
TOPOLOGICAL DYNAMICS

STEFAN GESCHKE

1. Introduction

Definition 1.1. A topological semi-group is a topological space S with

an associative continuous binary operation ·. A topological semi-group

(S, ·) is a topological group if (S, ·) is a group and taking inverses is

continuous.

Now let S be a topological semi-group and X a topological space.

Given a map ϕ : S×X → X, we write sx for ϕ(s, x). ϕ is a continuous

semi-group action if it is continuous and for all s, t ∈ S we have s(tx) =

(st)x.

A dynamical system is a topological semi-group S together with a

compact space X and a continuous semi-group action of S on X. X

is the phase space of the dynamical system. Sometimes we say that X

together with the S-action is an S-flow.

Exercise 1.2. Let S be a topological semi-group acting continuously

on a compact space X. Show that for all s ∈ S the map fs : X →
X;x 7→ sx is continuous.

Exercise 1.3. Let G be a topological group acting continuously on a

compact space X. Show that for all g ∈ G the map fg : X → X;x 7→
gx is a homeomorphism.

Example 1.4. Let X be a compact space and let f : X → X be a

continuous map. We define a semi-group action of (N,+) on X by

letting nx = fn(x) for each n ∈ N. This action is continuous with

respect to the discrete topology on N.

If f : X → X is a homeomorphism, we can define nx = fn(x) for all

nZ and obtain a group action of (Z,+) on X. This action is continuous

with respect to the discrete topology on Z.
1
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2. The Cantor space

Definition 2.1. The middle thirds Cantor set is the subspace of the

unit interval [0, 1] that is defined as follows: Let I0 = [0, 1]. Suppose

we have define In ⊆ [0, 1] and In is the union of 2n disjoint closed

intervals I in, 1 ≤ i ≤ 2n. Let In+1 be obtained by removing from each

of the intervals I in the open middle third. Now In+1 is the union of 2n+1

disjoint closed intervals. The Cantor set is the intersection
⋂
n∈N In.

Recall that 2 = {0, 1}. 2 carries the discrete topology. The Cantor

cube is the space 2N with the product topology. The Cantor cube is a

compact metric space with respect to the metric defined as follows: for

x, y ∈ 2N let

d(x, y) =

0, if x = y

2−n, if n ∈ N is minimal with x(n) 6= y(n)
.

Exercise 2.2. Show that the Cantor cube is indeed a complete metric

space with respect to the metric given in the previous definition. Show

that in fact, with this metric the Cantor cube is ultra-metric, that is,

it satisfies the following stronger form of the triangle inequality:

∀x, y, z(d(x, z) ≤ max(d(x, y), d(y, z))

Definition 2.3. A topological space X is zero-dimensional iff every

open set is the union of sets that are clopen, i.e., both open and closed.

A point x ∈ X is isolated if the set {x} is open. D ⊆ X is dense if it

intersects every non-empty open subset of X. X is separable if it has

a countable dense set.

Lemma 2.4. Every compact metric space is separable.

Proof. Let X be a compact metric space. For each n ∈ N the open

balls of radius 2−n cover X. Since X is compact, finitely many open

2−n-balls actually cover X. Let Dn be a finite subset of X such that

the open 2−n-balls centered at the elements of Fn cover X. Now for

every x ∈ X there is y ∈ Dn such that the distance of x in y is smaller

than 2−n.

Let D =
⋃
n∈NDn. Now for all ε > 0 and all x ∈ X there is y ∈ D

such that the distance of x and y is less than ε. This shows that D is

dense in X. Clearly, D is countable. �
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Definition 2.5. Let Σ be a finite set, the alphabet. Σ∗ is the set

of all finite sequence of element of Σ, the set of words over Σ. Note

that there is a word of length 0, the empty word λ. Given two words

v, w ∈ Σ∗, by v_w we denote the concatenation of the two words,

i.e., the word v followed by the word w. (Σ∗,_, λ) is a monoid, the

free monoid over the set Σ. Formally, a word v ∈ Σ is a function

f : {0, . . . , n − 1} → Σ, where n is the length of v. We follow the set

theoretic definition of the natural numbers, where the natural number

n is just the set {0, . . . , n−1}. With this convention a word v of length

n over Σ is just a function from n to Σ. We denote the set of functions

from n to Σ, i.e., the set of words of length n over the alphabet Σ by

Σn. With this notation we have Σ∗ =
⋃
n∈N Σn.

Lemma 2.6. The Cantor cube is compact, zero-dimensional, and has

no isolated points.

Proof. We first study the topology on 2N. Given a finite binary se-

quence s ∈ 2n, by [s] we denote the set

{x ∈ 2N : x � n = s},

i.e., the set of all infinite binary sequences that extend s.

A quick computation shows that [s] is precisely the closed 2−n ball

centered at any of its elements. It is also the open 1001
1000
·2−n-ball centered

at any of its elements. Hence [s] is both open and closed. It also follows

that a set O ⊆ 2N is open if and only if it is a union of sets of the form

[s]. Therefore, 2N is zero-dimensional. Also, the sets [s] are infinite.

Hence, 2N has no isolated points.

Tychonov’s theorem states that products of compact spaces are com-

pact. The topology on 2N is in fact just the product topology coming

from the discrete topology on 2. Since 2 is compact, so is 2N.

Let us give a direct proof of the compactness of the Cantor cube.

Suppose O is a familiy of open subsets of 2N such that 2N =
⋃
O. Let

S = {[s] : s is a finite binary sequence

and there is O ∈ O such that [s] ⊆ O}.

Since every open set is the union of sets of the form [s],⋃
S =

⋃
O = 2N.
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Clearly, if 2N is the union of a finite subfamily of S, then it is the union

of a finite subfamily of O. Hence we only have to show that 2N is

covered by finitely many elements of S.

We assume that this is not the case, i.e., no finitely many elements

of S cover all of 2N. First we drop the square brackets. Let

S = {s ∈ 2∗ : [s] ∈ S}.

Consider the collection T of all finite binary sequences that have no

initial segment in S. Clearly, T is closed under taking initial segments.

Also, T is infinite. If not, the elements of T have a maximal length n.

There are 2n+1 binary sequences of length n + 1. All of them have an

initial segment in S. Hence, there is a finite subset S0 of S such that

every binary sequence of length at least 2n+1 has an initial segment in

S0. Now the finitely many sets [s], s ∈ S0, cover 2N, contradicting our

assumption. It follows that T is indeed infinite.

Recursively, we choose a sequence (ti)i∈N of elements of T such that

for all i ∈ N the following hold:

(1) ti is of length i

(2) The set of all extensions of ti in T is infinite.

For t0 we have to choose the empty sequence. Suppose we have

chosen ti. Since ti has infinitely many extensions in T , ti
_0 or ti

_1

have infinitely many extensions in T . Let ti+1 be either ti
_0 or ti

_1,

but in such a way that ti+1 has infinitely many extensions in T .

Finally, let x =
⋃
i∈N ti. This infinite binary sequence has no initial

segment in S and hence is not an element of
⋃
S. This contradicts our

assumptions on S. �

Theorem 2.7. Every zero-dimensional compact metric space without

isolated points is homeomorphic to the Cantor cube 2N.

Proof. Let X be a zero-dimensional compact space without isolated

points. We define a strictly increasing sequence (ni)i∈N of natural num-

bers > 0 and for each i ∈ N a family

〈Us : s is a word of length ni over the alphabet 2〉

of nonempty clopen subsets of X such that Uλ = X and for all i ∈ N
the following hold:

(1) If s, t ∈ 2ni are different, then Us ∩ Ut = ∅.



TOPOLOGICAL DYNAMICS 5

(2) For all s ∈ 2ni , Us =
⋃
t∈2ni+1−ni Us_t.

(3) For all s ∈ 2ni , Us is of diameter at most 2−i.

Suppose we have already chosen ni and the sets Us for all s ∈ 2ni . Fix

s ∈ 2ni for a moment. Us is a compact subset of X. Therefore it is the

union of finitely many nonempty clopen sets of diameter not more than

2−(i+1). Since X has no isolated points, every nonempty clopen set can

be split into two nonempty clopen subsets. Hence, for sufficiently large

n > 0, Us is the union of 2n pairwise disjoint nonempty clopen subset.

We can now choose some n ∈ N that works for every s ∈ 2ni at the

same time: Each Us, s ∈ 2ni , is the union of 2n pairwise disjoint clopen

subsets of diameter not more than 2−(i+1). We denote these sets by

Us_t, t ∈ 2n. Finally, let ni+1 = ni + n. This finishes the definition of

the sequence (ni)i∈N and of the sets Us.

We now define a homeomorphism h from the Cantor cube 2N onto

X. For each s ∈ 2N let h(s) be the unique element of
⋂
i∈N Us�ni . It

is easily checked that h is continuous, 1-1 and onto. Hence h is a

homeomorphism. �

Corollary 2.8. The middle thirds Cantor set is homeomorphic to the

Cantor cube 2N. Given a finite alphabet Σ, the space ΣN is homeomor-

phic to 2N.

Exercise 2.9. In order to prove this corollary, we have to check that

the middle thirds Cantor set is a zero-dimensional compact metric

space. Verify this.

Definition 2.10. Let Σ be a finite alphabet. We define the shift action

of Z on ΣZ as follows. For x ∈ ΣZ and n ∈ Z let nx ∈ ΣZ be defined

such that for all m ∈ Z we have (nx)(m) = x(m + n). The same

definition gives a semi-group action of N on ΣN that we also call the

shift action.

3. Orbits and invariant sets

Definition 3.1. Let X be an S-flow for some semi-group S. For every

x ∈ X, the orbit of x is the set Sx = {sx : s ∈ S}. We also consider the

orbit closure of x, the closure cl(Sx) of the orbit Sx. A set A ⊆ X is

closed under S if SA = {sa : s ∈ S ∧ a ∈ A} ⊆ A. We call a nonempty
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set A ⊆ X that is topologically closed and closed under S a subflow of

X. A is S-invariant if for all s ∈ S we have sA = {sa : a ∈ A} = A.

Note that every subflow is itself a flow with respect to the restricted

semi-group action.

Exercise 3.2. Let S be a semi-group and let X be an S-flow.

a) Show that if S is a group, then the S-invariant subsets of X are

precisely the sets that are closed under S.

b) Let X be an S-flow for some semi-group S. Show that if A ⊆ X

is closed under S, then the closure of A is also closed under S.

In particular, for every point x in an S-flow X, the orbit closure

cl(Sx) is a subflow of X.

Example 3.3. Let x ∈ 2N be such that every finite binary sequence

occurs in x. This is the case if for every finite binary sequence s there

is some n ∈ N such that s is an initial segment of nx, i.e., nx ∈ [s].

It follows that the orbit of x intersects every nonempty open subset of

2N. It is dense. Hence the orbit closure of x is all of 2N.

The two sequences that are constantly 0 or 1 are the only fixed points

of the action of N on 2N. Their orbit closures only consist of a single

point. The subflows of 2Z and of 2N are frequently called subshifts.

Exercise 3.4. Let x, y ∈ 2N Show that x is in the orbit closure of y if

and only if every initial segment of x occurs in y.

Definition 3.5. An S-flow X is minimal if X has no nonempty closed

subset that is closed under S.

Note that a flow is minimal if and only if every point has a dense

orbit.

Theorem 3.6. Every S-flow X has a minimal subflow.

Proof. A family F of sets has the finite intersection property (fip) if

the intersection of any finitely many sets from F is non-empty. Recall

that in a compact space X every family C of closed sets that has the

finite intersection property has a nonempty intersection.

The proof of the theorem is an application of Zorn’s Lemma. Let P
denote the collection of all topologically closed non-empty subsets of
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X that are closed under S. P is partially ordered by reverse inclusion.

Let C ⊆ P be a chain with respect to this partial order. C has the finite

intersection property: if C0 ⊆ C is finite, then it has a largest element

C with respect to the partial order. With respect to inclusion, C is the

smallest element of C0 and hence
⋂
C0 = C 6= ∅.

It follows that
⋂
C is a nonempty closed subset of X. Clearly,

⋂
C

is closed under S. Hence
⋂
C ∈ P . It follows that the chain C has an

upper bound in P , namely
⋂
C.

By Zorn’s Lemma, P has a maximal element C. With respect to

inclusion, C is a minimal nonempty subset of X that is topologically

closed and closed under S. Ie., C is a minimal subflow of X. �

In some sense, minimal flows are the flow-equivalents of prime num-

bers.

Example 3.7. We give an explicit example of a minimal N-flow (even

Z-flow). The example is the rotation on the unit circle by an irrational

angle. For simplicity, instead of the circle we consider the unit interval

with the endpoints identified, the one-dimensional torus T 1. We write

the elements of T 1 as reals in the interval [0, 1). The distance of two

points is the minimal length of the arc from one point to the other.

Let α be an irrational number. On T 1 we consider the map

f : T 1 → T 1;x 7→ (x+ α) mod 1.

Since f is a homeomorphism of the 1-torus, it give rise to an Z-action

on T 1. We will for the moment only consider the N-action induced by

f .

Let x ∈ T 1. We consider the orbit Nx. If the orbit is finite, then

there are n,m ∈ N such that nx = mx and n < m. It follows that

(x + nα) mod 1 = (x + mα) mod 1. Hence (m − n)α is an integer,

contradicting the assumption that α is irrational. This argument not

only shows that Nx is infinite, but in fact that for n < m we have

nx 6= mx.

Now consider the sequence (nx)n∈N. Since T 1 is a compact metric

space, the sequence has a convergent subsequence. It follows that for

every ε > 0 there are n,m ∈ N such that n < m and the distance

between nx and mx is less than ε. It follows that the distance between

(m − n)α and 0 on the 1-torus is less than ε. But this implies that
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every point on the 1-torus has distance < ε to some point of the form

(x+k(m−n)α) mod 1, where k ∈ N. Since ε was arbitrary, this shows

that Nx is dense in T 1.

Hence every orbit is dense in T 1. Therefore, T 1 is a minimal N-flow.

This also implies that the corresponding Z-flow is minimal.

We investigate a subshifts of 2Z that are closely related to the rota-

tions in Example 3.7, the Sturmian subshifts.

Definition 3.8. Let G = N or G = Z. A Sturmian word is a word

x ∈ {0, 1}G such that there are two real numbers, the slope α and the

intercept ρ, with α ∈ [0, 1) irrational such that for all i ∈ G we have

x(i) = 1 ⇔ (ρ+ i · α) mod 1 ∈ [0, α).

In the context of N-flows, we consider Sturmian words in {0, 1}N and

when we talk about Z-flows, we consider Sturmian words in {0, 1}Z.

It turns out that the orbit closure Cx = cl(Gx) of a Sturmian word x

with the restriction of the shift is a minimal G-flow. In fact, this orbit

closure consist of all Sturmian words that have the same slope as x.

If x ∈ {0, 1}Z is a Sturmian word of slope α, then for all y in the

orbit closure of x the limit

lim
n→∞

|x−1(1) ∩ {−n, . . . , n}|
2n+ 1

exists and equals α. Similarly, if x ∈ {0, 1}N is a Sturmian word of

slope α, then for all y in the orbit closure of x the limit

lim
n→∞

|y−1(1) ∩ {0, . . . , n− 1}|
n

exists and equals α.

It follows that for different irrational numbers α, β ∈ [0, 1), Sturmian

words of slope α and β have different (even disjoint) orbit closures. We

call the orbit closure of a Sturmian word together with the restriction

of the shift a Sturmian subshift. A Sturmian subshift is a G-flow.

Given a Sturmian subshift X ⊆ 2G, we denote the common slope of

all Sturmian words that generate X by α(X). We will revisit Sturmian

dynamics once we have more tools at hand.
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4. Flow maps, factors, and embeddings

Definition 4.1. . We fix a semi-group S and S-flows X and Y . A

map f : X → Y is a flow map if it is continuous and for all s ∈ S and

all x ∈ X we have f(sx) = sf(x). Maps that commute with actions in

this way are also called equivariant or S-equivariant.

Y is a factor of X with factor map f : X → Y if f is a flow map

that is onto.

A flow map f : X → Y is an embedding if it is 1-1.

Flow maps are the morphisms in the category of S-flows for a fixed

semi-group S.

Example 4.2. Let T 1 be the 1-torus with a Z-action that comes from

a rotation by some irrational number α as in Example 3.7. We consider

the cylinder Z = T 1 × [0, 1] with the Z-action defined by n(x1, x2) =

(nx1, x2) for all x∈T
1 and x2 ∈ [0, 1]. Then f : T1 → Z;x 7→ (x, 0) is

an embedding and g : Z → T 1; (x1, x2) 7→ x1 is a factor map.

Exercise 4.3. a) Let X be a minimal S-flow for some semi-group S.

Let Y be a factor of X. Show that Y is a minimal S-flow.

b) Let X be an S-flow and let Y be a minimal S-flow. Show that

every flow map f : X → Y is a factor-map.

c) Let Y be a minimal S-flow. If there there is a flow map f : X → Y ,

then Y is a factor of a minimal subflow of X.

Theorem 4.4 (Anderson). Let G be a countable group with the discrete

topology. Then every metrizable G-flow is a factor of a 0-dimensional

metrizable G-flow.

Proof. We may assume thatX is infinite. Otherwise it is zero-dimensional

and we have nothing to prove. Let (Un, Vn)n∈N be an enumeration of all

pairs of nonempty, disjoint open subsets of X from a fixed basis of the

topology on X. Consider the space 2N×G with the following continuous

G-action:

For all s ∈ 2N×G, g, h ∈ G, and n ∈ N let

(hs)(n, g) = s(n, h−1g).

Note that G acts continuously on X × 2N×G by the coordinate wise

action.
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Now let Y ⊆ X × 2N×G consist of all pairs (x, s) such that for all

n ∈ N and all g ∈ G we have

(1) if x ∈ g[Un], then s(n, g) = 0 and

(2) if x ∈ g[Vn], then s(n, g) = 1.

We first observe that Y is a closed subset of X × 2N×G. Suppose

(x, s) ∈ X × 2N×G is not in Y . Assume there are n and g violating (1).

So x ∈ g[Un] and s(n, g) = 1. Now the pairs (x′, s′) with x′ ∈ g[Un] and

s′(n, g) = 1 form an open neighborhood of (x, s) that is disjoint from

Y . If there are n and g violating (2), we obtain an open neighborhood

of (x, s) that is disjoint from Y in the same way.

Y is zero-dimensional since any two of its elements can be separated

by a clopen set. Namely, let (x, s), (x′, s′) ∈ Y be distinct. If s 6= s′

there is a clopen subset A of 2N×G such that s ∈ A and s′ 6∈ A. Now

Y ∩ (X×A) is a clopen subset of Y that contains (x, s) but not (x′, s′).

If x 6= x′, then there is n such that x ∈ Un and x′ ∈ Vn. By the

definition of Y , this implies that s 6= s′ and hence (x, s) and (x′, s′) are

separated by a clopen subset of Y .

Also, Y is closed under the action of G. To see this, let (x, s) ∈ Y
and h ∈ G. We have to show (hx, hs) ∈ Y . Let n ∈ N and g ∈ G.

Suppose hx ∈ g[Un]. Then x ∈ h−1g[Un]. Since (x, s) ∈ Y , 0 =

s(n, h−1g) = (hs)(n, g). Hence (hx, hs) satisfies condition (1) for n

and g. The argument for condition (2) is the same.

It follows that Y is a metrizable zero-dimensional G-flow. Let π1 :

X × 2N×G → X be the projection onto the first coordinate and let ϕ

be its restriction to Y . It is clear that ϕ is continuous, G-equivariant,

and onto. This finishes the proof of the theorem. �

We observe that if X is a minimal metric G-flow for some countable

group and X is a factor of a zero-dimensional metric G-flow Y , then we

can choose a minimal subflow Z of Y , which still maps onto X since X

is minimal. Hence, Anderson’s theorem also holds for minimal flows:

Every minimal metric G-flow is a factor of a G-flow that is minimal,

metric, and zero-dimensional.

We now return to the particular case of irrational rotations on the 1-

torus and Sturmian subshifts. Let G = Z. The arguments for the case

G = N are similar. Fix an irrational number α ∈ [0, 1) and consider
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the rotation

f : T 1 → T 1;x 7→ (x+ α) mod 1.

The irrational number α splits the 1-torus into two disjoint sets, V1 =

[0, α) and V0 = [α, 1). (Recall that we identify the elements of T 1 with

the elements of [0, 1).) To each ρ ∈ T 1 we assign the Sturmian sequence

xρ ∈ 2Z as in Definition 3.8.

Let ρ, σ ∈ T 1 be distinct. We have already observed that every G-

orbit is dense in T 1. In fact, our argument shows that the backward

orbit (−N)α of α is dense in T 1. It follows that there is n ∈ N such

that ρ ∈ f−n[V1] and σ ∈ f−n[V0]. For this n we have xρ(n) = 1 and

xσ(n) = 0. This shows that the map T 1 → 2Z; ρ 7→ xρ is 1-1.

Exercise 4.5. Show that ρ 7→ xρ is not continuous.

Clearly, for all n,m ∈ Z and all ρ ∈ T 1 we have

xnρ(m) = 1⇔ (ρ+ nα +mα) mod 1 ∈ [0, α)⇔ nxρ(m) = 1.

In other words, ρ 7→ xρ is Z-equivariant.

Fix ρ ∈ T 1. We define a map π : cl(Zxρ) to T 1 as follows. Let

x ∈ cl(Zxρ). Then every word of the form (x(−n), . . . , x(n)) occurs in

xρ.

Consider the set ⋂
n∈Z

f−n[cl(Vx(n))] ⊆ T 1.

Since T 1 compact, the intersection is nonempty if no finite intersection

n⋂
i=−n

f−i[cl(Vx(i))]

is empty.

But for every n ∈ N there is m ∈ Z such that (x(−n), . . . , x(n)) =

(xρ(m− n), · · · , xρ(m+ n)). By the definition of xρ,

ρ ∈
m+n⋂
i=m−n

f−i[cl(Vxρ(i))].

Therefore

fm(ρ) ∈
n⋂

i=−n

f−i[cl(Vx(i))].

It follows that
⋂
n∈Z f

−n[cl(Vx(n))] is indeed nonempty. Also, since

the orbits of 0 and α in T 1 are dense,
⋂
n∈Z f

−n[cl(Vx(n))] has not more
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than one element. This unique element we call π(x). The whole con-

struction is Z-equivariant, so π : cl(Zx)→ T 1 is a Z-equivariant map.

We show that π is continuous. Let x ∈ cl(Zxρ) and let σ = π(x). Let

U ⊆ T 1 be an open set containing σ. The closed set T 1 \ U is covered

by the open sets

T 1 \
n⋂

i=−n

f−i[cl(Vx(i))]

and hence by finitely many of them. Since these sets are increasing

with n, one such set is enough to cover T 1 \ U . It follows that there is

n ∈ N such that
⋂n
i=−n f

−i[cl(Vx(i))] ⊆ U .

Now all y ∈ cl(Zxρ) that agree with x on the set {−n, . . . , n} are

mapped by π into the set U . This shows the continuity of π.

Finally, we show that cl(Zxρ) is a minimal subshift. It is enough

to show that xρ is in the orbit closure of every x ∈ cl(Zxρ). Let

x ∈ cl(Zxρ). We show that every word of the form (xρ(−n), . . . , xρ(n))

occurs in x.

Let n ∈ N. Consider the set
⋂n
i=−n f

−i[Vxρ(i)]. By the definition of

xρ, ρ is an element of this set, so the set is non-empty. Since the set

is an intersection of half-open intervals, it contains a nonempty open

interval (a, b). Since every orbit in T 1 is dense, there is m ∈ Z such

that π(mx) = mπ(x) ∈ (a, b). By the definition of π(mx), π(mx) ∈⋂n
i=−n f

−i[cl(Vmx(i))]. It follows that for every i ∈ {−n, . . . , n} we have

π(mx) ∈ f−i[cl(Vmx(i))]. Since π(mx) ∈ (a, b) ⊆ f−i[cl(Vxρ(i))], π(mx)

is not one of the endpoints of f−1[V1] and f−1[V0].

It follows that for every i ∈ {−n, . . . , n}, π(mx) ∈ f−i[Vxρ(i)] iff

π(mx) ∈ f−i[Vmx(i)]. Since the sets f−i[V0] and f−1[V1] are disjoint,

this implies that mx and xρ agree on the set {−n, . . . , n}. In other

words,

(x(m− n), . . . , x(m+ n)) = (xρ(−n), . . . , xρ(n)),

which is what we wanted to prove.

We have thus shown the following:

Theorem 4.6. Let α ∈ [0, 1) be irrational and let f : T 1 → T 1;x 7→
(x+α) mod 1. Then the orbit closure of every Sturmian word x ∈ 2Z

of slope α is a minimal subshift of 2Z and T 1 with the Z-action induced

by f is a factor of the Sturmian subshift cl(Zx).
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The analog holds true for the N-action induced by f .

5. Recurrence

Theorem 5.1 (Simple recurrence theorem for open covers). Let f be a

homeomorphism on a compact space X. Let U be an open cover of X.

Then there is an open set U ∈ U such that for infinitely many many

n ∈ Z, U ∩ fn[U ] 6= ∅.

Proof. Since X is compact, we may assume that U is finite. Consider

the action (n, x)→ nx = fn(x) of Z on X. By the infinite pigeonhole

principle, for every x ∈ X there is U ∈ U such that for infinitely many

n ∈ Z, nx ∈ U . In other words, the recurrence set S = {n ∈ Z :

nx ∈ U} is infinite. Let n0 ∈ S. Now n0x ∈ U and for every n ∈ S,

(n− n0)(n0x) = nx ∈ U and therefore fn−n0 [U ] ∩ U 6= ∅. �

Definition 5.2. Let (X, d) be a compact metric space and let f be a

homeomorphism of X. As above, we denote fn(x) by nx. A set A ⊆ Z
is syndetic if there is m ∈ N such that for all a ∈ Z, A∩{a, a+1, . . . , a+

m} 6= ∅, i.e., if A has bounded gaps. Let x ∈ X

(1) x is invariant or a fixed point if f(x) = x.

(2) x is periodic if nx = x for some n > 0.

(3) x is almost periodic if for every ε > 0 the set {n ∈ Z : d(nx, x) <

ε} is syndetic.

(4) x is recurrent if for every ε > 0 the set {n ∈ Z : d(nx, x) < ε}
is infinite.

Equivalently, x is recurrent if there is a sequence (ni)i∈N of integers

such that limi→∞ nix = x.

Theorem 5.3. Let X be a compact space and let f be a homeomor-

phism on X such that the corresponding Z-flow is minimal. Then every

element of X is almost periodic and in particular recurrent.

Proof. Suppose the point x ∈ X is not almost periodic. Then there is

ε > 0 such that the set {n ∈ Z : d(nx, x) < ε} is not syndetic. Thus,

for every m ∈ N there is nm ∈ Z such that for all n ∈ {nm −m,nm +

m}, d(nx, x) ≥ ε. Since X is compact, the sequence (nmx)m∈N has a

convergent subsequence (nmix)i∈N. By the continuity of the metric and
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of f , for every k ∈ Z we have

d(ky, x) = lim
i→∞

d((nmi + k)x, x) ≥ ε.

But this shows that the orbit closure of y does not contain x, contra-

dicting the minimality of X. �

Since every Z-flow contains a minimal Z-flow, this theorem implies:

Corollary 5.4 (Birkhoff recurrence theorem). Let X be a compact

space with a homeomorphism f . Then X contains an almost periodic

point.

We will now use topological dynamics to prove a Ramsey theoretic

statement that does not seem mention group actions at all.

Theorem 5.5 (van der Waerden). Let Z = P1∪ · · · ∪Pn be a partition

of Z into finitely many classes. Then at least one of the classes contains

arbitrarily long arithmetic progressions, i.e., sets of the form {a, a +

r, . . . , a+ (k − 1)r}.

We will derive this theorem from the following:

Theorem 5.6 (Multiple recurrence theorem in open covers). Let f be

a homeomorphism of a compact space X. If U is an open cover of X,

then there is U ∈ U such that for all k ≥ 1 there are infinitely many

r ∈ Z such that

U ∩ f−r[U ] ∩ · · · ∩ f−(k−1)r[U ] 6= ∅.

In order to see the connection between Theorem 5.5 and Theorem

5.6, we introduce the Čech-Stone compactification of the integers.

Definition 5.7. LetM be a nonempty set. A filter onM is a nonempty

family p ⊆ P(M) such that for all A,B ⊆M the following hold:

(1) ∅ 6∈ p
(2) If A ∈ p and A ⊆ B, then B ∈ p.
(3) If A,B ∈ p, then A ∩B ∈ p.

A filter on M is a ultrafilter, if for all A ⊆M , either A ∈ p or M \A ∈ p.

Lemma 5.8. A family p of subsets of a nonempty set M is an ultrafilter

if and only if it is a maximal family of subsets of M with the finite

intersection property.
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Proof. Let p be an ultrafilter. Then p is closed under finite intersections

and does not contain the empty set. It follows that it has the finite

intersection property. Since for each set A ⊆M , p contains either A or

M \ A, it is maximal with respect to the finite intersection property.

Now let p be a maximal family of subsets of M with the finite inter-

section property. Because of the finite intersection property, ∅ 6∈ p. If

A ∈ p and B ⊆M is such that A ⊆ B, then p∪{B} also has the finite

intersection property and hence, by the maximality of p, B ∈ p. Simi-

larly, if A,B ∈ p, then the family p∪{A∩B} has the finite intersection

property and hence, again by the maximality of p, A ∩B ∈ p. �

Definition 5.9. For every nonempty set M let βM denote the collec-

tion of all ultrafilters over the set M with the topology gererated by

the sets of the form Â = {p ∈ βM : A ∈ p}, where A ⊆M .

Observe that for every m ∈ M , {A ⊆ M : m ∈ A} is an ultrafilter,

the principal ultrafilter generated by m. Identifying the principal ul-

trafilters generated by the elements of M with the respective elements

of M itself, we can consider M as a subset of βM .

Lemma 5.10. βM is a compact Hausdorff space and M is a dense

subset of βM with the discrete topology. Every map f from M into a

compact space X has a unique continuous extension βf : βM → X.

Proof. We first show the Hausdorffness of βM . Let p and q be two

distinct ultrafilters on M . Then there is A ⊆M which is contained in

only one of the two ultrafilters, say in p. The set B = M \ A is then

contained in q. Now Â and B̂ are disjoint neighborhoods of p and q,

respectively.

The density of M in βM is easily checked. First note that ∅̂ is empty.

If A ⊆ M is nonempty, we can choose m ∈ A and now Â contains the

principal ultrafilter generated by m. This shows the density of M .

For the compactness of βM let U be an open cover of βM . We may

assume that all the cover consists of sets of the form Â for some A ⊆M .

Suppose U does not have a finite subcover. Consider the family

F = {A ⊆M : (M \ A)̂ ∈ U}.

This family has the finite intersection property and hence extends to

an ultrafilter p. Now p 6∈
⋃
U , a contradiction.
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Finally, let X be compact and let f : M → X be any function. Given

p ∈ βM we define βf(p) as the unique element of
⋂
A∈P cl(f [A]). It is

easily checked that βf �M = f and that βf is continuous. Since M is

dense in βM , βf is unique. �

Exercise 5.11. Let M be an infinite set. Show that no sequence

(mn)n∈N of pairwise distinct elements of M converges to a point in

βM . In particular, βM is not metrizable.

Actually, one can prove that βM has no nontrivial convergent se-

quences at all.

We now show that Theorems 5.6 and 5.5 are equivalent.

First assume Theorem 5.6 and let Z = P1∪· · ·∪Pn be a partition of Z.

Also, let k ≥ 1. Consider f : Z→ Z;m 7→ m+1 and let βf : βZ→ βZ
be the unique extension of f to βZ. Note that P̂1, . . . , P̂n is an open

cover of βZ.

By Theorem 5.6, there are i ∈ {1, . . . , n} and r ∈ Z such that

P̂i ∩ βf−r[P̂i] ∩ · · · ∩ βf−(k−1)r[P̂i] 6= ∅.

It is clear that βf−m[P̂i] = (f−m[Pi])̂. Hence

Pi ∩ f−r[Pi] ∩ · · · ∩ f−(k−1)r[Pi] 6= ∅.

Choose a ∈ Pi∩f−r[Pi]∩· · ·∩f−(k−1)r[Pi]. Now we have a, a+r, . . . , a+

r(k − 1) ∈ Pi. This shows Theorem 5.5.

Now assume Theorem 5.5 holds. Let X be a compact space with a

homeomorphism f and let U be an open cover of X. Also, let k ≥ 1.

Let U1, . . . , Un be a finite subcover of U . Choose any x ∈ X. For

i ∈ {1, . . . , n} let Pi = {m ∈ Z : fm(x) ∈ Ui}. The Pi might not be

disjoint, but together they cover Z and hence, by Theorem 5.5, one of

them contains an arithmetic progression a, a+ r, . . . , a+ (k−1)r. Now

let y = fa(x). We have y, f r(y), . . . , f (k−1)r(y) ∈ Ui. This shows

y ∈ Ui ∩ f−r[Ui] ∩ · · · ∩ f−(k−1)r[Ui]

and Theorem 5.6 follows.

Lemma 5.12. Let X be a compact space and let f : X → X be a

homeomorphism such that the induced Z-flow is minimal. Then for

every nonempty open set U ⊆ X, X is the union of finitely many sets

of the form fn[U ], n ∈ N.
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Proof. Consider the set Y = X \
⋃
n∈Z f

n[U ]. Y is closed and closed

under the Z-action. Since U is nonempty, Y 6= X. Since X is minimal,

Y must be empty. It follows that X =
⋃
n∈Z f

n[U ]. By the compactness

of X, finitely many sets of the form fn[U ] cover it. �

Theorem 5.6 and hence Theorem 5.5 follow from the following result.

Theorem 5.13. Let X be a compact space and let f : X → X be a

homeomorphism such that the induced Z-flow is minimal. Let U ⊆ X

be a non-empty open set and let k ≥ 1. Then U contains an arithmetic

progression x, f r(x), . . . , f (k−1)r(x) for some x ∈ X and r ≥ 1.

Proof. Since X is a minimal Z-flow, finitely many translates fm[U ],

m ∈ Z, cover X. We fix an open cover U of X by finitely many

translates of U .

We prove the theorem by induction on k. It is trivially true for k = 1.

Now let k > 1.

We prove the following claim first:

Claim 5.14. Then for every J ≥ 0 there exists a sequence x0, . . . , xJ

of points in X, a sequence U0, . . . , UJ of sets in the open cover (not

necessarily distinct), and a sequence r1, . . . , rJ of positive integers such

that f i(ra+1+...+rb)(xb) ∈ Ua for all a, b with 0 ≤ a ≤ b ≤ J and all i

with 1 ≤ i ≤ k − 1.

The proof of the claim proceeds by induction on J . The case J = 0

is trivial. Now let J ≥ 1 and suppose we have already constructed

x0, . . . , xJ−1, U0, . . . , UJ−1, and r1, . . . , rJ−1 with the required proper-

ties. Now let V be a suitably small neighbourhood of xJ−1 (depending

on all the above data) to be chosen later. By Theorem 5.13 for k-1, V

contains an arithmetic progression y, f rJ (y), . . . , f (k−2)rJ (y) of length

k − 1. Now set xJ := f−rJ (y) and let UJ be an arbitrary set in the

open cover containing xJ . We observe that

f i(ra+1+...+rJ )(xJ) = f i(ra+1+...+rJ−1)(f (i−1)rJ (y)) ∈ f i(ra+1+...+rJ−1)[V ]

for all a ∈ {0, . . . , J − 1} and i ∈ {1, . . . , k − 1}. If V is a sufficiently

small neighbourhood of xJ−1, we thus see (from the continuity of the

f i(ra+1+...+rJ−1)) that we verified all the required properties needed to

close the induction. This proves the claim.
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We apply the above claim with J equal to the number of sets in

the open cover. By the pigeonhole principle, we can thus find a, b

with 0 ≤ a < b ≤ J such that Ua = Ub. If we then set x = xb and

r = ra+1 + . . .+ rb we obtain Theorem 5.13 as required. �

6. More on the Čech-Stone compactification of a

discrete semigroup

We extend the multiplication on a discrete semigroup to its Čech-

Stone compactification.

Definition 6.1. Let (S, ·) be a semigroup. For each s ∈ S the left

multiplication λs : S → S;x 7→ sx can be considered as a map from S

to βS and therefore has a continuous extension βλs : βS → βS. Now

for each x ∈ βS we have a map ρx : S → βX; s 7→ βλs(x). This has a

unique continuous extension βρx : βS → βS. For x, y ∈ βS we define

x · y = βρy(x).

A semigroup (S, ·) carrying a topology is right topological if for every

t ∈ S the right multiplication S → S; s 7→ s · t is continuous.

Lemma 6.2. For every discrete semigroup (S, ·), (βS, ·) is a compact

right-topological super-semigroup of (S, ·).

Proof. From the definition of · on βS it follows that · extends the

multiplication on S. Also, for each y ∈ βS the right multiplication

x 7→ xy is just βρy, which is continuous by definition.

For all x, y, z ∈ βS we have

(xy)z = βρz(xy) = βρz(βρy(x)) = (βρz ◦ βρy)(x)

and x(yz) = βρyz(x). Hence, in order to show that the multiplication

on βS is associative, we have to prove that βρz ◦ βρy = βρyz.

Clearly, βρz ◦ βρy is a continuous function from βS to βS. By the

uniqueness of βρyz, it is enough to show that βρz ◦ βρy agrees with ρyz

on S. Let s ∈ S. Then ρyz(s) = βλs(yz) = βλs(βρz(y)). On the other

hand, (βρz ◦ βρy)(s) = βρz(βλs(y)). The two functions βλs ◦ βρz and

βρz ◦ βλs are both continuous functions from βS to βS. In order to

show that they are equal, it is enough to show that they agree on the

dense subset S of βS.
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Let t ∈ S. Then (βλs ◦ βρz)(t) = βλs(βλt(z)) and

(βρz ◦ βλs)(t) = βρz(λs(t)) = βρz(st) = βλst(z).

It remains to show that βλs ◦ βλt is the same as βλst. Again, it is

enough to verify this on S.

Let r ∈ S. Then (βλs ◦ βλt)(r) = βλs(tr) = s(tr). On the other

hand, βλst(r) = (st)r. Finally, (st)r = s(tr) since · is associative on S.

It follows that · is associative on βS. �

Definition 6.3. Let S be a semigroup. A nonempty subset I of S

is a right (left) ideal if for all t ∈ I and all s ∈ S we have t · s ∈ I

(s · t ∈ I). I is an ideal of S if it is both a left and a right ideal. s ∈ S
is idempotent if s · s = s.

Lemma 6.4. Let S be a compact right topological semigroup. Then S

has a minimal left ideal I.

Proof. First observe that for all t ∈ S, St = {s · t : s ∈ S} is a closed

left ideal of S. The closedness comes from the fact that St is the

continuous image of the compact space S under the continuous map

right multiplication with t. Now, if T is a left ideal of S, then for every

t ∈ T , St ⊆ T . If follows that every left ideal of S contains a closed

left ideal that is generated by a single element.

An easy application of Zorn’s Lemma shows that S has a minimal

closed left ideal I. By the previous remark, I is also a minimal among

all left ideals. �

Lemma 6.5. Let S be a compact right topological semigroup. Then S

has an idempotent element.

Proof. Very much like in the previous lemma, we can use Zorn’s Lemma

to find a minimal closed subsemigroup T of S. Let s ∈ T . Then Ts ⊆ T

and Ts is closed. Also, given t, r ∈ T , we have tsrs = (tsr)s ∈ Ts. It

follows that Ts is a closed subsemigroup of T and hence Ts = T .

Now pick t ∈ Tand let U = {u ∈ T : ut = t}. It is easily checked that

U is a subsemigroup of T . Being the preimage of a singleton under the

continuous map right multiplication with t, U is closed. Hence U = T .

It follows that ut = t for all u ∈ T and hence tt = t. This shows that t

is idempotent and T = {t}. �
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This lemma ist quite remarkable: From the compactness of a right

topological semigroup we get the existence of elements with particular

algebraic properties.

6.1. The Hales-Jewett theorem and van der Waerden revis-

ited. We use an abstract theorem of Koppelberg to deduce two clas-

sical theorems in Ramsey theory.

Definition 6.6. Let S be a semigroup and T a subsemigroup of S. We

call T a nice subsemigroup if R = S \ T is an ideal of S, i.e., R · S and

S · R are subsets of R. Note that T is nice iff for all x, y ∈ S we have

xy ∈ T iff x ∈ T and y ∈ T .

A semigroup homomorphism σ : S → T is a retraction (from S to

T ) if σ(t) = t for all t ∈ T .

Theorem 6.7 (Koppelberg). Let S be a semigroup and T a proper

nice subsemigroup of S. Let Σ be a finite set of retractions from S to T

and let (B1, . . . , Bn) be a partition of T . Then there are j ∈ {1, . . . , n}
and r ∈ R = S \ T such that for all σ ∈ Σ, σ(r) ∈ Bj.

Proof. It is easily checked that T̂ is isomorphic to a βT and therefore

a subsemigroup of βS. Also, R̂ is equal to βS \ T̂ and is an ideal of

βS. Finally, for each σ ∈ Σ, βσ is a retraction from βS to T̂ .

Let L be a minimal left ideal of T̂ and let q ∈ L be an idempotent.

Let I be a minimal left ideal in the left ideal βS · q of βS and choose

an idempotent i ∈ I. Let p = qi. Now p ∈ I.

Note that I ⊆ R̂ since R̂ is an ideal of βS. It follows that p ∈ R̂ and

thus R ∈ p. Since i ∈ I ⊆ βS · q and q is an idempotent, iq = i. Now

qp = qqi = qi = p, pq = qiq = qi = p and pp = qiqi = qii = qi = p.

Hence

(∗) p = p2 = pq = qp.

Let σ ∈ Σ and u = βσ(p). Clearly, u ∈ T̂ . Also q ∈ T̂ . We apply βσ

to equation (∗) and obtain

u = u2 = uq = qu.

In particular, u = uq ∈ L. Since L is a minimal left ideal of T̂ , L = T̂ ·u.

Hence q ∈ T̂ · u. Note that u is an idempotent. It follows that qu = q.

This shows that βσ(p) = q for every σ ∈ Σ.
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Recall that q is actually an ultrafilter on S such that T ∈ q. It

follows that there is j ∈ {1, . . . , n} such that Bj ∈ q. For every σ ∈ Σ

we have Bj ∈ q = βσ(p). It follows that B̂j intersects σ[A] for every

A ∈ p. In other words, for every A ∈ p, σ[A] contains an ultrafilter that

contains the set Bj. But σ[A] consists of ultrafilters that correspond

to elements of S. Identifying these ultrafilters with the corresponding

elements of S, we see that for all A ∈ p, σ[A] intersects Bj. Hence

σ−1[Bj] intersects every set A ∈ p. Since p is an ultrafilter, this implies

σ−1[Bj] ∈ p.
Since R ∈ p, also the set D = R ∩

⋂
σ∈Σ σ

−1[Bj] is in p, and hence

nonempty. Every r ∈ D works for the theorem. �

We can now use Koppelberg’s theorem to give an alternative proof

of van der Waerden’s theorem (Theorem 5.5), which we restate for

convenience.

Theorem 6.8 (van der Waerden). Assume (A1, . . . , An) is a partition

of ω into finitely many pieces and m ∈ ω. Then there are j ∈ {1, . . . , n}
and natural numbers a and d > 0 such that

{a, a+ d, a+ 2d, . . . , a+md} ⊆ Aj,

i.e., Aj contains an arithmetic progression of length m+ 1.

Proof. Consider the semigroup S = ω×ω and let T = ω×{0}. Then T

is a nice subsemigroup of S. For each j ∈ {1, . . . , n} let Bj = Aj×{0}.
Now (B1, . . . , Bn) is a partition of T . For each k ≤ m and all a, d ∈ ω
let σk(a, d) = (a+ kd, 0). Each σk is a retraction from S to T .

Hence, by Koppelberg’s theorem there are j ∈ {1, . . . , r} and (a, d) ∈
S \ T such that for all k ≤ m, σk(a, d) ∈ Bj. Now by the definition

of σk and of Bj, for all k ≤ m we have a + kd ∈ Bj. This finishes the

proof of the theorem. �

Definition 6.9. Let M be a finite set, the alphabet.

Let x be a variable not in M . A variable word over M is a word

over M ∪ {x} with at least one occurrence of x. Given a word w over

M ∪ {x} and u ∈ M , let w(u) denote the word over M obtained by

replacing every occurence of x by u.

A combinatorial line over M is a set of the form {w(u) : u ∈ M},
where w is a variable word over M .
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Theorem 6.10 (Hales-Jewett). Let M be a finite alphabet and let

(A1, . . . , An) be a partition of M∗. Then there is j ∈ {1, . . . , n} such

that Aj includes a combinatorial line.

Proof. Let S be the semigroup (M ∪ {x})∗ with the concatenation of

words as multiplication. Let T = M∗. Then T is a nice subsemigroup

of S. For each u ∈ M and w ∈ S let σu(w) = w(u). Each σu is a

retraction from S to T .

Hence there are some w ∈ S \ T , i.e., a variable word over M , and

some j ∈ {1, . . . , n}, such that for all u ∈ M , w(u) ∈ Aj. In other

words, Aj includes the combinatorial line generated by w. �

Exercise 6.11. Derive van der Waerden’s theorem directly from the

Hales-Jewett theorem.

We derive a finite version of the Hales-Jewett theorem from the infi-

nite version above. For m ∈ ω, M≤m denotes the set of all words over

M of length at most m. Mm is the set of words of length m.

Theorem 6.12 (Hales-Jewett, finite version). Let M be a finite alpha-

bet. For every n ∈ ω there is m > 0 such that whenever C1, . . . , Cn is

a partition of Mm, then there is j ∈ {1, . . . , n} such that Cj includes a

combinatorial line.

We derive the theorem from the following lemma.

Lemma 6.13. Let M and n be as in Theorem 6.12. There is m > 0

such that whenever C1, . . . , Cn is a partition of M≤m, then there is

j ∈ {1, . . . , n} such that Cj includes a combinatorial line.

Proof. Suppose there is no such m. Consider the collection T of all n-

tuples (C1, . . . , Cn) such that for some m ∈ ω, C1, . . . , Cn is a partition

of M≤m such that no Cj includes a combinatorial line. Note that

for technical reasons we also consider partitions of M0. For A,B ∈ T ,

A = (A1, . . . , An), B = (B1, . . . , Bn), let A @ B if for all j ∈ {1, . . . , n},
Aj ( Bj.

Clearly, T is a tree. By our assumption, T is infinite. Moreover,

whenever (A1, . . . , An) ∈ T is a partition of M≤m and k ≤ m, then

(A1 ∩M≤k, . . . , An ∩M≤k) ∈ T . It follows that each level of T consists

of partitions of M≤m for a fixed m > 0. Since for each m the set M≤m
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is finite, each level of T is finite. Hence, by König’s Lemma, T has an

infinite branch B. For each j ∈ {1, . . . , n} let

Cj =
⋃
{A : ∃(B1, . . . , Bn) ∈ B(A = Bj)}.

Now (C1, . . . , Cn) is a partition of M∗ such that no Cj includes a com-

binatorial line. This contradicts Theorem 6.10. �

Proof of Theorem 6.12. Let m > 0 be a minimal witness of Lemma

6.13. Let C1, . . . , Cn be a partition of Mm. By the minimality of m,

there is a partition A1, . . . , An of M≤m−1 such that no Aj includes a

combinatorial line. Now A1 ∪ C1, . . . , An ∪ Cn is a partition of M≤m.

By the choice of m, there is j ∈ {1, . . . , n} such that Cj ∪ Aj includes

a combinatorial line. Since Aj does not include a combinatorial line,

the combinatorial line included in Aj ∪ Cj consists of words of length

m. Hence Aj includes a combinatorial line. �

7. Universal minimal flows

Definition 7.1. Let G be a topological group and let X be a minimal

G-flow. X is universal if every minimal G-flow Y is a factor of X.

Theorem 7.2. Let G be a discrete group. Then there is a universal

minimal G-flow X.

Proof. Extending the left multiplication with g ∈ G to βG, we obtain

an action of G on βG. Let X be a minimal subflow of βG. Let Y

be any minimal G-flow. Fix y ∈ Y and consider the continuous map

f : G → Y ; g 7→ gy. This map is clearly equivariant. It extends to an

equivariant continuous map βf : βG → Y . Since Y is minimal, the

restriction βf � X is onto Y , showing that Y is a factor of X. �

We extend this construction of a universal minimal flow to groups

that are metrizable, but not necessarily discrete.

Definition 7.3. Let G be a topological group. A G-ambit is a G-flow

X with a distinguished point x ∈ X whose orbit is dense in X.

Theorem 7.4. For every (Hausdorff) topological group G there is a

universal minimal G-flow.

Proof. Let Gd denote the group G with the discrete topology. It is clear

that every G-flow is also a Gd-flow. Given a G-ambit (X, x) we consider
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the equivariant map f : Gd → X; g 7→ gx and its unique continuous

extension βf : βGd → X. This shows that every G-ambit, considered

as a Gd-flow, is a factor of βGd.

Up to isomorphism we can realize every factor of βGd as a quotient

of βGd by a suitable equivalence relation. This shows that there is a

set A of G-ambits such that every G-ambit is isomorphic to one in A.

Given a G-ambit A, let xA denote the distinguished point of A.

Let Y =
∏

A∈AA equipped with the coordinate wise action of G.

Let y = (xA)A∈A. Finally, let S(G) be the orbit closure of y in Y , with

the distinguished point y. S(G) is the greatest G-ambit in the sense

that every G-ambit is a factor of S(G), namely just the projection of

S(G) to a suitable coordinate.

Let X be a minimal subflow of S(G). Then X is a universal minimal

G-flow. Namely, let Z be any minimal G-flow. Choose a point z ∈ Z.

The G-ambit (Z, z) is a factor of S(G) by some factor map f : S(G)→
Z. The restriction f � X is still onto Z since Z is minimal. This show

the universality of X. �

Exercise 7.5. Let A and B be G-ambits that have all G-ambits as

factors, by factor maps that map the distinguished point to the distin-

guished point. Show that A and B are isomorphic. In particular, S(G)

is uniquely determined by its universal property.

Definition 7.6. Let G be a topological group. A fixed point of a G-

flow X is a point x that is not moved by any g ∈ G. G is extremely

amenable if its universal minimal flow is a singleton or equivalently,

every continuous action of G on a compact space has a fixed point.

We finish this section by proving criteria for the existence of fixed

points in flows.

Lemma 7.7. Let G be a topological group acting continuously on a

compact space X. Then the following are equivalent:

(1) The G-flow X has a fixed point.

(2) For every n ≥ 1, continuous function f : X → Rn, ε > 0

and finite set F ⊆ G, there is x ∈ X such that for all g ∈ F ,

|f(x)− f(gx))| < ε.

Proof. (1)⇒(2): Any fixed point of X works for x.
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(2)⇒(1): We use a compactness argument to obtain a fixed point in

X. Given F , ε, and f as in (2), let

Af,F,ε = {x ∈ X : ∀g ∈ F (|f(x)− f(gx)| ≤ ε}.

By the continuity of f , Af,F,ε is closed and by (2) it is nonempty. It

is easily checked that the intersection of finitely many sets of the form

Af,F,ε is nonempty. By the compactness of X, the intersection of all

sets of the form is nonempty. Clearly, this intersection consists of fixed

points of X. �

Theorem 7.8 (Kechris, Pestov, Todorcevic). Let S∞ be the group of all

permutations of N equipped with the topology inherited from the product

topology on NN, the topology of pointwise convergence. If G ⊆ S∞ is

a closed subgroup, then the following are equivalent:

(1) G is extremely amenable.

(2) For every open subgroup V of G, every coloring c : G/V →
{1, . . . , k} of the set of left cosets hV of V , and every finite set

A ⊆ G/V of left cosets of V , there is g ∈ G and i ∈ {1, . . . , k}
such that c is constant on g · A = {ghV : hV ∈ A}.

Proof. (1)⇒(2): Let V , k, c, and A be as in (2). We consider the

set G/V of left cosets of V in G with the natural G-action (g, hV ) 7→
(gh)V . Let Y = {1, . . . , k}G/V with the shift action defined by (gy)(hV ) =

y(g−1hV ) for all g, h ∈ G and y ∈ Y . Since {1, . . . , k} is finite, Y is

compact. The action of G on Y is continuous. This is not completely

trivial and depends on the fact that V is open in G (Exercise).

Clearly, c : G/v → {1, . . . , k} is an element of Y . Let X be the

orbit closure of c in Y . By (1), there is a fixed point d ∈ X. Since the

action of G on G/V is transitive, i.e., G moves every point in G/V to

every other point, the fixed point d has to be constant with some value

i ∈ {1, . . . , k}. Since d is in the orbit closure of c, there is g ∈ G such

that g−1c � A = d � A. This shows that on A, g−1c has the constant

value i. I.e., for each hV ∈ A we have c(ghV ) = i. This shows that c

is constant on gA.

(2)⇒(1): The statement (2) is equivalent to the corresponding state-

ment about the set V \G of right cosets V h of V in G on which G acts

by g(V h) = V hg−1. By Lemma 7.7 it is enough to show that for every

G-flow X, continuous f : X → Rn, ε > 0, and finite F ⊆ G there is
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x ∈ X such that for all h ∈ F , |f(x)− f(hx)| ≤ ε. We fix such X, f ,

ε, and F . Assume that 1G ∈ F .

For each x ∈ X, we choose an open neighborhood Ux ⊆ X of x and

Vx ⊆ G of the identity of G such that for all y ∈ Ux and g ∈ Vx we

have |f(x) − f(gx)| ≤ ε/3. Finitely many of the Ux cover X. Let V

be the intersection of the corresponding Vx. Then V is an open subset

of G containing the identity such that for all g ∈ V and all x ∈ X

we have |f(x) − f(gx)| ≤ ε/3. Since G is a closed subgroup of S∞,

V has a basic open subset that is a neighborhood of the identity. I.e.,

there is a finite set S ⊆ N such that for all g ∈ G with g � S = idS,

g ∈ V . Clearly, the set of all g ∈ G that are the identity on S is an

open subgroup of G. Hence we may assume that V is already equal to

this open subgroup of G.

We partition the compact set f [X] ⊆ Rn into finitely many sets

A1,...,Ak of diameter ≤ ε/3. Fix x0 ∈ X and let Ui = {g ∈ G :

f(gx0) ∈ Ai} for each i ∈ {1, . . . , k}. Now let Vi = V Ui, a union of

right cosets of V . We consider Vi as a subset of V \G in the natural way.

Observe that V \ G =
⋃k
i=1 Vi. Hence there is c : V \ G → {1, . . . , k}

such that for each i, Vi ⊆ c−1(i).

By (2), there are i ∈ {1, . . . , k} and g ∈ G with Fg ⊆ Vi = V Ui. We

show that x = gx0 works. Let h ∈ F . Let v ∈ V be such that vhg ∈ Ui.
Now f(vhgx0) = f(vhx) ∈ Ai. Since |f(vhx)− f(hx)| ≤ ε/3, f(hx) is

no further from the set Ai than ε/3. Since 1G ∈ F , |f(x) − f(hx)| ≤
ε. �

8. Fräısse theory, Ramsey theory, and the theorem of

Kechris, Pestov, and Todorcevic

Theorem 8.1. Let G be a closed subgroup of S∞. Then the following

are equivalent:

(1) G is extremely amenable.

(2) G is the automorphism group of a structure A which is the

Fräısse limit of a Fräısse order class with the Ramsey propo-

erty.
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It follows from this theorem that the automorphism groups of (Q, <)

and the ordered Random graph are extremely amenable.
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