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Abstract We consider an elliptic optimal control problem with control and point-
wise state constraints. The cost functional is approximated by a sequence of func-
tionals which are obtained by discretizing the state equation with the help of linear
finite elements and enforcing the state constraints in the nodes of the triangulation.
Controls are discretized piecewise constant on every simplex of the triangulation.
Error bounds for control and state are obtained both in two and three space dimen-
sions.

1 Introduction

Let Ω ⊂ R
d (d = 2,3) be a bounded domain with a smooth boundary∂Ω and

consider the differential operator

Ay := −
d

∑
i, j=1

∂xj

(

ai j yxi

)

+
d

∑
i=1

biyxi +cy,

where for simplicity the coefficientsai j ,bi andc are supposed to be smooth func-
tions onΩ̄ . Furthermore, the operatorA is assumed to be uniformly elliptic. We
associate withA the bilinear form

a(y,z) :=
∫

Ω

(

d

∑
i, j=1

ai j (x)yxi zxj +
d

∑
i=1

bi(x)yxi z+c(x)yz
)

dx, y,z∈ H1(Ω)
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and suppose that this form is coercive onH1(Ω) with constantc1 > 0. From the
above assumptions it follows that for a givenf ∈ (H1(Ω))′ the elliptic boundary
value problem

Ay = f in Ω
∑d

i, j=1ai j yxi ν j = 0 on∂Ω (1)

has a unique weak solutiony∈ H1(Ω) which we denote byy= G ( f ). Here,ν is the
unit outward normal to∂Ω . Furthermore, iff ∈ L2(Ω), then the solutiony belongs
to H2(Ω) and satisfies

‖y‖H2 ≤C‖ f‖. (2)

In the above,‖ ·‖ = ‖ ·‖L2 and‖ ·‖Hm = ‖ ·‖Wm,2, where‖ ·‖Lp and‖ ·‖Wm,p denote
the norms inLp(Ω) andWm,p(Ω) respectively.
We are interested in the following control problem

min
u∈Uad

J(u) =
1
2

∫

Ω
|y−y0|2 +

α
2

∫

Ω
|u|2

subject toy = G (u) andy(x) ≤ b(x) in Ω .

(3)

Here,Uad := {v ∈ L2(Ω) |al ≤ v ≤ au a.e. inΩ} ⊆ L2(Ω) denotes the set of ad-
missible controls, whereα > 0 andal < au are given constants. Furthermore, we
suppose thaty0 ∈ H1(Ω) andb∈W2,∞(Ω) are given functions.
For the case without control constraints the finite element analysis of problem (3)
is carried out in [7]. In the present work we extend the analysis to the case of con-
trol and pointwise state constraints using techniques which are applicable to a wider
class of control problems.

From here onwards we impose the following assumption which is frequently
referred to asSlater conditionor interior point condition.

Assumption 1 ∃ũ∈Uad G (ũ) < b in Ω̄ .

Since the state constraints form a convex set and the set of admissible controls is
closed and convex it is not difficult to establish the existence of a unique solution
u∈Uad to this problem. In order to characterize this solution we introduce the space
M (Ω̄) of Radon measures which is defined as the dual space ofC0(Ω̄ ) and en-
dowed with the norm

‖µ‖M (Ω̄) = sup
f∈C0(Ω̄),| f |≤1

∫

Ω̄
f dµ .

Using [3, Theorem 5.2] we then infer (compare also [2, Theorem 2])

Theorem 1. Let u∈ Uad denote the unique solution of(3). Then there existµ ∈
M (Ω̄) and p∈ L2(Ω) such that with y= G (Bu) there holds
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∫

Ω
pAv=

∫

Ω
(y−y0)v+

∫

Ω̄
vdµ ∀v∈ H2(Ω) with

d

∑
i, j=1

ai j vxi ν j = 0 on∂Ω (4)

∫

Ω
(p+ αu)(v−u)≥ 0 ∀v∈Uad (5)

µ ≥ 0, y(x) ≤ b(x) in Ω and
∫

Ω̄
(b−y)dµ = 0. (6)

Our aim is to develop and analyze a finite element approximation of problem
(3). We start by approximating the cost functionalJ by a sequence of functionalsJh

whereh is a mesh parameter related to a sequence of triangulations.The definition
of Jh involves the approximation of the state equation by linear finite elements. The
controls are discretized by piecewise constant functions which satisfy the constraints
elementwise. Denoting byuh the corresponding minimum ofJh with associate state
yh we shall prove the following error bounds,

‖u−uh‖L2, ‖y−yh‖H1 ≤
{

Ch| logh|, if d = 2
C
√

h, if d = 3.

To the authors knowledge only few attempts have been made to develop a finite
element analysis for elliptic control problems in the presence of control and state
constraints. In [4] Casas proves convergence of finite element approximations to
optimal control problems for semi-linear elliptic equations with finitely many state
constraints. Casas and Mateos extend these results in [5] toa less regular setting
for the states and prove convergence of finite element approximations to semi-linear
distributed and boundary control problems. In [9] Meyer considers the same dis-
crete strategy as in the present note to approximate an elliptic control problem with
pointwise state and control constraints and proves

‖u−uh‖L2, ‖y−yh‖H1 ≤
{

Cε h1−ε , if d = 2

Cε h
1
2−ε

, if d = 3

(ε > 0 arbitrary). Our analysis differs from the one presented in[9] and we obtain a
slighly better approximation order for the state and the control. Moreover we prove
bounds on the discrete multipliers. For numerical tests we also refer to [9]. Numer-
ical analysis for elliptic control problems with pointwisebounds on the state and
general constraints on the control are presented by the authors in [8], and for point-
wise bounds on the gradient of the state in [6].
The paper is organized as follows: in§2 we describe our discretization and establish
bounds on the relevant discrete quantities which are uniform in the discretization
parameter. These bounds are used in§3 in order to carry out the error analysis.
Roughly speaking, the idea is to test (5) withuh and (13), the discrete counterpart
of (5), with a suitable projection of the continuous solution u. An important tool in
the analysis is the use ofL∞–error estimates for finite element approximations of the
Neumann problem developed in [10]. The need for uniform estimates is due to the
presence of the measureµ in (4).
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2 Finite element discretization

Let Th be a triangulation ofΩ with maximum mesh sizeh := maxT∈Th diam(T)
and verticesx1, . . . ,xm. We suppose that̄Ω is the union of the elements ofTh so
that element edges lying on the boundary are curved. In addition, we assume that
the triangulation is quasi-uniform in the sense that there exists a constantκ > 0
(independent ofh) such that eachT ∈ Th is contained in a ball of radiusκ−1h and
contains a ball of radiusκh. Let us define the space of linear finite elements

Xh := {vh ∈C0(Ω̄) |vh is a linear polynomial on eachT ∈ Th}

as well as the space of piecewise constant functions

Yh := {vh ∈ L2(Ω) |vh is constant on eachT ∈ Th}.

Let Qh : L2(Ω) →Yh be the orthogonal projection ontoYh so that

(Qhv)(x) := −
∫

T
v, x∈ T,T ∈ Th,

where−
∫

T v denotes the average ofv over T. In what follows it is convenient to
introduce a discrete approximation of the operatorG . For a given functionv∈L2(Ω)
we denote byzh = Gh(v) ∈ Xh the solution of the discrete Neumann problem

a(zh,vh) =

∫

Ω
vvh for all vh ∈ Xh.

It is well–known that for allv∈ L2(Ω)

‖G (v)−Gh(v)‖ ≤Ch2‖v‖. (7)

The corresponding estimate inL∞ will be crucial for our analysis.

Lemma 1. There exists a constant C which only depends on the data such that

‖G (v)−Gh(v)‖L∞ ≤Ch2| logh|2 for all v ∈Uad.

Proof. Let v ∈ Uad,z = G (v), zh = Gh(v). SinceUad ⊂ L∞(Ω) with ‖v‖L∞ ≤
max(|al |, |au|), elliptic regularity theory implies thatz∈W2,q(Ω) for all 1 < q < ∞.
In addition, it is well–known that one has

‖z‖W2,q ≤Cq‖v‖Lq (C independent ofq)

by tracking the constants in the analysis. As a result we have

‖z‖W2,q ≤Cq for all v∈Uad. (8)

Using Theorem 2.2 and the following Remark in [10] we have



Title Suppressed Due to Excessive Length 5

‖z−zh‖L∞ ≤C| logh| inf
χ∈Xh

‖z− χ‖L∞, (9)

which, combined with a well–known interpolation estimate and (8), yields

‖z−zh‖L∞ ≤Ch2− d
q | logh|‖z‖W2,q ≤Cqh2− d

q | logh|

for all v∈Uad. Choosingq = | logh| gives the result. ⊓⊔

In order to approximate (3) we introduce a discrete counterpart ofUad,

Uh
ad := {vh ∈Yh |al ≤ vh ≤ au in Ω}.

Note thatUh
ad ⊂Uad and thatQhv∈Uh

ad for v∈Uad. SinceQhv→ v in L2(Ω) as
h→ 0 we infer from (2), the continuous embeddingH2(Ω) →֒C0(Ω̄) and Lemma
1 that

Gh(Qhv) → G (v) in L∞(Ω) for all v∈Uad. (10)

Problem (3) is approximated by the following sequence of control problems de-
pending on the mesh parameterh:

min
u∈Uh

ad

Jh(u) :=
1
2

∫

Ω
|yh−y0|2 +

α
2

∫

Ω
|u|2

subject toyh = Gh(u) andyh(x j ) ≤ b(x j) for j = 1, . . . ,m.

(11)

Problem (11) represents a convex finite-dimensional optimization problem of
similar structure as problem (3), but with only finitely manyequality and inequality
constraints for state and control, which form a convex admissible set. Again we can
apply [3, Theorem 5.2] which together with [2, Corollary 1] yields (compare also
the analysis of problem (P) in [4])

Lemma 2. Problem (11) has a unique solution uh ∈Uh
ad. There existµ1, . . . ,µm ∈ R

and ph ∈ Xh such that with yh = Gh(uh) andµh = ∑m
j=1 µ jδxj we have

a(vh, ph) =

∫

Ω
(yh−y0)vh +

∫

Ω̄
vhdµh ∀vh ∈ Xh, (12)

∫

Ω
(ph + αuh)(vh−uh) ≥ 0 ∀vh ∈Uh

ad, (13)

µ j ≥ 0, yh(x j) ≤ b(x j), j = 1, . . . ,m and
∫

Ω̄

(

Ihb−yh
)

dµh = 0. (14)

Here,δx denotes the Dirac measure concentrated atx andIh is the usual Lagrange
interpolation operator.

As a first result for (11) we prove bounds on the discrete states and the discrete
multipliers.

Lemma 3. Let uh ∈ Uh
ad be the optimal solution of (11) with corresponding state

yh ∈ Xh and adjoint variables ph ∈ Xh and µh ∈ M (Ω̄). Then there exists̄h > 0
such that
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‖yh‖, ‖µh‖M (Ω̄) ≤C, ‖ph‖H1 ≤Cγ(d,h) for all 0 < h≤ h̄,

whereγ(2,h) =
√

| logh| andγ(3,h) = h−
1
2 .

Proof.SinceG (ũ) ∈C0(Ω̄), Assumption 1 implies that there existsδ > 0 such that

G (ũ) ≤ b− δ in Ω̄ . (15)

It follows from (10) that there is̄h > 0 with

Gh(Qhũ) ≤ b− δ
2

in Ω̄ for all 0 < h≤ h̄. (16)

SinceQhũ∈Uh
ad, (13), (12) and (16) imply

0 ≤
∫

Ω
(ph + αuh)(Qhũ−uh) =

∫

Ω
ph(Qhũ−uh)+ α

∫

Ω
uh(Qhũ−uh)

= a(Gh(Qhũ)−yh, ph)+ α
∫

Ω
uh(Qhũ−uh)

=

∫

Ω
(Gh(Qhũ)−yh)(yh−y0)+

∫

Ω̄
(Gh(Qhũ)−yh)dµh + α

∫

Ω
uh(Qhũ−uh)

≤ C− 1
2
‖yh‖2 +

m

∑
j=1

µ j
(

b(x j)−
δ
2
−yh(x j)

)

= C− 1
2
‖yh‖2− δ

2

m

∑
j=1

µ j

where the last equality is a consequence of (14). It follows that‖yh‖,‖µh‖M (Ω̄) ≤C.
In order to bound‖ph‖H1 we insertvh = ph into (12) and deduce with the help of
the coercivity ofA, a well–known inverse estimate and the bounds we have already
obtained that

c1‖ph‖2
H1 ≤ a(ph, ph) =

∫

Ω
(yh−y0)ph +

∫

Ω̄
phdµh

≤ ‖yh−y0‖‖ph‖+‖ph‖L∞‖µh‖M (Ω̄) ≤C‖ph‖+Cγ(d,h)‖ph‖H1.

Hence‖ph‖H1 ≤Cγ(d,h) and the lemma is proved.⊓⊔

3 Error analysis

An important ingredient in our analysis is an error bound fora solution of a Neu-
mann problem with a measure valued right hand side. LetA be as above and consider

A∗q = µ̃xΩ in Ω
∑d

i=1

(

∑d
j=1ai j qxj +biq

)

νi = µ̃x∂Ω on ∂Ω .
(17)

Theorem 2. Let µ̃ ∈ M (Ω̄). Then there exists a unique weak solutionq∈ L2(Ω)
of (17), i.e.
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∫

Ω
qAv=

∫

Ω̄
vdµ̃ ∀v∈ H2(Ω) with

d

∑
i, j=1

ai j vxi ν j = 0 on∂Ω .

Furthermore,q belongs toW1,s(Ω) for all s∈ (1,
d

d−1). For the finite element ap-
proximationqh ∈ Xh of q defined by

a(vh,qh) =
∫

Ω̄
vhdµ̃ for all vh ∈ Xh

the following error estimate holds:

‖q−qh‖ ≤Ch2− d
2 ‖µ̃‖M (Ω̄). (18)

Proof.A corresponding result is proved in [1] for the case of an operatorA with-
out transport term subject to Dirichlet conditions, but thearguments can be adapted
to our situation. We omit the details.⊓⊔

We are now prepared to prove our main result.

Theorem 3. Let u and uh be the solutions of (3) and (11) respectively. Then we have
for 0 < h≤ h̄

‖u−uh‖+‖y−yh‖H1 ≤
{

Ch| logh|, if d = 2
C
√

h, if d = 3.

Proof.We test (5) withuh, (13) withQhu and add the resulting inequalities. Keeping
in mind thatu−Qhu⊥Yh we obtain

∫

Ω

(

p− ph+ α(u−uh)
)

(uh−u)

≥
∫

Ω

(

ph + αuh
)

(u−Qhu) =
∫

Ω
(ph−Qhph)(u−Qhu).

As a consequence,

α‖u−uh‖2 ≤
∫

Ω
(uh−u)(p− ph)−

∫

Ω
(ph−Qhph)(u−Qhu) ≡ I + II . (19)

Let yh := Gh(u) ∈ Xh and denote byph ∈ Xh the unique solution of

a(wh, ph) =
∫

Ω
(y−y0)wh +

∫

Ω̄
whdµ for all wh ∈ Xh.

Applying Theorem 2 withµ̃ = (y−y0)dx+ µ we infer

‖p− ph‖ ≤Ch2− d
2
(

‖y−y0‖+‖µ‖M (Ω̄)

)

. (20)

Recalling thatyh = Gh(uh),yh = Gh(u) and observing (12) as well as the definition
of ph we can rewrite the first term in (19)
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I =

∫

Ω
(uh−u)(p− ph)+

∫

Ω
(uh−u)(ph− ph)

=

∫

Ω
(uh−u)(p− ph)+a(yh−yh

, ph− ph) (21)

=
∫

Ω
(uh−u)(p− ph)+

∫

Ω
(y−yh)(yh−yh)+

∫

Ω̄
(yh−yh)dµ −

∫

Ω̄
(yh−yh)dµh

=

∫

Ω
(uh−u)(p− ph)−‖y−yh‖2 +

∫

Ω
(y−yh)(y−yh)

+

∫

Ω̄
(yh−yh)dµ +

∫

Ω̄
(yh−yh)dµh.

Applying Young’s inequality we deduce

|I | ≤ α
4
‖u−uh‖2− 1

2
‖y−yh‖2 +C

(

‖p− ph‖2 +‖y−yh‖2)

+

∫

Ω̄
(yh−yh)dµ +

∫

Ω̄
(yh−yh)dµh. (22)

Let us estimate the integrals involving the measuresµ and µh. Sinceyh − yh ≤
(Ihb−b)+(b−y)+(y−yh) in Ω̄ we deduce with the help of (6), Lemma 1 and an
interpolation estimate

∫

Ω̄
(yh−yh)dµ ≤ ‖µ‖M (Ω̄)

(

‖Ihb−b‖∞ +‖y−yh‖∞

)

≤Ch2| logh|2.

On the other handyh−yh ≤ (yh−y)+(b− Ihb)+(Ihb−yh), so that (14), Lemma 1
and Lemma 3 yield

∫

Ω̄

(yh−yh)dµh ≤ ‖µh‖M (Ω̄)

(

‖b− Ihb‖∞ +‖y−yh‖∞

)

≤Ch2| logh|2.

Inserting these estimates into (22) and recalling (7) as well as (18) we obtain

|I | ≤ α
4
‖u−uh‖2− 1

2
‖y−yh‖2 +Ch4−d +Ch2| logh|2. (23)

Let us next examine the second term in (19). Sinceuh = Qhuh andQh is stable in
L2(Ω) we have

|II | ≤ 2‖u−uh‖‖ph−Qhph‖ ≤
α
4
‖u−uh‖2 +Ch2‖ph‖2

H1

≤ α
4
‖u−uh‖2 +Ch2γ(d,h)2

using an interpolation estimate forQh and Lemma 3. Combining this estimate with
(23) and (19) we finally obtain

‖u−uh‖2 +‖y−yh‖2 ≤Ch4−d +Ch2| logh|2 +Ch2γ(d,h)2
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which implies the estimate on‖u−uh‖. In order to bound‖y−yh‖H1 we note that

a(y−yh,vh) =

∫

Ω
(u−uh)vh

for all vh ∈ Xh, from which one derives the desired estimate using standardfinite
element techniques and the bound on‖u−uh‖. ⊓⊔
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