [3, Theorem 5.2] which together with [2, Corollary d¢lds (compare also
the analysis of problem (P) in [4])

Lemma 2. Problem (11) has a unique solution & UQd- There exispy, ..., Um € R
and p, € X, such that with iy = %h(un) and pn = 3|14 14j &; we have

a(Vh, Pn) :/Q(Yh—YO)Vh+/§Vhdl1h WYWh € Xn, (12)
/Q(ph + CfUh) (Vh — Uh) >0 YV, € Ug'd, (13)
Hj > 0, yn(xj) <b(xj),j=1,....m and/é(lhb—Yh)dﬂh =0. (14)

Here, d; denotes the Dirac measure concentratedantd|y, is the usual Lagrange
interpolation operator.

As a first result for (11) we prove bounds on the discrete statel the discrete
multipliers.

Lemma3. Let y, € U;‘d be the optimal solution of (11) with corresponding state
Yn € X, and adjoint variables pe X, and up € .#(Q). Then there existe > 0
such that
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Ivhlls lIknll(@) <Co Ilpnlle <Cy(d,h)  forallo<h<h,

1

wherey(2,h) = /|logh| andy(3,h) = h~z.

Proof. Since? (0) € C°(Q), Assumption 1 implies that there exigis> 0 such that
@@ <b-5 inQ. (15)

It follows from (10) that there if > 0 with
% (Qnll) < b—g inQ forall0<h<h. (16)
SinceQnli € Ul (13), (12) and (16) imply

0< /Q (Pn+ aun) (Qnli—un) = /Q Ph(Qnl — up) + a'/;? Un(Qnli— Up)
= a(%n(Qnl) — Yn, pn) + @ '/Q Un(Qnii— Up)
- / (%h(Qn0) — Yn) (Yn — Yo) + /_(%(Qhﬁ) —yn)dpn + a / Un(Qnli— Ur)
Q 5 1

<=Lz 3 my(bix) - 2 yhixp)) =C— nl2- 2 5 m
>~ C—ZlYh j i) =53 —Yh\&j)) =L —SlYhll — 5 j
2 2 2 2 22

where the last equality is a consequence of (14). It folldws|tyn|[, || nl () < C-.

In order to bound|pp||y1 We insertv, = pp into (12) and deduce with the help of
the coercivity ofA, a well-known inverse estimate and the bounds we have glread
obtained that

cal[pnllZ: < alpn, ph):/Q(yh—YO)ph‘F/éphdﬂh
< [I¥n = Yoll [l pnll + [ PallL= [ Hnll 2 (2) < Cllenll +Cy(d, h) [ pnl[ 1

Hence|| pn|/y1 < Cy(d,h) and the lemma is proved.O

3 Error analysis

An important ingredient in our analysis is an error bounddaolution of a Neu-

mann problem with a measure valued right hand sideAltet as above and consider
Afq=[LQ inQ (17)
s (59 a0 +big)vi = [iLdQ ondQ.

Theorem 2. Let fi € .#(Q). Then there exists a unique weak solutipa L2(Q)
of (17), i.e.
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, . d
/ qAv= /_vd;] Vv e H?(Q) with Y ajvVvj=00ndQ.
JQ Q i\=1

Furthermoreq belongs tow's(Q) for all s € (1, %). For the finite element ap-
proximationg, € X, of q defined by

a(Vh,gn) = /_vhdﬂ for all vy, € Xy,
Q
the following error estimate holds:

_d i~
lg—anll < CH2[|il|_yq)- (18)

Proof. A corresponding result is proved in [1] for the case of an apA with-
out transport term subject to Dirichlet conditions, butéihguments can be adapted
to our situation. We omit the details O

We are now prepared to prove our main result.

Theorem 3. Let u and y be the solutions of (3) and (11) respectively. Then we have
forO<h<h

Chllogh], ifd =2
|u—Uh||+|y—Yh|H1§{C\/ﬁ7 ifd=3.

Proof.We test (5) withuy, (13) withQpu and add the resulting inequalities. Keeping
in mind thatu — Quu L Y, we obtain

/Q(p— Ph+ a(U—Up)) (Un — u)
> /{;(pthGUh)(U—QhU) = '/(.z(ph—thh)(u_QhU)-

As a consequence,
allu=u2< [ (th=w)(p—pn)— [ (Pr—Qupm(u=Qu) =1+l (19)
Lety" := % (u) € X, and denote by" € X, the unique solution of
a(wy, p) = /f.z(y—yo)wh+'/fi3whdu for all w, € X.
Applying Theorem 2 withi = (y — yo)dx+ u we infer

_d
Ip— Pl <CP 2 (ly=Yoll + |l (a))- (20)

Recalling thaty, = %, (un),y" = % (u) and observing (12) as well as the definition
of p" we can rewrite the first term in (19)
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='/Q Up — u)(p— p") +/ (up — u)(p" — pn)
/ (uh—u)(p— p") +a(yh—y", p" — pn) (21)
/uh—u p—p" +/ Y—Yn (yh—y“)+/7(yh—yh)du—/é(yh—y“)duh
= [ n=u(p= )= ly =P+ | =)y =¥

/(yh— du+/ (Y" = Yn) .

Applying Young's inequality we deduce

‘O

‘O

a 1
I < ZHU— Un||* — Elly—yh|\2+0(||p— 12+ [ly — y"I%)

+ [on=ydu+ "= yn)dpn. @2
Let us estimate the integrals involving the measuyreand . Sincey, — y! <

(Ihb—b) + (b—y) + (y—y") in Q we deduce with the help of (6), Lemma 1 and an
interpolation estimate

Jo0n=y"ah < 1l 3 (110 =Bl + Iy~ y"ll+) < CHFlloghy?.

On the other hangl' — y, < (Y"—y) + (b— Ixb) 4 (Inb— yh), So that (14), Lemma 1
and Lemma 3 yield

[ 6=yt < Il @) (IIp=10blls + Iy =yl ) < CIPlloghP?.
Q

Inserting these estimates into (22) and recalling (7) atagg|18) we obtain
a 2 1 2, ~péd 2
1 < Zlu=unll® = 5 lly = ynll* + CH=? + CHP[loghl (23)

Let us next examine the second term in (19). Siage- Qnun andQy, is stable in
L?(Q) we have

a
111 < 2ju=nl] lIpn = Qupnll < Zl1u—unl2+CHl pylfZ
< Zlu— w2+ Cry(d, h)?

using an interpolation estimate f@, and Lemma 3. Combining this estimate with
(23) and (19) we finally obtain

Ju—un2+ [ly—yul]? < Ch*-9 +CH?/logh[ + CIPy(d, h)?
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which implies the estimate dfu— up||. In order to boundy — yj|| 42 we note that

a(Y—Yh,Vh):/Q(U—Uh)Vh

for all v, € Xy, from which one derives the desired estimate using stanfitzite
element techniques and the bound|or- uy||. O
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