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Abstract. For n > 2 let In be the σ-ideal in P(nω) generated by all sets
which do not contain n equidistant points in the usual metric on nω . For each
n > 2 a set Sn is constructed in Rn so that the σ-ideal which is generated by

the convex subsets of S restricted to the convexity radical K(S) is isomorphic
to In. Thus cov(In) is equal to the least number of convex subsets required

to cover Sn — the convexity number of Sn.

For every non-increasing function f : ω \ 2 → {κ ∈ Card : cf(κ) > ℵ0}
we construct a model of set theory in which cov(In) = f(n) for each n ∈
ω \ 2. When f is strictly decreasing up to n, n− 1 uncountable cardinals are

simultaneously realized as convexity numbers of closed subsets of Rn. It is
conjectured that n, but never more than n, different uncountable cardinals

can occur simultaneously as convexity numbers of closed subsets of Rn. This

conjecture is true for n = 1 and n = 2.

1. Introduction

A rich collection of cardinal invariants of the continuum has been studied in
modern set theory, yet it is quite rare to find in the literature results on cardinal
invariants which are related to the linear structure of Rn. One recent exception is
the proof by Steprans [8] that covering Rn+1 by smooth n-dimensional surfaces is
harder than covering Rn+2 by smooth (n + 1)-dimensional surfaces.

In the present paper we investigate invariants of the linear structure of finite and
infinite dimensional Euclidean spaces and their dependence on the dimension. For
a closed set S ⊆ Rn consider the σ-ideal which is generated by the convex subsets of
S. The interesting case is when this ideal is proper, that is, when S is not countably
convex, i.e., not a countable union of convex sets. In this case, the ideal contains
a maximal open subset whose complement in S is a perfect set, denoted by K(S).
The restriction of the σ-ideal to K(S) is denoted by I(S) and is contained in the
meager ideal on K(S). Therefore, the least number of convex subsets of S required
to cover S, called the convexity number of S and denoted by γ(S), is at least as
large as cov(M) — the covering number of meager sets.

There are plenty of simply defined sub-ideals of the meager ideal and, as shown in
[4], uncountably many different cardinals can be simultaneously realized as covering
numbers of simple sub-ideals of the meager ideal, but all of this does not imply that
there are many ideals that may occur as I(S) for a closed S ⊆ Rn. It is an easy
exercise to show that if S ⊆ R1 then I(S) is at most the ideal of countable sets. In
[3] it was shown that, except the ideal of countable sets, essentially only one type
of meager ideal can occur as I(S) for a closed S ⊆ R2; that the covering number
of this type of ideal can consistently be smaller than c; and that an uncountable
convexity number γ = γ(S) < 2ℵ0 of a closed S ⊆ R2 must satisfy γ+ = 2ℵ0 . Thus
exactly 1 uncountable convexity number of a closed set can be realized in R1 and 2
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but not more than 2 uncountable convexity numbers of closed sets can be realized
in R2.

At the present we have no evidence that more than n different uncountable
cardinals may simultaneously occur as convexity numbers of closed subsets of Rn.
Let σconv(Rn) denote the set of all uncountable convexity numbers of closed subsets
of Rn. In [3] it was conjectured that for every n ∈ ω, |σconv(Rn)|≤ n but that for
each n (separately) |σconv(Rn)|= n is consistent. For n = 1 and n = 2 this is indeed
true.

In the present paper we define closed subsets Sn ⊆ Rn for n > 2 so that I(Sn) is
equal to the ideal In introduced by Newelski and Roslanowski in [6]. The ideal In is
generated over the space nω by all sets which do not contain an equidistant n-tuple
with respect to the usual metric. Equivalently, regarding nω as a tree, which is
more convenient for what follows, the ideal In is generated by all closed sets which
are coded by < n splitting subtrees of nω.

Newelski and Roslanowski have proved the consistency of cov(In+1) < cov(In).
We extend their result by showing that cov(Ii) = f(i) is consistent simultaneously
for all i < n where f is any non-increasing function from n to the cardinals with
uncountable cofinality. A parallel result was obtained by Shelah and Steprans in [7]
for similar looking ideals using a different method. When choosing f to be strictly
decreasing, the following is obtained:

Theorem 1.1. For each n > 0, |σconv(Rn)|≥ n− 1 is consistent.

1.1. Notation.

Definition 1.2. A set T ⊆ ω<ω is a tree if T is closed with respect to restrictions to
natural numbers. For a tree T and t ∈ T let succT (t) := {s ∈ T : ∃i ∈ ω(s = t_i)}
where _ is the concatenation of sequences and i is identified with the sequence of
length one with value i. For n ∈ ω, T is < n-ary if for all t ∈ T , |succT (t)|< n. For
α ≤ ω and a set X ⊆ ωα let

T (X) := {t ∈ ω<ω : ∃x ∈ X(t ⊆ x)}.

X is < n-ary if T (X) is. For n ∈ ω let In be the ideal of < n-ary subsets of nω.

2. Closed subsets of Rn with prescribed convexity ideals

In this section, for each n ∈ ω \ 2 we construct a closed subset X of Rn with
γ(X) = cov(In).

Fix n ∈ ω \ 2. Let Bn denote the closed unit ball in Rn and let Sn−1 denote the
boundary of Bn. In order to get X, we construct a homeomorphism h between nω

and a subset Y of Sn−1 with nice properties. X is then defined as a subset of the
convex hull of Y such that the convex hull of a subset of Y is included in X if and
only if the set corresponds to a < n-ary subset of nω. Y is the set of accumulation
points of a family (xs)s∈n<ω constructed in the next lemma.

For a subset S of a linear space let conv(S) be the convex hull of S.
For a point x ∈ int(Bn)\{0} let P (x) denote the hyperplane containing x which

is orthogonal to the line through x and 0. Let H(x) denote the closed halfspace in
Rn with boundary P (x) that does not contain 0. Finally let C(x) denote H(x)∩Bn

and let L(x) denote the closed line segment between x and 1
||x||x.

Lemma 2.1. There is a family (xs)s∈n<ω of points in int(Bn \ {0}) with the fol-
lowing properties:

(1) For all s, t ∈ n<ω with s ⊆ t, C(xt) ⊆ C(xs).
(2) For all s, t ∈ n<ω, if s and t are incomparable, then C(xs) and C(xt) are

disjoint.
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(3) For all m ∈ ω and all t ∈ nm the diameter of C(xt) is less than 2−m.
(4) For all s ∈ n<ω and all zi ∈ C(xs_i), i < n, conv({zi : i < n}) intersects

L(xs).
(5) For all m ∈ ω and all t ∈ nm, if S ⊆ nm+1 is such that

|{i ∈ n : t_i ∈ S}|< n,

then conv(
⋃

s∈S C(xs)) is disjoint from L(xt).

Proof. We construct the family (xs)s∈n<ω by recursion. Start with any point x∅ ∈
int(Bn)\{0} for which the diameter of C(x∅) is less than 1. Let m ∈ ω and suppose
xs has been defined for all s ∈ nm and we want to define xt_i, i < n, for a fixed
t ∈ nm.

P (xt)∩Bn is an n−1-dimensional ball centered at xt. There are pairwise distinct
points y0, . . . , yn−1 ∈ P (xt) ∩ Sn−1 such that relative to the affine subspace P (xt)
of Rn, xt is contained in the interior of conv({y0, . . . , yn−1}), but not in the convex
hull of any proper subset of {y0, . . . , yn−1}.

Now, for
S ⊆ {y0, . . . , yn−1} ∪

⋃
{C(xs) : s ∈ nm ∧ s 6= t}

conv(S) and L(xt) are disjoint if and only if

|{y0, . . . , yn−1} ∩ S|< n.

But this remains true if we replace each yi by any element of int(C(xt)) which
is sufficiently close to yi. It follows that we can find xt_i ∈ int(C(xt)), i < n, such
that for all S ⊆∈

⋃
{C(xs) : s ∈ nm ∧ s 6= t} ∪

⋃
i<n C(xt_i) we have

|{i < n : C(xt_i) ∩ S 6= ∅}|< n

if and only if conv(S) is disjoint from L(xt). Moreover, we can chose xt_i, i < n,
such that

(i) for all i, j < n with i 6= j, C(xt_i) is disjoint from C(xt_j) and
(ii) for all i < n, C(xt_i) is included in C(xt) and has diameter less than

2−(m+1).
(i) can be accomplished by choosing xt_i sufficiently close to yi and (ii) by choosing
xt_i sufficiently close to Sn−1.

Proceeding in this way, we get a family (xs)s∈n<ω with the desired properties. �

Using Lemma 2.1, we can show

Theorem 2.2. For each n ∈ ω \ 2 there is a closed subset of Rn such that γ(X) =
cov(In).

Proof. Let (xs)s∈n<ω be as in Lemma 2.1. Let Y be the set of accumulation points
of {xs : s ∈ n<ω}. Clearly, Y ⊆ Sn.

For each σ ∈ nω let h(σ) be the unique element of
⋂

m∈ω C(xσ�m). Note that
h : nω → Y is a homeomorphism. We define a first approximation X̃ of X.

For m ∈ ω let

X̃m =
⋃
{conv(

⋃
{C(xs) : s ∈ I}) : I ⊆ nm is < n-ary}.

Clearly, each X̃m is closed. Let X̃ :=
⋂

m∈ω X̃m.
Note that if S ⊆ nω is < n-ary, then conv(h[S]) is included in every X̃m, m ∈ ω.

This shows part a) of

Claim 2.3. Let S ⊆ nω.
a) If S is < n-ary, then conv(h[S]) ⊆ X̃.
b) X̃ is disjoint from each L(xs), s ∈ n<ω.



4 STEFAN GESCHKE AND MENACHEM KOJMAN

Part b) of this claim follows from the fact that by property 5. in Lemma 2.1, for
all m ∈ ω and all s ∈ nm, X̃m is disjoint from L(xs).

Since X̃ is closed and the length of each L(xs) is strictly less than 2− dom(s), for
each s ∈ n<ω there is an open set Us such that

(i) L(xs) ⊆ Us,
(ii) Us is disjoint from X̃,
(iii) the diameter of Us is less than 2− dom(s), and
(iv) Bn \ Us is countably convex.

For (iv) it is sufficient to choose Us as the interior of a polyhedron.
Let

X := conv(Y ) \
⋃
{Us : s ∈ n<ω}.

It is clear that X is closed.

Claim 2.4. S ⊆ nω is < n-ary if and only if conv(h[S]) is included in X.

Since X̃ ⊆ X, by Claim 2.3, for every < n-ary set S ⊆ nω, conv(h[S]) ⊆ X. On
the other hand, if S ⊆ nω is not < n-ary, then there are σ0, . . . , σn−1 ∈ S and there
is t ∈ n<ω such that for m := dom(t), {σi � m + 1 : i < n} = {t_i : i < n}. By
property 4. in Lemma 2.1, conv({h(σi) : i < n}) intersects L(xt). However, X is
disjoint from L(xt). Therefore conv(h[S]) is not included in X. This shows Claim
2.4.

Now, whenever D is a collection of convex subsets of X, for each D ∈ D, h−1[D]
is < n-ary. D covers Y if and only if {h−1[D] : D ∈ D} covers nω. It follows that
the minimal size of a family of convex subsets of X covering Y is exactly cov(In).
Thus we are done if we can show

Claim 2.5. X \ Y is countably convex.

First note that Y = X ∩Sn. Now fix a countable base V for the open sets in Rn

consisting of convex sets. For each x ∈ X\Y there is Vx ∈ V such that x ⊆ Vx ⊆ Bn

and Vx intersects only finitely many of the Us, s ∈ n<ω. Vx ∩X is the intersection
of finitely many countably convex sets. Therefore Vx∩X itself is countably convex.
But since V is countable, the set {Vx ∩X : x ∈ X \ Y } is countable. It follows that
X \ Y =

⋃
{Vx ∩X : x ∈ X \ Y } is countably convex. �

2.1. An infinite-dimensional example. The sets X ⊆ Rn constructed above
have an infinite dimensional analogue.

Definition 2.6. Let Iω be the ideal on
∏

n∈ω(n + 1) consisting of those sets S
such that for each t ∈ T (S) with t 6= ∅, |succT (S)(t)|≤ dom(t). Note that for each
nonempty t ∈ T (

∏
n∈ω(n + 1)) we have |succT (

∏
n∈ω(n+1))(t) |= dom(t) + 1. Let

Tω := T (
∏

n∈ω(n + 1)).

Note that Tω =
⋃

n∈ω

∏
m<n(m + 1).

Let V be an infinite dimensional Hilbert space and let B denote the unit ball in
H. For each point x ∈ int(B)\{0} let P (x), H(x), C(x), and L(x) be defined as in
the finite dimensional case. A slight modification of the proof of Lemma 2.1 gives

Lemma 2.7. There is a family (xs)s∈Tω
of points in int(B \{0}) with the following

properties:
(1) For all s, t ∈ Tω with s ⊆ t, C(xt) ⊆ C(xs).
(2) For all s, t ∈ Tω, if s and t are incomparable, then C(xs) and C(xt) are

disjoint.
(3) For all t ∈ Tω the diameter of C(xt) is less than 2−dom(t).
(4) For all n ∈ ω, all s ∈

∏
m<n(m + 1) and all zi ∈ C(xs_i), i < n + 1,

conv({zi : i < n + 1}) intersects L(xs).



CONVEXITY NUMBERS OF CLOSED SETS IN Rn 5

(5) For all n ∈ ω and all t ∈
∏

m<n(m + 1), if S ⊆
∏

m<n+1(m + 1) is such
that

|{i < n + 1 : t_i ∈ S)}|< n + 1,

then conv(
⋃

s∈S C(xs)) is disjoint from L(xt).

Using this lemma and a straight forward modification of the proof of Theorem
2.2 we obtain

Theorem 2.8. For every infinite dimensional Hilbert space V there is a closed
subset of H such that γ(X) = cov(Iω).

3. Inequalities in ZFC

As mentioned before, it has been shown in [6] that cov(Im) < cov(In) is consis-
tent for n < m. We cannot hope for more independence results here since n < m
implies cov(Im) ≤ cov(In) in ZFC.

Lemma 3.1. a) cov(Im) ≤ cov(In) for all n, m ∈ ω \ 2 with n < m.
b) cov(Iω) ≤ cov(In) for all n ∈ ω \ 2.

Proof. For a) let n, m ∈ ω\2 be such that n < m. Let f : m → n be onto. f induces
a continuous map g : mω → nω which is onto. It is easily seen that the preimage
of a < n-ary subset of nω under g is a < m-ary subset of mω. It follows that for a
family F of < n-ary subsets of nω which covers nω, {g−1[F ] : F ∈ F} is a family
of < m-ary subsets of mω which covers mω. This implies cov(Im) ≤ cov(In).

The proof of b) is similar. �

The cardinal invariant hm turns out to be a natural upper bound for cov(In),
n > 2. Recall the definition of hm. A set S ⊆ 2ω is monochromatic if for all
unordered pairs {x, y} ∈ [S]2 the parity of the first coordinate where x and y
disagree is the same. hm is the covering number of the ideal of monochromatic
subsets of 2ω.

Lemma 3.2. cov(In) ≤ hm for all n ∈ ω \ 3.

Proof. By Lemma 3.1 it is sufficient to show cov(I3) ≤ hm.
Let S ⊆ 2ω. Then S is monochromatic if and only if T (S) branches only at even

levels or only at odd levels. We define a homeomorphism h : 2ω → 3ω mapping
monochromatic sets onto < 3-ary sets.

h will be constructed from f : 3<ω → 2<ω which we define by recursion. Let
f(∅) := ∅. Suppose f(t) has been defined for some t ∈ 3<ω. For i < 3 let

f(t_i) :=


f(t)_0 if i = 0,

f(t)_1_0 if i = 1, and
f(t)_1_1 if i = 2.

For x in 2ω let h(x) :=
⋃
{s ∈ 3<ω : f(s) ⊆ x}.

Note that if S ⊆ 2ω is monochromatic, then for each t ∈ 3<ω at most two of the
sequences f(t_i), i < 3, are contained in T (S). This implies that h[S] is < 3-ary
if S ⊆ 2ω is monochromatic.

Since h is a bijection, it follows that cov(I3) is not greater than hm. �

We now look for lower bounds of cov(Iω). Let M denote the ideal of meager
subsets of 2ω and let N denote the ideal of measure zero subsets of 2ω. Recall that
for cov(M) and cov(N ) it does not matter whether we consider the ideals M and
N on 2ω, on nω for some n > 2, on

∏
n∈ω(n + 1), or on R.

It is easy to see that every set S ∈ Iω is nowhere dense and of measure zero in∏
n∈ω(n + 1). This implies
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Lemma 3.3. max(cov(M), cov(N )) ≤ cov(Iω)

4. Consistency results

4.1. The basic forcing notions. We introduce the basic building blocks for our
forcing construction. The forcing notions Dn defined below were introduced and
studied in [6]. We will use a countable support product of the Dn to construct the
models announced above.

Definition 4.1. For each n ∈ ω \2 let Dn be the set of trees p ⊆ n<ω such that for
each t ∈ p, |succp(t)|∈ {1, n} and there is s ∈ T such that t ⊆ s and |succp(s)|= n.
The order on Dn is set inclusion. For m ∈ ω and p ∈ Dn let pm consist of those t ∈ p
such that |succp(t)|= n and t has exactly m proper initial segments with the same
property. For p, q ∈ Dn let p ≤m q if p ≤ q and pm = qm. A sequence (pm)m∈ω in
Dn is a fusion sequence if there is a non-decreasing unbounded function f : ω → ω
such that for each m ∈ ω, pm+1 ≤f(m) pm. If (pm)m∈ω is a fusion sequence, its
fusion pω :=

⋂
m∈ω pm is easily seen to be an element of Dn.

Let p ∈ Dn. Each σ ∈ nm uniquely determines an element tσ of pm. Let
pσ := {s ∈ p : tσ ⊆ s ∨ s ⊆ tσ}.

Note that D2 is just the ordinary Sacks forcing and Dn adds a real which is not
contained in any < n-ary subset of nω coded in the ground model. Using a standard
fusion argument, one can show that the forcing Dn has the n-localization property.
That is, any x ∈ ωω in a generic extension by Dn is contained in a < n-ary set
coded in the ground model.

4.2. Making the continuum big. We show how to get various values for cov(In).
This section owes much to [6]. We need a lot of notation.

Definition 4.2. Let (Qi)i∈I be a family of forcing notions of the type Dn. For
each i ∈ I let n(i) be such that Qi = Dn(i). For p ∈

∏
i<I Qi let supt p := {i ∈ I :

p(i) 6= 1Qi}. Let

Q :=

{
p ∈

∏
i∈I

Qi :|supt(p)|≤ ℵ0

}
be the countable support product over the family (Qi)i∈I . Q is ordered coordinate-
wise. For a finite set F ⊆ I and η : F → ω let the relation ≤F,η on Q be defined as
follows:

For all p, q ∈ Q let p ≤F,η q if p ≤ q and for all i ∈ F , p(i) ≤η(i) q(i). For
p, F , and η as before and σ ∈

∏
i∈F n(i)η(i) let p ∗ σ be such that for all i ∈ F ,

(p ∗ σ)(i) = p(i)σ(i) and for all i ∈ I \ F , (p ∗ σ)(i) = p(i).
A sequence (pn)n∈ω of conditions in Q is a fusion sequence if there is an increasing

sequence (Fn)n∈ω of finite subsets of I and a sequence (ηn)n∈ω such that for all
n ∈ ω, ηn : Fn → ω, for all i ∈ Fn we have ηn(i) ≤ ηn+1(i), pn+1 ≤Fn,ηn

pn, and
for all i ∈ supt(pn) there is m ∈ ω such that i ∈ Fm and ηm(i) ≥ n. If (pn)n∈ω is a
fusion sequence in Q, then for each i ∈ I, (pn(i))n∈ω is a fusion sequence in Qi or
constant with value 1Qi . This shows that

pω :=

(⋂
n∈ω

pn(i)

)
i∈I

is a condition in Q, the fusion of the sequence (pn)n∈ω.

Now let f : ω \ 2 → {κ ∈ Card : cf(κ) > ℵ0} be a non-increasing function. We
define a forcing notion P as follows:

Let J := {n ∈ ω : ¬∃m < n(f(n) = f(m))}. Let I be a set of size f(2) and let
g : I → J be a function such that for each n ∈ J , |g−1(n)|= f(n). For each i ∈ I
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let Qi := Dg(i). Finally, let P be the countable support product over the sequence
(Qi)i∈I .

For each n ∈ J let In := g−1(n) and I≥n := g−1[ω \ n]. Let Pn be the countable
support product over (Qi)i∈In

and let P≥n be the countable support product over
(Qi)i∈I≥n

We regard the Qi’s, Pn’s, and P≥n’s as complete suborders of P in the
natural way. Note that P = P≥2.

Lemma 4.3. For each P-name ẋ for a new element of ωω, every condition p ∈ P,
and each n ∈ ω there is a P≥n-name Ṫ for an < n-ary subtree of ω<ω and a
condition q ≤ p such that q forces ẋ to be a branch through Ṫ .

Proof. Let ẋ, p, and n be as above. We construct a tree S in the ground model and
a condition q ≤ p which forces that ẋ is a branch through S. If G is P≥n-generic
over the ground model, we find a < n-ary subtree T of S such that ẋ is forced to
be a branch through T . Ṫ will be the P≥n-name for T .

For a condition r ∈ P let xr be the maximal element t of ω<ω such that r 
 t ⊆ ẋ.
xr exists since ẋ is a name for a new real. Let

Tr := {t ∈ ω<ω : ∃r′ < r(r′ 
 t ⊆ ẋ)}
be the tree of r-possibilities for ẋ. Clearly, r forces ẋ to be a branch through Tr.
The ground model tree S will be Tq. We have to find q.

For s, t ∈ ω<ω we write s ⊥ t if s and t are incomparable. Let F ∈ [I]<ℵ0

and η : F → ω. A condition r ∈ P is (F, η)-faithful if for all r′ ≤F,η r and all
σ, τ ∈

∏
i∈F g(i)η(i) with xr′σ ⊥ xr′τ already xrσ ⊥ xrτ .

Claim 4.4. Suppose r is (F, η)-faithful.
a) Let j ∈ I \ F and define F ′ := F ∪ {j} and η′ := η ∪ {(j, 0)}. Then r is

(F ′, η′)-faithful.
b) Let j ∈ F , and let η′ be such that for all i ∈ F \ {j}, η′(i) = η(i) and

η′(j) = η(j) + 1. Then there is a condition r′ ≤F,η r such that r′ is (F, η′)-faithful.

Part a) of this claim follows immediately from the definitions. For the proof of
b) fix an enumeration {σ1, . . . , σz} of

∏
i∈F g(i)η(i). We define a ≤F,η-descending

sequence (rk)k<z below r.
For k ∈ {1, . . . , z} and l < g(j) let σl

k be such that for all i ∈ F \{j}, σl
k(i) = σk(i)

and σl
k(j) = σk(j)_l. Let r0 := r.

Suppose we have constructed rk for some k < z and we want to build rk+1. Let
rk+1 ≤F,η′ rk be such that the set {xrk+1∗σl

k+1
: l < g(j)} has the largest possible

cardinality.
Let r′ := rz.
Subclaim. r′ is (F, η′)-faithful.
Suppose not. Then there is r′′ ≤F,η′ r′ such that for some τ, ρ ∈

∏
i∈F g(i)η′(i)

we have xr′′τ ⊥ xr′′ρ , but xr′τ 6⊥ xr′ρ
. Since r is (F, η)-faithful and r′ ≤F,η r, this

implies that there is k ∈ {1, . . . , z} such that for some l0, l1 < g(j) with l0 6= l1,
τ = σl0

k and ρ = σl1
k .

But now {xr′′∗σl
k

: l < g(j)} has a larger cardinality than {xrk∗σl
k

: l < g(j)},
contradicting the choice of rk. This shows the subclaim and finishes the proof of
b).

Using a) and b) of Claim 4.4 together with some bookkeeping, we construct a
sequence (pm, Fm, ηm, jm)m∈ω such that

(1) (pm)m∈ω is a fusion sequence in P witnessed by (Fm, ηm)m∈ω and F0 =
η0 = ∅,

(2) for all m ∈ ω, pm is (Fm, ηm)-faithful and pm ≤ p,
(3) for all m ∈ ω and all i ∈ Fm, ηm+1(i) ≤ ηm(i) + 1,
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(4) for all m ∈ ω, jm is the unique element of Fm+1 such that either jm ∈ Fm

and ηm+1(jm) = ηm(jm) + 1 or jm 6∈ Fm and ηm+1(jm) = 1, and
(5) for all m ∈ ω and all σ ∈

∏
i∈Fm

g(i)ηm(i), pm ∗ σ decides at least ẋ � m.
Let q be the fusion of the pm, m ∈ ω, and let S := Tq. Note that for all m ∈ ω,

q ≤Fm,ηm pm. For each m ∈ ω let Sm+1 be the tree generated by{
xpm∗σ : σ ∈

∏
i∈Fm

g(i)ηm(i)

}
.

Let S0 be the “tree” generated by xp0 .
Note that each Sm is a subtree of S and S =

⋃
Sm. Moreover, by the faithfulness

of the pm’s, if s ∈ S and t ∈ Sm are incomparable, then there is s′ ∈ Sm such that
s′ ⊆ s and s′ ⊥ t.

It follows that if s is a maximal element of Sm, then there are at most g(jm)
pairwise incomparable elements of Sm+1 extending s.

Now let G be P≥n-generic with q � I≥n
∈ G. Let T be the tree generated by

{xr : r ∈ P is compatible with each element of G}.

Claim 4.5. T is < n-ary.

Suppose not. Then there is t ∈ T such that |succT (t)|≥ n. Let m ∈ ω be minimal
such that succT (t) ⊆ Sm+1. By our observation above, g(jm) ≥ n. But for each
σ ∈ g(jm)ηm(jm) exactly one of the conditions q(jm)σ_l, l < g(jm), is in G (recall
that we regard Qjm

as a suborder of P).
This means that only one of the sequences xpm∗(σ_l), l < g(jm), is contained

in T . Therefore, for each maximal element s of T ∩ Sm all the extensions of s in
T ∩Sm+1 are compatible. Since all sequences of the form t_l, l ∈ ω, which are in S
are contained in Sm+1, this contradicts the assumption |succT (t)|≥ n and finishes
the proof of Claim 4.5.

To finish the proof of the lemma, let Ṫ be a P≥n-name for T . �

For a P-name ȧ let supt(ȧ) ⊆ I be minimal such that ȧ is in fact a Q-name
where Q is the countable support product over (Qi)i∈supt(ȧ). Note that under CH,
P satisfies the ℵ2-c.c. and thus every P-name ȧ for a real is equivalent to a P-name
ḃ with |supt(ḃ)|≤ ℵ1.

For j ∈ I let ẋj be the Qj-name for the generic real added by Qj , i.e., for the
unique common branch of all conditions in a Qj-generic filter. We also regard ẋj

as a P-name. For a tree T let [T ] := {x ∈ ωω : ∀m ∈ ω(x � m ∈ T )}.

Lemma 4.6. If Ṫ is a P-name for a < n-ary tree and j ∈ I \ supt(Ṫ ) is such that
g(j) ≥ n, then 1P 
 ẋj 6∈ [Ṫ ].

Proof. Let p ∈ P. It suffices to find r ≤ p such that r 
 ẋj 6∈ [Ṫ ].
Let t ∈ p(j) be such that |succp(t)|≥ n. Then for some m ∈ ω, t ∈ g(j)m. Since

j 6∈ supt(Ṫ ), there is q ≤ p such that q decides Ṫ ∩ ωm+1 and q(j) = p(j). Let
S ⊆ ωm+1 be such that q 
 S = Ṫ ∩ ωm+1. By the assumption on Ṫ , S is < n-ary.
Therefore, there is l ∈ g(j) such that t_l 6∈ S. Let r ≤ q be such that all elements
of r(j) are comparable with t_l. Now r 
 t_l ⊆ ẋj and thus r is as required. �

Lemma 4.3 and Lemma 4.6 enable us to prove

Theorem 4.7. Let M be a model of GCH and let f : ω \ 2 → {κ ∈ Card : cf(κ) >
ℵ0} be non-increasing. Let P be defined as above. If G is P-generic over M , then

M [G] |= 2ℵ0 = f(2) and for all n > 2, cov(In) = f(n).
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Proof. It is clear that 2ℵ0 = f(2) in M [G]. Let n > 2. Lemma 4.3 tells us that in
M [G] every x ∈ ωω is a branch through a < n-ary tree which has a P≥n-name. But
up to equivalence, there are only f(n) P≥n-names for subtrees of ω<ω. This shows
M [G] |= cov(In) ≤ f(n).

On the other hand, in M [G] let F be an uncountable family of < n-ary trees of
size < f(n). By the ℵ2-c.c. of P, there is a family D of P-names for < n-ary trees
of the same size such that each T ∈ F has a name Ṫ ∈ D. We may assume that
|
⋃

Ṫ∈D supt(Ṫ )|< f(n). Now there is j ∈ I \
⋃

Ṫ∈D supt(Ṫ ) such that g(j) ≥ n. It
follows from Lemma 4.6 that (ẋj)G is not a branch through any of the trees in F .
This implies M [G] |= cov(In) ≥ f(n). �

4.3. cov(Iω) can be smaller than cov(In). It is possible to include cov(Iω) in
the statement of Theorem 4.7. The natural forcing notion corresponding to cov(Iω)
is the following:

Definition 4.8. Let Dω be the partial order consisting of all subtrees p of Tω such
that for each t ∈ p, |succp(t)|∈ {1,dom(t) + 1} and there is s ∈ p such that t ⊆ s
and |succp(s)|= dom(s) + 1.

Dω adds a new element of
∏

n∈ω(n + 1) which is not contained in any element
of Iω coded in the ground model. Let f : (ω + 1) \ 2 → {κ ∈ Card : cf(κ) > ℵ0} be
non-increasing.

Let J := {α ∈ ω+1 : ¬∃β < α(f(β) = f(α))}. Let I be a set of size f(2) and let
g : I → J be a function such that for each α ∈ J , |g−1(α)|= f(α). For each i ∈ I
let Qi := Dg(i). Finally, let P be the countable support product over the sequence
(Qi)i∈I .

Generalizing the proof of Theorem 4.7 we obtain

Theorem 4.9. Let M be a model of GCH and let f : (ω + 1) \ 2 → {κ ∈ Card :
cf(κ) > ℵ0} be non-increasing. Let P ∈ M be defined as above. If G is P-generic
over M , then

M [G] |= 2ℵ0 = f(2) and for all α ∈ (ω + 1) \ 3, cov(Iα) = f(α).

5. Concluding remarks and open problems

Combining Theorem 4.9, Theorem 2.2, and Theorem 2.8 we get

Corollary 5.1. Let V be an infinite dimensional Hilbert space. For each n ∈ ω \ 2
there is a closed set Xn ⊆ Rn and there is a closed set Xω ⊆ V such that for every
non-increasing function f : (ω + 1) \ 2 → {κ ∈ Card : cf(κ) > ℵ0} it is consistent
that for each α ∈ (ω + 1) \ 2, γ(Xα) = f(α).

Clearly, Theorem 1.1 follows from this. Since for all n, Rn embeds into every
infinite dimensional Hilbert space, we have

Corollary 5.2. For each n ∈ ω it is consistent that for every infinite dimensional
Hilbert space V , |σconv(V )| is at least n.

However, we believe that the results on |σconv(Rn)| and on |σconv(V )| for infinite
dimensional Hilbert spaces V are not optimal yet.

Question 5.3. a) Let n > 2. Is |σconv(Rn)|= n consistent?
b) Let V be an infinite dimensional Hilbert space. Can |σconv(V )| be infinite?

If we want to construct a model in which |σconv(Rn)|= n for some n > 2, the
natural strategy is to find a model in which the cardinals cov(Im), m ∈ {3, . . . , n},
are strictly smaller than hm and pairwise different and in which hm is strictly less
than 2ℵ0 . However, we do not know how to do this. We do not even know the
answer to
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Question 5.4. Is ℵ1 < hm < 2ℵ0 consistent?

A problem which is probably more of geometric than of set-theoretic nature is
the problem of getting reasonable upper bounds for the size of σconv(Rn).

Question 5.5. Let n > 2. Is |σconv(Rn)| finite? Is |σconv(Rn)|≤ n?
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