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Abstract

Patient motion during treatment is one of the future challenges in

the field of external beam radiotherapy. In this paper, we address this

problem by considering a time–dependent Boltzmann transport model for

dose calculation and by deriving closed-loop control laws for the treatment

planning problem. We formulate an optimal control problem for the de-

sired dose using boundary and distributed control and derive optimality

conditions. For the construction of the closed-loop control laws we use

an inexact variant of model predictive control called instantaneous con-

trol. We compare numerical results obtained with instantaneous control

to those obtained by optimal open-loop control, and present numerical

simulations in one and two spatial dimensions.

Key words. Radiative transfer; optimal control; first-order optimality;
radiotherapy

1 Introduction

Mathematical methods play an increasing role in medicine, especially in radia-
tion therapy. Several special journal issues have been devoted to cancer modeling
and treatment, cf. [2, 3, 4, 11] among others. While until recently, treatment
planning was done by an experienced physician “by hand”, computer-aided
treatment planning systems based on optimization algorithms currently enter
into clinical practice, cf. [22] and references therein.

The use of ionizing radiation is one of the main tools in the therapy of cancer.
The aim of radiation treatment is to deposit enough energy in cancer cells so
that they are destroyed. On the other hand, healthy tissue around the cancer
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cells should be harmed as little as possible. Furthermore, some regions at risk,
like the spinal chord, should receive almost no radiation at all. Patient motion
during treatment is one of the future challenges in the field of external beam
radiotherapy. For instance, tumors near the lung move due to breathing and it
is hard to ensure that enough does is deposited within the tumor, while at the
same time harming the healthy tissue around the tumor as little as possible.
Techniques addressing this problem have become known as 4D radiotherapy [7],
meaning that time, the fourth dimension, also has to be taken into account.
A further technique, named Image-Guided Radiotherapy (IGRT) is currently
being developed. In this method, the radiation is used to create patient images
during treatment. The mathematical methods developed in this paper are based
on the hypothesis that momentary patient images from IGRT can be used to
adapt the external radiation and thus to improve the dose distribution.

Most dose calculation algorithms in clinical use rely on the Fermi–Eyges
theory of radiation which is insufficient at inhomogenities, e.g. void-like spaces
like the lung. We start with a Boltzmann transport model for the radiation
which accurately describes all physical interactions, and based on this model we
develop a direct optimization approach based on adjoint equations.

Until recently, dose calculation using a Boltzmann transport equation has
not attracted much attention in the medical physics community. This access
is based on deterministic transport equations of radiative transfer. Similar to
Monte Carlo simulations it relies on a rigorous model of the physical interactions
in human tissue that can in principle be solved exactly. Monte Carlo simulations
are widely used, but it has been argued that a grid-based Boltzmann solution
should have the same computational complexity [5]. Electron and combined
photon and electron radiation were studied in the context of inverse therapy
planning cf. [28, 27] and most recently [29]. A consistent model of combined
photon and electron radiation was developed [17] that includes the most im-
portant physical interactions. Furthermore, several neutral particle codes have
been applied to the dose calculation problem, see [16] for a review.

Guided by the hypothesis that momentary patient images from IGRT can
be used to adapt the external radiation we develop an instantneous closed-loop
control concept for external beam radiotherapy which also allows patient mo-
tion during treatment. Instantaneous control is a closed loop control concept
similar to model predictive control [15] and receding horizon control [25], de-
veloped by mechanical engineers and applied mathematicians in the context of
suboptimal flow control, see [10, 8, 23, 24, 20, 9]. In [18] instantaneous control
for the Navier-Stokes system is interpreted as a time-discrete version of a non-
linear closed loop controler associated to the Navier-Stokes system. A rigorous
stability analysis for instantaneous control for the Burgers equation is provided
in [21], and for the Navier-Stokes system in [19]. All mentioned contributions
do not consider contraints on the controls. In the present work we adapt the
concept of instantaneous control to external beam radiotherapy, also allowing
for hard constraints on the controls.
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2 Modeling of Dose Distribution for Radiother-

apy

2.1 Transport Equation

Consider a part of the patient’s body which contains the region of the cancer
cells. We assume that this part of the body can be described as a convex,
open, bounded domain Ω in R3. Furthermore, we assume that Ω has a smooth
boundary with outward normal vector n. The direction, into which the electron
is moving is given by ω ∈ S2, where S2 is the unit sphere in three dimensions.
Moreover, let

∂Ω− := {(x, ω) ∈ Ω × S2 : n(x) · ω < 0}

∂Ω+ := {(x, ω) ∈ Ω × S2 : n(x) · ω > 0}.

We consider particle transport modeled by the time–dependent Boltzmann equa-
tion for the particle density ψ(x, t, ω) as

1

c
∂tψ(x, t, ω) + ω · ∇xψ(x, t, ω) + σt(x, t)ψ(x, t, ω)

= σs(x, t)

∫

S2

s(x, t, ω · ω′)ψ(x, t, ω′)dω′ + q1(x, t, w)
(1)

with
ψ(x, t, ω) = q2(x, t, ω) on [0, T ] × ∂Ω−.

For the sake of simplicity, we neglect the energy dependence of ψ. Here,
ψ(x, t, ω) cos θdAdω is the number of electrons that pass through an area dA
at point x into a solid angle dω around ω at time t. The angle θ is the angle
between ω and dA. The total cross section σt(x, t) is the sum of absorption
cross section σa(x, t) and total scattering cross section σs(x, t). The scattering
phase function is normalized,

2π

∫ 1

−1

s(x, t, µ)dµ = 1. (2)

All quantities describing the medium depend on time since we want to model
a patient’s body in motion. From the physical interpretation, we have that
ψ, q, σt, σs and s are non-negative quantities. The detailed interactions of
electrons with atoms give rise to complicated explicit formulas for the scattering
coefficient, see e.g. [17]. Because of this, many studies use the simplified Henyey-
Greenstein scattering kernel [1],

sHG(x, µ) =
1 − g2

4π(1 + g2 − 2gµ)3/2
. (3)

The parameter g, which can depend on x, is the average cosine of the scattering
angle and is a measure for the anisotropy of the scattering. In the strongly
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forward peaked range (g > 0.8), other scattering kernels have been proposed,
which are in better agreement with Mie scattering theory [1].

In the equation above two external controls q1(x, t) and q2(x, t) appear and in
principle model two types of radiation therapy. In the context of brachytherapy
the source term q1 corresponds to the sealed dose distribution in the patient’s
body and we have q2 ≡ 0. For external beam radiotherapy, we have no dis-
tributed source q1 ≡ 0, but a boundary control q2. In both applications, we
have qi ≥ 0.

2.2 Treatment Optimization

A number of functionals and methods have been devised to describe the effect of
radiation on biological tissue, cf. the extensive lists of references in the reviews
[6] and [26]. It is clear that the amount of destroyed cells in a small volume, be
they cancer or healthy cells, is not directly proportional to the dose

D(x, t) =

∫

S2

ψ(x, t, ω)dω (4)

deposited in that volume. However, no single accepted type of model has
emerged yet. Moreover, current biological models require input parameters
which are not known exactly [26]. This is why the authors of [26] opted not to
investigate these models but rather to focus on some general mathematical cost
functionals. A quadratic objective function together with nonlinear constraints
was identified as the most versatile model.

We try to find a source configuration q1 or boundary values q2 such that
the quadratic deviation from the prescribed dose D̄ and a weighting function
α1 = α1(x, t)

J1(D) =

∫ T

0

∫

Ω

α1

2
(D − D̄)2dxdt (5)

is minimal under the constraint that the transfer equation (1) is fulfilled. We
also consider the problem

J2(ψ) =

∫ T

0

∫

Ω

∫

S2

α2

2
(ψ − ψ̄)2dxtω (6)

Here, we are interested in the case of a moving patient and the reactions
of the control to that motion. Thus the desired dose distribution D̄ (which is
high in the tumor and low outside), the control qi and the penalty parameters
explicitly depend on time.

Furthermore, we include a penalty term proportional to the applied exter-
nal source in the minimization process to prevent trivial solutions. In case of
distributed control we regularize Ji by

JB :=

∫ T

0

∫

Ω

αq21dxdt (7)
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and for boundary control by

JT :=

∫ T

0

∫

∂Ω−

α(n · ω)q22dxdt. (8)

2.3 Theoretical Results

For the mathematical analysis we introduce the spaces

D(A) := {ψ ∈ L2(Ω × S2) : ∇xψ ∈ L2(Ω × S2)}, (9a)

D̃(A) := {ψ ∈ D(A) : ψ = 0 on ∂Ω−}, (9b)

D̃(A)
∗

:= {λ ∈ D(A) : λ = 0 on ∂Ω+}, (9c)

L2
ad := {q ∈ L2(Ω × S2) : q ≥ 0}, L2 := {q ∈ L2(Ω × S2)} (9d)

and we assume that the scattering and absorption coefficients fulfill

s, σt, σs ≥ 0, σt, σs ∈ L∞,

∫ 1

−1

s(x, t, µ)dµ ≤ c0, (10a)

σt(x, t) − σs(x, t)

∫ 1

−1

s(x, t, µ)dµ ≥ c1 > 0. (10b)

Both conditions are satisfied for physically reasonable media. The assumptions
(10) guarantee that the following operators are well–defined, c.f. [12].

A : D(A) → L2, Aψ := −ω∇xψ
Σ : L2 → L2, Σψ := σtψ
K : L2 → L2, Kψ := σs

∫
S2 s(x, ωω

′)ψdω′

T : D(A) → L2, Tψ := −Aψ + Σψ − Kψ

(12)

where q+ := max(q, 0). Furthermore, we recall the following result from ([13])
for the case of distributed control.

Lemma 1 Under assumption (10) the previously defined operators have the
following properties.

• The operators Σ,K are linear and bounded operators on L2. The operator
T fulfills (ψ,Tψ)L2 ≥ c1‖ψ‖2

L2. The operator T∗ := A+Σ−K : D(A) →
L2 satisfies the estimate (ψ,T∗ψ)L2 ≥ c1‖ψ‖2

L2.

• The operator E : L2
ad → D̃(A) defined by

Eq1 = ψ :⇔ Tψ = q1, ψ = 0 on ∂Ω−

is a well–defined operator. E as operator from L2 → L2 is a linear and

bounded operator. There exists an operator E∗(r) = λ : L2 → D̃(A)
∗

such
that Aλ + Σλ − Kλ = r and λ = 0 on ∂Ω+. E∗ is also a linear and
bounded operator on L2 and E∗ is adjoint to E.
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• For any ψ̄ ∈ L2(Ω), 0 < α, 0 ≤ α1 ∈ L∞(Ω), the following problem admits
a unique solution q1 ∈ L2

ad(Ω), q2 ≡ 0 :

∫

Ω

α1

(∫

S2

ψdω − ψ̄

)2

+ αq21dx→ min sbj. to Tψ = q1, ψ = 0 on ∂Ω−

(13)
satisfying

Tψ = q1, T∗λ =

∫

S2

ψdω−ψ̄, q1 = (q1−

∫

S2

λdω−αq1)
+, ψ, λ = 0 on ∂Ω∓

(14)

• For any ψ̄ ∈ L2, 0 < α, 0 ≤ α1 ∈ L∞(Ω), the following problem admits a
unique solution q1 ∈ L2

ad, q2 ≡ 0 :

∫

S2×Ω

α1

(
ψ − ψ̄

)2
+ αq21dxdω → min sbj. to Tψ = q1, ψ = 0 on ∂Ω−

(15)
satisfying

Tψ = q1, T∗λ = α1(ψ− ψ̄), q1 = (q1−λ−αq1)
+, ψ, λ = 0 on ∂Ω∓ (16)

Clearly, the previous Lemma yields existence of an optimal control in the
case of time–independent distributed control. For results on boundary control,
we refer to [29]. To the best of our knowledge there are currently no results on
time–dependent control problems available.

3 Control Laws

3.1 Distributed Control

Offline computed optimal time-dependent dose distributions do not offer the
ideal solution to treatment planing with external radiation due to the motion
of the patient’s body since this would require a priori knowledge of this motion.
This information is typically not available. Therefore, we propose a closed-loop
control approach yielding efficiently computable suboptimal controls, see the
computational results below.

The outline of this section is as follows. We first derive the control laws for
distributed control in the case of functional J2 and ψ̄ ≡ 0. Then, we extend the
results to a general ψ̄ and finally to the cost functional J1. We then proceed
with a control law for boundary control.

The derivation of the control law follows [19]. We –at first– consider the case
of distributed control. An implicit semi–discretization of the radiative transfer
equation with control q1 := Q applied at time k and q2 ≡ 0 reads

−∆tAψk +

(
1

c
+ ∆tΣ

)
ψk − ∆tKψk =

1

c
ψk−1 +Q. (17)

6



Model predictive control on the time horizon [t, t + dt] now uses the optimal
solution Q∗ obtained by minimizing an appropritate cost functional (see (20))
which is formed using currently available observations of the system. The op-
timal control then can be expressed in terms the available observations, and
thus in terms of the state itself. This yields a closed-loop control law. Here we
even proceed in a simpler way by using a suboptimal control obtained by apply-
ing only one steepest descent step to the solution of the optimization problem.
This resulting closed-loop control scheme is called instantaneous control and is
developed in [18, 19]. For its construction in the present setting we define the
operators

A := ∆tA, S := (
1

c
+ ∆tΣ), K := ∆tK, (18)

T := −A + S − K, E(Q) = ψ ⇔ T ψ = Q,ψ = 0 on ∂Ω− (19)

and obtain the following Lemma.

Lemma 2 Let assumption (10) hold true.
Then, the operators S,K : L2 → L2 are linear and bounded operators. The

operator T satisfies (ψ, T ψ) ≥ (1
c +c1∆t)‖ψ‖2

L2 . The operator T ∗ := A+S−K :

D(A) → L2 satisfies the same estimate. The operator E : L2
ad → D̃(A) is

well-defined. E is a linear and bounded operator on L2. There exists an adjoint

operator E∗ on L2 and E∗(r) = λ : L2 → D̃(A)
∗

⊂ L2 is a well–defined operator,

such that for all λ ∈ D̃(A)
∗

: E∗T λ = λ. Finally, for any ψ̄k−1, ψk−1 ∈ L2, α > 0
the optimal control problem

∫

S2×Ω

(ψk−ψ̄k−1)2+αQ2dxdω → min sbj. to T ψ =
1

c
ψk−1+Q, ψ = 0 on ∂Ω−

(20)

admits a unique solution Q ∈ L2 and ψ ∈ D̃(A) and the necessary first–order
optimality system reads

T ψ =
1

c
ψk−1 +Q, ψ = 0 on ∂Ω− (21a)

T ∗λ = (ψ − ψ̄k−1), ψ = 0 on ∂Ω+ (21b)

Q = (Q− λ− αQ)+ (21c)

If we perform a one–step projected gradient algorithm with step–width ρ we
obtain

Qn+1 = (Qn − ρλ− ραQn)+

=
(
(1 − ρα)Qn − ρE∗(ψ − ψ̄k−1)

)+

=

(
(1 − ρα)Qn − ρE∗(

1

c
Eψk−1 + EQn − ψ̄k−1)

)+
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In order to derive a control law we assume for a moment ψ̄ ≡ 0. Then, we
obtain a control law by setting Qn ≡ 0 and (17) yields for Q ≡ Qn+1 :

−Aψk + Sψk −Kψk =
1

c
ψk−1 +

(
−
ρ

c
E∗Eψk−1

)+

, (22)

i.e., a semi–implicit discretization of

1

c
∂tψ − Aψ + Σψ = Kψ +

(
−

ρ

∆tc
E∗Eψ

)+

(23)

We emphasize that this discretization is not consistent in time, due to the
appearance of the factor ∆t in the denomenator of (23). However, we are
not interested in consistent approximations but in stabilizing nonlinear control

operators. In this sense the operator
(
− ρ

∆tcE
∗Eψ

)+
has to be understood. The

factor ρ
∆tc here may be considered as one constant which defines the stabilizing

properties of the operator, compare the discussion related to Fig. 1. Let us
emphasize that controller is defined through a nonlinear operator.

We prove now the decay of the continuous equation to ψ̄ ≡ 0 under the
assumption

ψ ≥ 0 =⇒ Eψ ≥ 0 and E∗ψ ≥ 0 (24)

Let Dt
± := {(x, ω) ∈ Ω × S2 : ψ(x, ω, t) ≥ (≤)0} and we assume that ∂Dt

± is
sufficiently regular.

Fix t > 0 and test (23) by ψ. Integrating on Dt
± yields under the assumption

(24):

1

2
∂t‖ψ‖

2
L2 + (ψ,Tψ)L2 = −

ρ

∆tc

∫

Dt

−

ψE∗Eψdxdω.

IfDt
± is sufficiently regular for all t, we have

∫
Dt

−

ψE∗Eψdxdω =
∫
Dt

−

EψEψdxdω

since ψ = 0 on ∂Dt
−. Hence, for all t > 0 :

1

2
∂t‖ψ‖

2
L2 ≤ −

(
c1‖ψ‖

2
L2 +

ρ

∆tc
‖Eψ‖2

L2(Dt

−

)

)

If additionally E is a coercive operator with constant c2 we obtain the expo-
nential decay

‖ψ(t)‖2
L2 ≤ ‖ψ(0)‖2

L2 exp
(
−2c1t− 2c2

ρ

∆tc
t
)
. (25)

If E is not coercive, then let

c2 := min
φ:‖φ‖

L2=1

‖Eφ‖2
L2(Dt

−

), (26)

and we obtain again (25). Note that in case of Dt
− = ∅ or c2 ≡ 0 we still obtain

decay at rate c1. This is the uncontrolled case. We summarize the previous
calculations.
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Lemma 3 Let ψ̄ ≡ 0. Under assumption (10) and (24) and if the set Dt
± is

sufficiently regular, any solution ψ(t) to the controlled time–dependent radiative
transfer equation (22) exponentially decays to ψ̄ for t→ ∞ at rate 2c1 +2c2

ρ
∆tc

where c2 is given by (26).

The result extends to the case of a general ψ̄ ∈ C1(R+, D(A)) as follows.
The control law (22) is replaced by

1

c
∂tψ + Tψ =

(
−

ρ

∆tc
E∗E(ψ − ψ̄)

)+

+
1

c
∂tψ̄ + Tψ̄, ψ = 0 on ∂Ω−, (27)

and we recover the previous results by setting ψ̃ := ψ − ψ̄. The decay is given
by

‖ψ(t) − ψ̄(t)‖2
L2 ≤ ‖ψ(0) − ψ̄(0)‖2

L2 exp(−2c1t− 2c2
ρ

∆tc
t). (28)

This yields the exponential decay also in the case ψ̄ 6= 0. The result offers the
following interpretation: If ψ > ψ̄, then the only control is 1

c∂t + T yielding a
decay towards ψ̄. If ψ < ψ̄, then the additional feedback − ρ

∆tcE
∗E(ψ − ψ̄) > 0

is active.
The previous calculations can also be applied for the cost functional J1 given

by (5). In this case the problem at time–step k is given by

min

∫

Ω

(∫

S2

ψdω′

)2

− ψ̄2dx+ αQ2dx subject to Tψ = Q

and similarly as before we obtain the control law

1

c
∂tψ + Tψ =

(
−ρ

c∆t

∫

S2

E∗

(∫

S2

E(ψ − ψ̄)dω′

)
dω′′

)+

+
1

c
∂tψ̄ + Tψ̄ (29)

We note that equations (27) and (29) are of mainly theoretical value. They
require to apply a source term which is anisotropic. Typically, this is out of
scope for brachytherapy applications.

3.2 Boundary Control

Finally, we consider the case of teletherapy, where anisotropic boundary values
can be prescribed. The procedure is similar to the previous calculations. We
start with the semi–implicit discretization of (1) with q1 ≡ 0 given by

−∆tAψk +

(
1

c
+ ∆tΣ

)
ψk − ∆tKψk =

1

c
ψk−1, ψk = Q on ∂Ω− (30)

We denote its solution operator by E(Q,ψk−1) = ψk defined by T (ψk) =
1
cψ

k−1, ψk = Q. The instantaneous problem reads then

min
1

2

∫

Ω

(∫

S2

ψk − ψ̄k−1dω

)2

dx+
α

2

∫

∂Ω

(∫

Γx
−

Qn(x)ωdω

)2

dSx. (31)
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¿From the optimality system

T (ψk) =
1

c
ψk−1, ψk = Q on ∂Ω− (32a)

T ∗(λ) =

∫
ψk − ψ̄k−1dω, λ = 0 on ∂Ω+ (32b)

Q =

(
Q+ λ− α

∫

Ω−

n(x)ωQdω

)+

on ∂Ω− (32c)

with the operators T ∗ := ∆tA + 1
c + ∆tΣ − ∆tK and the solution operator

E∗(
∫
ψk − ψ̄k−1) = λ and λ = 0 on ∂Ω+, we obtain by a single gradient step

with step–length ρ > 0, the control Q as

Q = ρR

(
E∗

∫

S2

E
(
0, ψk−1/c

)
− ψ̄k−1dω

)+

(33)

where R is the restriction to the boundary ∂Ω−. This yields analogously as
before the following control law for the boundary control of time–dependent
radiative therapy

1

c
∂tψ + T (ψ) = 0, ψ = ρR

(
E∗

(∫

S2

E(0, ψ/c) − ψ̄dω

))+

on ∂Ω− (34)

4 Numerical Results

All numerical results are computed on an AMD 64x machine using MATLAB.

4.1 Distributed Control

The purpose of this example is to illustrate the theoretically found exponential
decay. The results are for one–space dimension. The equations of the optimality
system are solved using the PN -discretization, cf. [13] for a detailed derivation.
The PN approximation assumes a decomposition of the intensity ψ into a finite
number of Fourier modes ψ(l), l = 0, . . . , N

ψ(x, t, µ) =

N∑

l=0

ψ(l)(x, t)
2l + 1

2
Pl(µ). (35)

We apply the PN approximation to the variables ψ and λ for the time–dependent
optimization problem and cost functional (6) and (7). The optimality system is
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obtained for l = 0, . . . , N as

1

c
∂tψ(l) + ∂x

(
l+ 1

2l+ 1
ψ(l) +

l

2l+ 1
ψ(l)

)
+ (σt − σs)ψ(l) = 2q

(l)
1 δl0 (36)

1

c
∂tλ(l) − ∂x

(
l + 1

2l + 1
λ(l) +

l

2l+ 1
λ(l)

)
+ (σt − σs)λ(l) = 2α1ψ(0)δl0 (37)

q
(l)
1 =

(
q
(l)
1 − λ(0) − α2q

(l)
1

)+

(38)

with ψ(−1) = λ(−1) = ψ(N+1) = λ(N+1) = 0. Similarly to the continuous

approach we define the operators EPN = EPN
+ and EPN∗ = EPN

− where EPN
±

is given by

EPN
±(ψk−1

(l) ) = ψk(l) ⇔
1

c∆t
ψk(l) ± ∂x

(
l + 1

2l + 1
ψk(l) +

l

2l+ 1
ψk(l)

)
+ (σt − σs)ψ

k
(l) = 2ψk−1

(l) δl0

The PN approximation to the control law for a desired state ψ(l), a stepwidth
ρ and a time–grid ∆t, is hence given by

1

c
∂tψ(l) + ∂x

(
l + 1

2l + 1
ψ(l) +

l

2l+ 1
ψ(l)

)
+ (σt − σs)ψ(l) =

2

((
−

ρ

∆tc
EPN

∗EPN (ψ(l) − ψ(l))
)+

δl0 +
1

c
∂tψ(l) + Tψ(l)

)
.

First we consider an academic example in order to illustrate the assertions
of Lemma 3. We compute a desired state ψ̄(x, t) :=

(
ψ̄(l)(x, t)

)
as solution to

Tψ̄ =

{
100, |x− t| ≤ 5 dx+ 1

5

0, otherwise.

using the PN -approximation on a space–time grid of (x, t) ∈ [0, 1] × [0, 1]. The
grid size is dx = 1

M+1 , dt = 1
N+1 . We prescribe zero boundary values. We set

σt = 13 and σs
∫ 1

−1 sdµ = 2. We then compute ψ(l)(x, t) as obtained from the

control law starting with ψ0 ≡ 0. The number of variables is (M +1)× (N +1).
We compute the L2 and the L∞ norm of ψ − ψ̄ for each fixed time t. We
expect an exponential decay over time of the L2-norm of this difference. We
give results on the rate of decay for the uncontrolled case ρ/∆t = 0 and the
controlled case ρ/∆t > 0. We give results for varying parameters ρ/∆t in figure
1 and study the dependence of the rate of decay on the discretization in space
dx in figure 2 and angular variable N in figure 3. We observe in all cases the
expected exponential decay and as expected we note that the controlled cases
are superior to the uncontrolled case. Moreover, we observe that the finer the
discretization is taken with respect to the angular and spatial variables, the
better the controller performs.
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Figure 1: L2norm and L∞-norm decay over time for varying ρ/∆t in a log–plot.
Dependence on ρ/∆t for c∆t = 1, dx = 10−2 and PN , N = 5.
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Figure 2: L2 and L∞−norm decay for varying discretization of the spatial
interval dx in a log-plot. Dependence on the spatial discretization dx ∈
{10−1, 10−2, 10−3} for PN , N = 5, c∆t = 1 and ρ/∆t ∈ {0, 10−4}.
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ρ/∆t ∈ {0, 10−4}.
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4.2 Boundary Control

We apply the optimize–then–discretize approach to the control law. In our
2D simulations, we use the time-dependent Simplified P1 (SP1) or diffusion
approximation. The unknown is the energy

ψ(0) =

∫

S2

ψdω. (39)

The SP1 approximation for the time–dependent radiative transfer equation [14]
reads for isotropic scattering

1

c
∂tψ(0) −∇

1

3σt
∇ψ(0) + (σt − σs)ψ(0) = 0. (40)

The boundary conditions are

n · ∇ψ(0) =
3

2
σt

(
l1(q2) − ψ(0)

)
, (41)

where

l1(q2) = −4

∫

∂Ω−

nωq2dω.

Appropriate initial conditions have to be prescribed. From the time–dependent
SP1–approximation and the cost functional (5) and (8), we obtain the optimality
system using SP1 asymptotic as

1

c
∂tλ(0) + ∇

1

3σt
∇λ(0) − (σt − σs)λ(0) = −4πα(ψ(0) − ¯ψ(0)) (42)

with boundary condition

n · ∇λ(0) = −
3

2
σtλ(0) on ∂Ω+, (43)

terminal condition λ(0) = 0 at time t = T and gradient equation

λ(0) −
2

3σt
n · ∇λ(0) = −2πα1l1(q2). (44)

To state the control law for the SP1 approximation we introduce the opera-
tors ESP and ESP

∗ as

ESP (q2, ψ
k−1
(0) ) = ψk(0) ⇔

−∇
1

3σt
∇ψk(0) +

(
1

c∆t
+ σt − σs

)
ψk(0) = ψk−1

(0) ,

n∇ψ(0) =
3

2
σt

(
l1(q2) − ψ(0)

)
on ∂Ω−

13



and similarly

ESP
∗(ψk−1

(0) ) = λk(0) ⇔

−∇
1

3σt
∇λk(0) + (

1

c∆t
+ σt − σs)λ

k
(0) = 4πψk−1

(0) ,

nλk(0) +
3

2
σtλ

k
(0) = 0 on ∂Ω+.

For a stepwidth ρ, a time–grid of width ∆t and a desired dose of ¯ψ(0) we then
obtain the SP1-approximation to the control law as

1

c
∂tψ(0) −∇

1

3σt
∇ψ(0) + (σt − σs)ψ(0) = 0,

n · ∇ψ(0) =
3

2
σt

(
l1(Q) − ψ(0)

)
,

Q = ρR

(
ESP

∗

(∫

S2

ESP

(
0,
ψ(0)

c∆t

)
− ¯ψ(0)dω

))

We consider the example of a moving tumor. We compare the solution to the
full time–dependent optimal control problem and the predictions of the control
law. We consider the more realistic functional given by (5) and (8). When
solving the optimal control problem we set α2 = 0 (no regularization for the
boundary control) and α1 = 1 and hence the optimal control problem reads

min
q2,ψ

J1(

∫

S2

ψdω) subject to (1), ψ(x, t, ω) = q2

Its solution (q∗2 , ψ
∗) is then compared over time with the solution ψ∗∗ to (34)

and q∗∗ := ρR
(
E∗

(∫
S2 E(0, ψ∗∗/c) − ψ̄∗∗dω

))+
. When solving for the control

law we set ρ ≡ 1. All computations are done on a 50 × 50 grid in the domain
[0, 1]2 and with 100 time–steps. The realistic parameters [1] σs = 0.05 and
σt = 0.5 are used. Time is scaled such that c = 1.

In the first example we move the desired state along the boundary of the
domain, i.e., ψ̄(x, y, t) = δ( tT −x) δ(y− 1

10 ) A reasonable control then acts. This
case is used to verify that the control law also yields a control moving in time
along the same boundary as the desired state. This is observed for both the
solution to the optimal control problem (see figure 5) as well as in the solution to
the control law (see figure 4). As expected both controls and the corresponding
states show the same qualitative behavior.

In the second example we move the desired state along the diagonal x = y
in the domain and solve again the optimal control problem and the control law.
We have ψ̄(x, y, t) = δ(x−t/T )δ(y−t/T ). In both cases the optimal control acts
on both corners of the domain for a certain time. Their corresponding states
are given in figure 6.

In both examples one clearly sees that instantaneous control yields much
more localised dose distributions than open-loop optimal control. From a prac-
tical point of view this is a clear indication to apply the developed close-loop
control concept instead of optimal open loop control.
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Figure 4: Control Law. The obtained control follows the desired state as its
moves along the boundary of the domain. The corresponding dose distribution
is depicted to the right.

5 Summary

We study a time–dependent optimal treatment planning problem. We use in-
stantaneous control to derive closed-loop control laws for the control of the dose
distribution which allow patient movement during treatment, without using a
priori information of the movement of the patient. We consider distributed
control as well as the more realistic setting of boundary control with control
constraints. We present closed-loop control laws based on PN− and SP1− ap-
proximations for numerical treatment and present results including the case of a
2D− boundary control. We compare the performance of the closed-loop control
laws with that of an optimal open loop control law. As a result we conclude that
closed-loop control allows movement during treatment, and yields much more
localised dose distributions than obtained with the optimal open loop control
procedure.
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