Prof. Dr. M. Hinze WS 2007/2008

Übungen zur Vorlesung Funktionalanalysis

Blatt 2

Abgabetermin: 12.11.2007 vor der Übung

Aufgabe 1: (4 Punkte) Bezeichne

$$C^1([a,b]) := \{ f : (a,b) \to \mathbb{R}, f, f' \text{ stetig auf } [a,b] \text{ fortsetzbar} \}.$$

Weisen Sie nach, dass $(C^1([a,b]), \| ullet \|_{\infty})$ nicht vollständig ist.

Aufgabe 2: (4 Punkte) (Lineare Projektoren). Sei X HR und $A \subset X$ abgeschlossen und linearer Teilraum, d.h.

$$x, y \in A, \alpha, \beta \in \mathbb{K} \iff \alpha x + \beta y \in A.$$

Zeigen Sie, dass dann die orthogonale Projektion $P:X\to A$ eine lineare Abb. darstellt und Px charakterisiert wird durch

$$(x - Px, a - Px)_X = 0 \quad \forall a \in A, \text{ d.h. } x - Px \text{ steht senkrecht auf } A.$$

Aufgabe 3: (6 (2+2+2) Punkte) (Kompakte Mengen in $l^2(\mathbb{R})$). Welche der folgenden Mengen sind beschränkt, welche kompakt?

- a) $E_1 := \{x \in l^2(\mathbb{R}); |x_i| \leq \frac{1}{i} \text{ für alle } i \in \mathbb{N} \}$,
- b) $E_2:=\{x\in l^2(\mathbb{R}); |x_i|\leq rac{1}{\sqrt{i}} ext{ für alle } i\in \mathbb{N}\}$,
- c) $E_2 := \{x \in l^2(\mathbb{R}); \sum_{i=1}^{\infty} x_i^2 \le 1\}.$

Aufgabe 4: (10 (4+6) Punkte) (Hölderstetige Funktionen, Vollständigkeit und Kompaktheit). Sei $\Omega \subset \mathbb{R}^n$ offen und beschränkt, $(Y, \| \bullet \|)$ Banachraum. Für $f: \bar{\Omega} \to Y$ und $0 < \alpha \leq 1$ heißt

$$\mathsf{h\ddot{o}l}_{\alpha}(f,\bar{\Omega}) := \sup \left\{ \frac{\|f(x) - f(y)\|}{|x - y|^{\alpha}}; x, y \in \bar{\Omega}, x \neq y \right\}$$

Hölder Konstante von f auf $\bar{\Omega}$ zum Exponenten α . Für $\alpha=1$ wird $\mathrm{lip}(f,\bar{\Omega}):=\mathrm{h\"ol}_1(f,\bar{\Omega})$ Lipschitz Konstante von f auf $\bar{\Omega}$ genannt.

a) Weisen Sie nach, dass für $m \in \mathbb{N}$

$$C^{m,\alpha}(\bar{\Omega},Y):=\{f\in C^m(\bar{\Omega},Y); \mathsf{h\"ol}_\alpha(\partial^s f,\bar{\Omega})<\infty \text{ f\"ur } |s|=m\}$$

zusammen mit der Norm

$$\|f\|_{C^{m,\alpha}(\bar{\Omega},Y)}:=\sum_{|s|\leq m}\|\partial^s f\|_\infty+\sum_{|s|=m}\mathrm{h\"ol}_\alpha(\partial^s f,\bar{\Omega})$$

einen Banachraum definiert, vergl. Aufgabe 1.4b.

b) Sei $Y=\mathbb{R}^l$ und $A\subset C^{0,\alpha}(\bar\Omega,Y)$ beschränkt. Weisen Sie nach, dass A präkompakt ist. Tipp: Satz von Arzela–Ascoli.