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Abstract: When combining the numerical concept of variational discretization introduced in [5,

6] and semi-smooth Newton methods for the numerical solution of pde constrained optimization

with control constraints [3, 11] special emphasis has to be taken on the implementation, convergence

and globalization of the numerical algorithm. In the present work we stretch all these issues. In

particular we prove fast local convergence of the algorithm and propose a globalization strategy which

is applicable in many practically relevant mathematical settings. We illustrate our analytical and

algorithmical findings by numerical experiments.
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1 Introduction and mathematical setting

We are interested in the numerical treatment of the following control problem

(P)







min(y,u)∈Y×Uad
J(y, u) := 1

2‖y − z‖2L2(Ω) +
α
2 ‖u‖2U

s.t.

−∆y = Bu in Ω,

y = 0 on ∂Ω .

(1.1)

Here, Ω ⊂ R
d (d ≥ 1) denotes an open, bounded sufficiently smooth (polyhedral) domain.

Given some Hilbert space U and some closed, convex admissible set Uad ⊂ U for the controls
and a linear, continuous control operator B : U → H−1(Ω), the states live in Y := H1

0 (Ω).
Let us note that also additional state constraints could be included into our problem setting,
as is done in [1] and [2], and also more general (linear) elliptic or parabolic state equations
may be considered. However, all structural issues discussed in the present work are induced
by the control constraints, hence to keep the exposition as simple as possible state constraints
are not considered here.
Typical configurations of P are
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Examples.

(i) U := R
m, Y = H1

0 (Ω), B : Rm → H−1(Ω), Bu :=
m∑

j=1
ujFj , Fj ∈ H−1(Ω), Uad := {v ∈

R
m; aj ≤ vj ≤ bj}, a, b ∈ R

m, a < b.

(ii) U := L2(Ω), Y = H1
0 (Ω), B = ı : L2(Ω) → H−1(Ω), ı being the canonical injection,

Uad := {v ∈ L2(Ω); a ≤ v ≤ b}, a, b ∈ L∞(Ω), a < b.

Problem P admits a unique solution (y, u) ∈ Y × Uad, and can equivalently be rewritten as
the optimization problem

min
u∈Uad

Ĵ(u) (1.2)

for the reduced functional Ĵ(u) := J(y(u), u) ≡ J(SBu, u) over the set Uad, where S : Y ∗ →
Y denotes the (continuous) solution operator associated with −∆ and Dirichlet boundary
conditions. We further know that the first order necessary (and here also sufficient) optimality
conditions take the form

〈Ĵ ′(u), v − u〉U∗,U ≥ 0 for all v ∈ Uad (1.3)

where Ĵ ′(u) = α(u, · )U +B∗S∗(SBu− z) ≡ α(u, · )U +B∗p, with p := S∗(SBu− z) denoting
the adjoint variable. Since Y is reflexive, the function p in our setting satisfies

−∆p = y − z in Ω,

p = 0 on ∂Ω.
(1.4)

For the numerical treatment of problem (1.1) it is convenient to rewrite (1.3) for σ > 0
arbitrary in form of the following non–smooth operator equation;

u = PUad

(

u− σ∇Ĵ(u)
) σ=1/α

≡ PUad

(

− 1

α
R−1B∗p

)

,

with the Riesz isomorphism R : U → U∗, the gradient ∇Ĵ(u) = R−1Ĵ ′(u) and PUad
denoting

the orthogonal projector onto Uad.

2 Finite element discretization

To discretize (P) we concentrate on Finite Element approaches and make the following as-
sumptions.

Assumption 2.1.
Ω ⊂ R

d denotes a polyhedral domain, Ω̄ = ∪nt
j=1T̄j with admissible quasi-uniform sequences of

partitions {Tj}ntj=1 of Ω, i.e. with hnt := maxj diam Tj and σnt := minj{supdiam K;K ⊆ Tj}
there holds c ≤ hnt

σnt
≤ C uniformly in nt with positive constants 0 < c ≤ C <∞ independent

of nt. We abbreviate Th := {Tj}ntj=1.

For k ∈ N we set

Wh := {v ∈ C0(Ω̄); v|Tj
∈ Pk(Tj) for all 1 ≤ j ≤ nt} =: 〈φ1, . . . , φng〉, and

Yh := {v ∈Wh, v|∂Ω = 0} =: 〈φ1, . . . , φn〉 ⊆ Y,
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with some 0 < n < ng. The resulting Ansatz for yh then is of the form yh =
n∑

i=1
yiφi. Now we

approximate problem (P) by its variational discretization (compare [6])

(Ph)







min(yh,u)∈Yh×Uad
J(yh, u) :=

1
2‖yh − z‖2L2(Ω) +

α
2 ‖u‖2U

s.t.

a(yh, vh) = 〈Bu, vh〉Y ∗,Y for all vh ∈ Yh,

(2.1)

where a(y, v) :=
∫

Ω∇y∇vdx denotes the bilinear form associated with −∆. Problem (Ph)
admits a unique solution (yh, u) ∈ Yh × Uad and, as above, can equivalently be rewritten as
the optimization problem

min
u∈Uad

Ĵh(u) (2.2)

for the discrete reduced functional Ĵh(u) := J(yh(u), u) ≡ J(ShBu, u) over the set Uad,
where Sh : Y ∗ → Yh ⊂ Y denotes the solution operator associated with the finite element
discretization of −∆. The first order necessary (and here also sufficient) optimality conditions
take the form

〈Ĵ ′
h(uh), v − uh〉U∗,U ≥ 0 for all v ∈ Uad (2.3)

where Ĵ ′
h(v) = α(v, · )U + B∗S∗

h(ShBv − z) ≡ α(v, · )U + B∗ph, with ph := S∗
h(ShBv − z)

denoting the adjoint variable. The function ph in our setting satisfies

a(vh, ph) = 〈yh − z, vh〉Y ∗,Y for all vh ∈ Yh. (2.4)

Analogously to (1.3), for σ > 0 arbitrary, we have

uh = PUad

(

uh − σ∇Ĵh(uh)
) σ=1/α

≡ PUad

(

− 1

α
R−1B∗ph

)

. (2.5)

Remark 2.2. Problem (2.1) is still infinite–dimensional in that the control space is not
discretized. This is reflected through the appearance of the projector PUad

in (2.5). The
numerical challenge now consists in designing numerical solution algorithms for problem (2.1)
which are implementable, and which reflect the infinite–dimensional structure of the discrete
problem (2.1) [5, 6].

Next let us investigate the error ‖u− uh‖U between the solutions u of (1.2) and uh of (2.2),
compare [7].

Theorem 2.3. Let u denote the unique solution of (1.2), and uh the unique solution of
(2.2). Then there holds

α‖u − uh‖2U +
1

2
‖y(u) − yh‖2 ≤ 〈B∗(p(u) − p̃h(u)), uh − u〉U∗,U +

1

2
‖y(u) − yh(u)‖2L2(Ω),

(2.6)

where p̃h(u) := S∗
h(SBu− z), yh(u) := ShBu, and y(u) := SBu.

Proof. Since (2.2) is an optimization problem defined on all of Uad, the unique solution u
of (1.2) is an admissible test function in (2.3). Let us emphasize, that this is different for
approaches, where the control space is discretized explictly. In this case we may only expect
that uh is an admissible test function for the continuous problem (if ever). So let us test (1.3)
with uh, and (2.3) with u, and then add the resulting variational inequalities. This leads to

〈α(u− uh) +B∗S∗(SBu− z)−B∗S∗
h(ShBuh − z), uh − u〉U∗,U ≥ 0.
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This inequality is equivalent to

α‖u− uh‖2U ≤ 〈B∗(p(u)− p̃h(u)) +B∗(p̃h(u)− ph(uh)), uh − u)〉U∗,U .

Let us investigate the second addend on the right hand side of this inequality. By definition
of the adjoint variables there holds

〈B∗(p̃h(u)− ph(uh), uh − u〉U∗,U = 〈p̃h(u)− ph(uh), B(uh − u)〉Y,Y ∗ =

= a(yh − yh(u), p̃h(u)− ph(uh)) =

∫

Ω

(yh(uh)− yh(u))(y(u) − yh(uh))dx =

= −‖yh − y‖2L2(Ω) +

∫

Ω

(y − yh)(y − yh(u))dx ≤ −1

2
‖yh − y‖2L2(Ω) +

1

2
‖y − yh(u)‖2L2(Ω)

so that the claim of the theorem follows.

Theorem 2.6 tells us that an error estimate for ‖u− uh‖U is at hand, if

• an error estimate for ‖R−1B∗(p(u)− p̃h(u)‖U is available, and

• an error estimate for ‖y(u) − yh(u)‖L2(Ω) is available.

Remark 2.4. The error ‖u− uh‖U between the solution u of problem (1.2) and uh of (2.2)
is completely determined by the approximation properties of the discrete solution operators
Sh and S∗

h.

3 Semi-smooth Newton algorithm

In the following we restrict our considerations to the practically relevant case of Example (ii)
given in Section 1, i.e. we set U = L2(Ω), Y = H1

0 (Ω), Uad = {v ∈ L2(Ω); a ≤ v ≤ b}. For
simplicity, we assume a, b ∈ R, a < b. Also the control operator is the injection ı : L2(Ω) → Y ∗,
hence the adjoint B∗ = ı∗ is the injection from Y into L2(Ω). Below, the operators B, B∗

and R are omitted for notational convenience. Problem (P) and its variational discretization
(Ph) can now be expressed by means of

G(v) := v − P[a,b]

(

− 1

α
p(y(v))

)

, and Gh(v) := v − P[ah,bh]

(

− 1

α
ph(yh(v))

)

, (3.1)

where P[a,b] is the pointwise projection onto the interval [a, b], and for given v ∈ L2(Ω) the
functions p, ph are defined through (1.4) and (2.4), respectively. As discussed in the previous
sections,

G(u), Gh(uh) = 0 in L2(Ω). (3.2)

These equations will be shown to be amenable to semi–smooth Newton methods as proposed
in [3] and [11]. We begin with formulating

Algorithm 3.1. (Semi–smooth Newton algorithm for (3.2))

Start with v ∈ L2(Ω) given. Do until convergence

Choose M ∈ ∂Gh(v).

Solve Mδv = −Gh(v), v := v + δv.

If we choose JacobiansM ∈ ∂Gh(v) with ‖M−1‖ uniformly bounded throughout the iteration,
and at the solution uh the function Gh is ∂Gh-semismooth of order µ, this algorithm is locally
superconvergent of order 1 + µ as in [11]. Although Algorithm 3.1 works on the infinite
dimensional space L2(Ω), it is possible to implement it numerically, as is shown subsequently.
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3.1 Semismoothness

To apply the Newton algorithm, we need to confirm that the discretized operator Gh is indeed
semismooth. To establish this fact we rewrite Gh in the form

Gh(u) = u− P[a,b]

(
Fh(u)

)
with Fh(u) = − 1

α

(
S∗
h(Shu− z)

)

and apply ([11], Theorem 5.2), with P[a,b] : R → R taking the role of ψ. Note that Fh : L2 →
Lq, q > 2 is a smoothing-operator as in [11]. We only mention that

• the operator Fh is differentiable with constant derivative for any q ≥ 1. In fact, for
sufficiently smooth domains Ω, the operators Sh and S∗

h map L2(Ω) continuously into
H2(Ω), which is continuously embedded in Lq(Ω) for any q ∈ [1,∞].

• P[a,b] : R → R is ∂P[a,b]-semismooth of order 1, with

∂P[a,b](x) =







0 if x /∈ [a,b]

1 if x ∈ (a,b)

[0,1] if x = a or x = b

. (3.3)

• for piecewise linear elements the semismooth complementarity condition (5.3) in ([11],
theorem 5.2) holds automatically with γ = 1.

Thus we are in the position to apply Theorem 5.2 from [11] with, in local notation, α = 1
and q0 > r = 2 and γ = 1 and obtain

Theorem 3.2. The function Gh defined in (3.1) is ∂Gh-semismooth of order µ < 1
3 . There

holds

∂Gh(v)w = w +
1

α
∂P[a,b]

(

− 1

α
ph(yh(v))

)

·
(
S∗
hShw

)
,

where the application of the differential ∂P[a,b] and the multiplication by S∗
hShw are pointwise

operations a.e. in Ω.

Remark 3.3. In [4] the mesh independence of the superlinear convergence is stated. Recent
results from [12] indicate semismoothness of G of order 1

2 as well as mesh independent q-
superlinear convergence of the Newton algorithm of order 3

2 , if for example the modulus of
the slope of − 1

αp(y(ū)) is bounded away from zero on the border of the active set, and if the
mesh parameter h is reduced appropriately.

3.2 Newton-Algorithm

In order to implement Algorithm 3.1, we have to chooseM ∈ ∂Gh(v). The set-valued function
∂P[a,b]

(
− 1

αph(yh(v))
)
contains the characteristic function χI(v) of the inactive set

I(v) =
{
ω ∈ Ω

∣
∣
(
− 1

α
ph(yh(v))

)
(ω) ∈ (a, b)

}
.

By χv we will denote synonymously the characteristic function

χI(v) =







1 on I(v)
0 everywhere else
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as well as the self-adjoint endomorphism in L2(Ω) given by the pointwise multiplication with
χI(v). With M = χv the Newton-step in Algorithm 3.1 takes the form

(

I +
1

α
χvS∗

hSh

)

δv = −v + P[a,b]

(

− 1

α
ph(yh(v)))

)

. (3.4)

To obtain an impression of the structure of the next iterate v+ = v + δv we rewrite (3.4) as

v+ = P[a,b]

(

− 1

α
ph(yh(v))

)

− 1

α
χvS∗

hShδv .

Since the range of S∗
h is Yh, the first addend is continuous and piecewise polynomial (of degree

k) on a refinement Kh of Th. The partition Kh is obtained from Th by inserting nodes and
edges along the boundary between the inactive set I(v) and the according active set, and
in general contains simplices of higher order than Th. The inserted edges are level sets of
polynomials of order ≤ k since we assume a, b ∈ R.
The second addend, involving the cut-off function χv, is also piecewise polynomial of degree
k on Kh but may jump along the edges not contained in Th.
Finally v+ lies in the following finite dimensional subspace of L2(Ω)

Y +
h =

{
χvϕ1 + (1− χv)ϕ2

∣
∣ ϕ1, ϕ2 ∈ Yh

}
= span

(
{φjχv}nj=1, {φj(1− χv)}nj=1

)
.

The iterates generated by the Newton-algorithm can be represented exactly with about con-
stant effort, since the number of inserted nodes varies only mildly from step to step, once
the algorithm begins to converge. Furthermore the number of inserted nodes is bounded, see
[5],[6].
Since the Newton-increment δv may have jumps along the borders of both the new and the
old active and inactive sets, it is advantageous to compute v+ directly, because v+ lies in Y +

h .
To achieve an equation for v+ we add G′

h(v)v on both sides of (3.4) to obtain

(

I +
1

α
χvS∗

hSh

)

v+ = P[a,b]

(

− 1

α
ph(yh(v)))

)

+
1

α
χvS∗

hShv , (3.5)

and reformulate Algorithm 3.1 as

Algorithm 3.4 (Newton Algorithm).

v ∈ U given. Do until convergence

Solve (3.5) for v+, v := v+.

3.3 Computing the Newton-Step

Since v+ defined by (3.5) is known on the active set A(v) := Ω \ I(V ) it remains to compute
v+ on the inactive set. So we rewrite (3.5) in terms of the unknown χvv+ by splitting v+ as

v+ = (1− χv)v+ + χvv+

and obtain

(

I +
1

α
χvS∗

hSh

)

χvv+ = P[a,b]

(

− 1

α
ph(yh(v)))

)

+
1

α
χvS∗

hShv −
(

I +
1

α
χvS∗

hSh

)

(1− χv)v+ .

As (1− χv)v+ is already known, we can restrict the latter equation to the inactive set I(v)
(

χv +
1

α
χvS∗

hShχ
v
)

v+ =
1

α
χvS∗

hz −
1

α
χvS∗

hSh(1− χv)v+ . (3.6)

6



On the left-hand side of (3.6) we have now a continuous, self-adjoint Operator on L2(Iv),
which is positive definite, because it is the restriction of the positive definite Operator
(
I + 1

αχ
vS∗

hShχ
v
)
to L2(Iv).

Hence we are in the position to apply a CG-algorithm to solve (3.6). Moreover under the
assumption of the first iterate lying in

Y +
h

∣
∣
Iv =

{
χvϕ

∣
∣ ϕ ∈ Yh

}
,

as does the solution χvv+, the algorithm does not leave this space because of

(

I +
1

α
χvS∗

hShχ
v

)

Y +
h

∣
∣
Iv ⊂ Y +

h

∣
∣
Iv

and all CG-iterates lie in Y +
h

∣
∣
Iv . These considerations lead to the following

Algorithm 3.5 (Solving (3.5)).

Compute the active and inactive sets Av and Iv.

∀q ∈ Av set

v+(q) = P[a,b]

(

− 1

α
ph(yh(v))(q)

)

.

Solve (

I +
1

α
χvS∗

hSh

)

χvv+ =
1

α
χvS∗

hz −
1

α
χvS∗

hSh(1− χv)v+

for χvv+ by CG-iteration. By choosing a starting point in Y +
h

∣
∣
Iv one ensures that all

iterates lie inside Y +
h

∣
∣
Iv .

v+ = (1− χv)v+ + χvv+.

We note that the use of this procedure in Algorithm 3.4 coincides with the active set strategy
proposed in [3].

3.4 Globalization

Globalization of Algorithm 3.4 may require a damping step of the form

v+λ = v + λ(v+ − v)

with some λ > 0. According to the considerations above, we have

v+λ = (1− λ)v + λ
(

P[a,b]

(

− 1

α
ph(yh(v))

)

− 1

α
χvS∗

hShδv
)

.

Unless λ = 1 the effort of representing v+λ will in general grow with every iteration of the
algorithm, due to the jumps introduced in each step. This problem can be bypassed by
focussing on the adjoint state ph(v) instead of the control v. In fact the function χv, now
referred to as χp, and thus also Equation (3.5) do depend on v only indirectly through the
adjoint p = ph(v) = S∗

h(Shv − z)

(

I +
1

α
χpS∗

hSh

)

v+ = P[a,b]

(

− 1

α
p

)

+
1

α
χp(p + S∗

hz) . (3.7)
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Now in each iteration the next full-step iterate v+ is computed from (3.7). If damping is
necessary, one computes p+λ = ph(v

+
λ ) instead of v+λ . In our (linear) setting the adjoint state

p+λ simply is a convex combination of p = ph(v) and p
+ = ph(v

+)

p+λ = λp+ + (1− λ)p ,

and unlike v+λ the adjoint state p+λ lies in the finite element space Yh. Thus only a set of
additional nodes according to the jumps of the most recent full-step iterate v+ have to be
managed, exactly as in the undamped case.

Algorithm 3.6 (Dampened Newton-Algorithm). v ∈ U given.
Do until convergence

Solve Equation (3.7) for v+.

Compute p+ = ph(yh(v
+)).

Choose the damping-parameter λ. (for example by Armijo line search)

Set p := p+λ = λp+ + (1− λ)p.

Algorithm 3.4 is identical to Algorithm 3.6 without damping (λ = 1).

Remark 3.7. The above algorithm is equivalent to a dampened Newton algorithm applied
to the equation

ph = S∗
hShP[a,b]

(

− 1

α
ph

)

− S∗
hz , u := P[a,b]

(

− 1

α
ph

)

.

3.5 Global Convergence of the undamped Newton Algorithm

Since orthogonal projections are non-expansive, it is not difficult to see that the fixed-point
equation for problem (Ph)

uh = P[a,b]

(

− 1

α
S∗
h(Shuh − z)

)

can be solved by simple fixed-point iteration that converges globally for α > ‖Sh‖2L2(Ω),L2(Ω),

see [5, 6]. A similar global convergence result holds for the undamped Newton Algorithm 3.4

Lemma 3.8. For sufficiently small h > 0, the Newton algorithm 3.4 converges globally if
α > 4

3‖S‖2.

Proof. See [13].

4 Numerical examples

We end this paper by illustrating our theoretical findings by numerical examples. We apply the
globalized Algorithm 3.6 with the following Armijo line search strategy. The merit function

MFh(p) =

∥
∥
∥
∥
p− S∗

hShP[a,b]

(

− 1

α
p

)

+ S∗
hz

∥
∥
∥
∥

2

L2(Ω)

,

is chosen to govern the step size.
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Figure 1: The first four Newton-iterates for Example 4.2 (Dirichlet) with parameter α = 0.001

Algorithm 4.1 (Armijo). Start with λ = 1. If

MFh(p
+
λ ) ≤MFh(p) + 0.7 〈MF ′

h(p), p
+
λ − p〉

︸ ︷︷ ︸

≤0

, (4.1)

accept p+λ . If not, redefine λ := 0.02λ and test (4.1) again.

As stopping criterion we use ‖P[a,b](− 1
αp

+
λ )− ūh‖L2(Ω) < 10−11 in Algorithm 3.6, using the a

posteriori bound for admissible v ∈ Uad

‖v − ūh‖L2(Ω) ≤
1

α
‖ζ‖L2(Ω) , ζ(ω) =







[αv + ph(v)]− if v(ω) = a

[αv + ph(v)]+ if v(ω) = b

αv + ph(v) if a < v(ω) < b

,

presented in [8] and [10]. Clearly, this estimate applies to v = P[a,b](− 1
αp

+
λ ), whereas in general

it does not hold for the iterates v+ generated by Algorithm 3.4 or 3.6 that need not lie in
Uad.
For the first two examples, Algorithm 3.6 reduces to Algorithm 3.4, i.e. the algorithm proceeds
in full Newton steps (λ = 1), thus reflecting the global convergence property from Lemma
3.8. The third example involves a small parameter α = 10−7 and the undampened Algorithm
3.4 would not converge in this case.

Example 4.2 (Dirichlet). We consider problem (P) in (1.1) with controls u ∈ L2(Ω) on the
unit square Ω = (0, 1)2 with a ≡ 0.3 and b ≡ 1. Further we set

z = −4π2α sin(πx) sin(πy) + (S ◦ ı)r , where r = min
(
1,max

(
0.3, 2 sin(πx) sin(πy))

))
.

The choice of parameters implies a unique solution ū = r to the continuous problem (P).

Throughout this section, solutions to the state equation are approximated by continuous,
piecewise linear finite elements on a quasiuniform triangulation Th with maximal edge length
h > 0. The meshes are generated through regular refinement starting from the coarsest mesh.

Problem (Ph) admits a unique solution ūh. In the setting of the present example we have

‖ūh − ū‖L2(Ω) = O(h2)

and
‖ūh − ū‖L∞(Ω) = O(| log(h)| 12h2)

for domains Ω ⊂ R
2, see [5]. Both convergence rates are confirmed in Table 1, where the L2-

and the L∞-errors for Example 4.2 are presented, together with the corresponding experi-
mental orders of convergence

EOCi =
lnERR(hi−1)− lnERR(hi)

ln(hi−1)− ln(hi)
.
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mesh param. h ERR ERR∞ EOC EOC∞ Iterations ‖ζ‖/α
√
2/16 2.5865e-03 1.2370e-02 1.95 1.79 4 2.16e-15

√
2/32 6.5043e-04 3.2484e-03 1.99 1.93 4 2.08e-15

√
2/64 1.6090e-04 8.1167e-04 2.02 2.00 4 2.03e-15

√
2/128 4.0844e-05 2.1056e-04 1.98 1.95 4 1.99e-15

√
2/256 1.0025e-05 5.3806e-05 2.03 1.97 4 1.69e-15

√
2/512 2.5318e-06 1.3486e-05 1.99 2.00 4 1.95e-15

Table 1: L2- and L∞-error development for Example 4.2 (Dirichlet)

Lemma 3.8 ensures global convergence of the undamped Algorithm 3.4 only for α > 1/(3π4) ≃
0.0034, but it is still observed for α = 0.001.
The algorithm is initialized with v0 ≡ 0.3. The resulting number of Newton steps as well as
the value of ‖ζ‖/α for the computed solution are also given in Table 1.
Figure 1 shows the Newton iterates. Active and inactive sets are very well distinguishable,
and jumps along their frontiers can be observed.

Example 4.3 (Neumann). We next consider an elliptic problem with Neumann boundary
conditions

−∆y + y = u in Ω ,

∂ny = 0 on ∂Ω ,

on Ω = (0, 1)2, with a similar discrete setting as in the previous example. It then is clear,
how (P) and (Ph) have to be understood. We set α = 1 and choose

z = −2(2π2 +1)α cos(πx) cos(πy) + (S ◦ ı)r , with r = min
(
1,max

(
− 1, 2 cos(πx) cos(πy)

))

and bounds a ≡ −1 and b ≡ 1. The optimal control to the continuous problem is ū = r.

For α = 1 the undamped iteration still converges globally, although the solution operator has
norm ‖S‖ = 1 as an endomorphism in L2(Ω). The predicted convergence properties and the
stopping criterion are the same as above; Algorithm 3.6 is initialized with v0 ≡ −1. The first
four steps of the iteration are displayed in Figure 2 and the behaviour of the approximation
error between the exact and the semidiscrete solution, as well as the number of iterations and
the final value of ‖ζ‖/α, is shown in Table 2.

mesh param. h ERR ERR∞ EOC EOC∞ Iterations ‖ζ‖/α
√
2/16 3.9866e-03 1.1218e-02 1.94 1.74 3 1.81e-12

√
2/32 1.0025e-03 3.2332e-03 1.99 1.79 3 2.31e-12

√
2/64 2.5188e-04 8.4398e-04 1.99 1.94 3 9.74e-13

√
2/128 6.2936e-05 2.1856e-04 2.00 1.95 3 9.37e-13

√
2/256 1.5740e-05 5.5223e-05 2.00 1.99 3 8.91e-13

√
2/512 3.9346e-6 1.3928e-05 2.00 2.00 3 8.86e-13

Table 2: Development of the error in Example 4.3 (Neumann)
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Figure 2: The first steps of the Newton-algorithm for Example 4.3 (Neumann) with α = 1.

Algorithm 3.4 has also been implemented successfully for parabolic control problems with a
discontinuous Galerkin approximation of the states, as well as for elliptic control problems
with Lavrentiev-regularized state constraints, see [13].
To demonstrate Algorithm 3.6 with damping we again consider Example 4.2, this time with
α = 10−7, again using the same stopping criterion as in the previous examples.
Table 3 shows errors, the number of iterations and the maximal number of Armijo damping
steps performed for different mesh parameters h with given smoothing parameter α = 10−7.
To compare the number of iterations we choose a common initial guess u0 ≡ 1. The number
of iterations appears to be independent of h, while the amount of damping necessary seems
to decrease with falling h.
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