
A NOTE ON MINIMAL DYNAMICAL SYSTEMS

STEFAN GESCHKE

Abstract. Let G be a topological group acting continuously on an infinite

compact space X. Suppose the dynamical system (X, G) is minimal, i.e., sup-
pose that every point in X has a dense G-orbit. We show that X is coabsolute

with a Cantor space if G is ω-bounded. This generalizes a theorem of Balcar

and B laszczyk [1].

1. Introduction

Let G be a topological group and X a compact space. (Here compact means
Hausdorff and quasi-compact.) An action of G on X is a homomorphism

π : G → Aut(X)

where Aut(X) is the group of autohomeomorphisms of X.
Aut(X) carries a natural topology, the compact open topology (see [3] for the

definition and the properties of this topology). The action π is continuous if it is
continuous with respect to this topology on Aut(X). It is important to notice that
an action

π : G → Aut(X)
is continous if and only if the mapping

G×X → X; (g, x) 7→ π(g)(x)

is continuous. This is the crucial feature of the compact open topology on Aut(X).
If π is a continuous action of G on X, then the triple (X, G, π) is a dynamical

system or, in the context of this paper, simply a system. Usually the action π will
be clear from the context and we do not mention it, i.e., we write (X, G) instead of
(X, G, π) and for g ∈ G and x ∈ X we write gx instead of π(g)(x). Similarly, for
every Y ⊆ X and every g ∈ G we write gY for the set π(g)[Y ]. For every x ∈ X
the set Gx = {gx : g ∈ G} is the orbit of x. The space X is the phase space of the
system. To avoid trivialities, we assume all the phase spaces under consideration
to be either infinite or singletons.

The system (X, G) is minimal if every orbit is dense in X. It is easily checked that
(X, G) is minimal if and only X has no proper non-empty closed subset Y which
is G-invariant, i.e., for which GY = {gy : g ∈ G, y ∈ Y } is equal to Y . (Hence the
term minimal.) Moreover, (X, G) is minimal if and only if for all non-empty open
O ⊆ X there is a finite set F ⊆ G such that FO = {gx : g ∈ F, x ∈ O} = X.

For dynamical systems (X, G) and (Y, G), a continuous map h : X → Y is
a homomorphism if it commutes with the actions, i.e., if for all x ∈ X and all
g ∈ G we have gh(x) = h(gx). A homomorphism h of dynamical systems is an
isomorphism if it is a homeomorphism. A minimal system (X, G) is universal if
for every other minmal system (Y, G) there is a homomorphism h : X → Y . It
is known that every topological group has a universal minimal system, which is
unique up to isomorphism.
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The phase spaces of universal minimal systems for discrete groups are extremely
disconnected, that is, they are Stone spaces of complete Boolean algebras. This is
where Cohen algebras enter the picture. A complete Boolean algebra is Cohen if it
is the completion of a free Boolean algebra. Balcar and B laszczyk [1] showed that
extremely disconnected phase spaces of minimal systems for countable groups are
Stone spaces of Cohen algebras. In particular, phase spaces of universal minimal
systems for countable discrete groups are Stone spaces of Cohen algebras. (For more
informations about universal minimal systems see [2] and the references therein.)

The following is easily verified: for every discrete group G and every dynamical
system (X, G) there is a canonical action of G on the absolute (or Gleason space)
E(X) of X. E(X) is the Stone space of the complete Boolean algebra of regular
open subsets of X. There is a canonical continuous map from E(X) onto X. This
map turns out to be a homomorphism of dynamical systems. Moreover, if (X, G)
is minimal, then so is (E(X), G).

Thus, from the Balcar-B laszczyk theorem it follows that for every countable
discrete group G and every minimal dynamical system (X, G), the absolute of X
is the Stone space of a Cohen algebra or, in other words, X is coabsolute with
a generalized Cantor space. Here two compact spaces X and Y are coabsolute if
their absolutes are homeomorpic. We show that for every ω-bounded group G and
every minimal dynamical system (X, G), X is coabsolute with a generalized Cantor
space. Here a topological group G is ω-bounded if for every non-empty open set
O ⊆ G, G is covered by countably many translates of O. Thus, the class of ω-
bounded groups includes important uncountable examples such as R and the unit
circle. Our argument is a variation of Uspenskij’s proof of the fact that compact
groups are Dugundji [7].

2. Compact spaces coabsolute with Cantor spaces

The key for proving that the phase spaces of minimal dynamical systems for
ω-bounded groups are coabsolute with generalized Cantor spaces is Shapiro’s [6]
characterization of compact spaces that are coabsolute with generalized Cantor
spaces. Koppelberg [5] reformulated Shapiro’s characterization in terms of Boolean
algebras and simplified it a bit.

Definition 2.1. Let A and B be Boolean algebras such that A ≤ B, i.e., such that
A is a subalgebra of B. Then A is a regular subsalgebra of B if every maximal
antichain in A is maximal in B. The weight w(B/A) of B over A is the least size
of a set C ⊆ B such that B is generated by A ∪ C. The π-weight πw(B) of B is
the least size of a dense subset of B. For b ∈ B let B � b := {b′ ∈ B : b′ ≤ b}.
B is homogeneous in π-weight if for all b ∈ B+ = B \ {0}, πw(B � b) = πw(B).
The π-weight πw(B/A) of B over A is the least size of a set C ⊆ B such that the
subalgebra of B generated by A ∪ C is dense in B.

We use a condensed version of Koppelberg’s characterization of Cohen algebras
extracted from [4].

Theorem 2.2. Let B be a complete Boolean algebra which is homogeneous in π-
weight. The following are equivalent:

(1) B is the completion of a free Boolean algebra.
(2) B is the union of an increasing chain (Bα)α<δ of regular subalgebras of B

such that B0 = {0, 1}, for every limit ordinal γ < δ, Bγ =
⋃

α<γ Bα, and
for all α < δ, w(Bα+1/Bα) ≤ ℵ0.

(3) B has a dense subalgebra that is the union of an increasing chain (Bα)α<δ

of regular subalgebras of B such that B0 = {0, 1}, for all limit ordinals
γ < δ,

⋃
α<γ Bα is dense in Bγ , and for all α < δ, πw(Bα+1/Bα) ≤ ℵ0.
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From this characterization we derive a criterion for when a compact space is
coabsolute with a generalized Cantor space. Our criterion seems to be more appli-
cable than Shapiro’s original characterization.

As in Shapiro’s characterization, we use inverse systems. Our notation for inverse
systems follows [3].

Definition 2.3. Let δ be an ordinal. An inverse system {Xα, πβ
α, δ} of compact

spaces is continuous if for every limit ordinal γ < δ, Xγ is the limit of the inverse
system {Xα, πβ

α, δ}.
A continuous map f : X → Y is semi-open if for every non-empty open set

O ⊆ X, f [O] has a non-empty interior. The weight w(f) of f is the least cardinal
κ such that there is a family O of size κ of open sets in X such that

O ∪ {f−1[U ] : U ⊆ Y is open}
forms a subbase of X.

The π-weight of a topological space X is the least size of a family O of non-empty
open subsets of X such that for every non-empty open set U ⊆ X there is O ∈ O
such that O ⊆ U . X is homogeneous in π-weight if all the non-empty open subsets
of X are of the same π-weight.

Lemma 2.4. Let X be a compact space homogeneous in π-weight. Suppose there
is an ordinal δ such that X is the limit of a continuous inverse system {Xα, πβ

α, δ}
such that for all α < δ, πα+1

α : Xα+1 → Xα is onto, semi-open, and of countable
weight. Then X is coabsolute with a generalized Cantor space.

The proof of this Lemma uses

Lemma 2.5. Suppose X and Y are compact spaces and f : X → Y is continuous,
semi-open, and onto. Then

f∗ : ro(Y ) → ro(X); O 7→ int cl(f−1[O])

is a complete embedding.
Moreover,

πw(ro(X)/f∗[ro(Y )]) ≤ w(f).

Proof. First we have to check that f∗ is a Boolean homomorphism at all. It is
clear that f∗ is monotone and preserves intersections. Now let S ⊆ ro(Y ). Put
O = int cl(

⋃
S). We show that f∗(O) = int cl(

⋃
{f∗(U) : U ∈ S}).

By the monotonicity of f∗,

f∗(O) ⊇ int cl(
⋃
{f∗(U) : U ∈ S}).

Suppose
f∗(O) 6= int cl(

⋃
{f∗(U) : U ∈ S}).

Then there is a non-empty open set V ⊆ f∗(O) which is disjoint from cl(
⋃
{f∗(U) :

U ∈ S}). In particular, f [V ] is disjoint from
⋃

S. Since f is semi-open, W =
int(f [V ]) is non-empty. But W is disjoint from cl(

⋃
S), contradicting the fact

W ⊆ O = int cl(
⋃

S).

This shows that f∗ preserves complements and is complete. Clearly, the kernel
of f∗ is trivial. Thus, f∗ is a complete embedding.

Now let O be a family of size w(f) of open subsets of X such that

O ∪ {f−1[U ] : U ⊆ Y is open}
is a subbase for X. Then clearly, F ∗[ro(Y )]∪{int cl(O) : O ∈ O} generates a dense
subalgebra of ro(X). �
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Proof of Lemma 2.4. Let B = ro(X). The homogeneity of X in π-weight implies
that B is homogeneous in π-weight. Let {Xα, πβ

α, δ} be an inverse system as in
Lemma 2.4. For all α < δ let πα : X → Xα be the canonical map. Put Bα =
π∗α[ro(Xα)].

We show that
⋃

α<δ Bα is dense in B. It is sufficient to show that for every
non-empty open subset O of X there are α < δ and a non-empty open set U ⊆ Xα

such that π−1
α [U ] ⊆ O.

Let x ∈ O. For every y ∈ X \O choose an ordinal αy < γ and disjoint open sets
Vy,Wy ⊆ X such that x ∈ Vy, y ∈ Wy, and Vy and Wy are preimages under παy

of open subsets of Xαy
. It follows from the properties of limits of inverse systems

that this can be done.
Since X \O is compact, it is covered by finitely many Wy, say

X \O ⊆ Wy1 ∪ · · · ∪Wyn
.

Let α = max{αy1 , . . . , αyn} and V = Vy1 ∩· · ·∩Vyn . Then V is the preimage under
πα of an open subset U of Xα. Moreover, V ⊆ O.

By the same argument, for every limit ordinal γ < δ,
⋃

α<γ Bα is dense in Bγ .
In order to show that every Bα is a regular subalgebra of B, by Lemma 2.5 it is

enough to prove that every πα is semi-open. Let α < δ. By induction we show that
for all γ < δ with α < γ, πγ

α is semi-open. The argument used in the limit steps of
this inductive proof then also shows that πα is semi-open.

The successor steps of the induction are easy. Let γ < δ be a limit ordinal and
let O be a non-empty open subset of Xγ . Since

⋃
β<γ Bβ is dense in Bγ , there are

β < γ and a non-empty open subset U of Xβ such that (πγ
β)−1[U ] ⊆ O. We may

assume β > α. Since πβ
α is semi-open by the inductive hypothesis, πγ

α[O] ⊇ πβ
α[U ]

has a non-empty interior. It follows that πγ
α is semi-open.

Lemma 2.5 also implies that for every α < δ,

πw(Bα+1/Bα) = πw(ro(Xα+1)/(πα+1
α )∗[ro(Xα)]) ≤ w(πα+1

α ) ≤ ℵ0

Now Theorem 2.2 implies that B is the completion of a free Boolean algebra. �

We intend to use yet another criterion for when a compact space X is coabsolute
with a generalized Cantor space. This criterion speaks about the Banach algebra
C(X) of continuous real-valued functions on X.

Definition 2.6. Let X be a compact space. For a closed subalgebra B of C(X) let
≡B denote the equivalence relation on X that identifies two points x, y ∈ X if for
all f ∈ B, f(x) = f(y). (We require subalgebras of C(X) to contain the constant
function with value 1 and therefore all constant functions.)

Recall that, essentially by the Stone-Weierstrass theorem, closed subalgebras of
C(X) correspond to Hausdorff quotients of X. A closed subalgebra B corresponds
to the quotient X/ ≡B or, more precisely, to the quotient map q : X → X/ ≡B . If
Y is Hausdorff and p : X → Y is onto, then p corresponds to the closed subalgebra
{f ◦ p : f ∈ C(Y )} of C(X). Note that

C(Y ) → C(X); f 7→ f ◦ p

is an isometric homomorphism of real algebras.

Definition 2.7. For a ∈ C(X) let

a⊥ = {b ∈ C(X) : a · b = 0}.

A closed subalgebra B of C(X) is a regular subalgebra of C(X) if for every non-zero
a ∈ C(X) there is a non-zero b ∈ B such that a⊥ ∩B ⊆ b⊥.
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Lemma 2.8. Let X be a compact space and suppose that B is a closed subalgebra
of C(X). Then the canonical map q : X → X/ ≡B is semi-open if and only if B is
a regular subalgebra of C(X).

Proof. Suppose that B is a regular subalgebra of C(X). Let O ⊆ X be a non-empty
open set. We have to show that q[O] has a non-empty interior. Let U ⊆ X be a
non-empty open set such that cl(U) ⊆ O. It suffices to show that q[cl(U)] has a
non-empty interior.

Let f ∈ C(X) be a non-zero function that vanishes outside U . Since B is regular,
there is a non-zero g ∈ B such that f⊥ ∩ B ⊆ g⊥. The function g is of the form
g̃ ◦ q for some g̃ ∈ C(X/ ≡B).

We claim that the non-empty open set

V = {y ∈ X/ ≡B : g̃(y) 6= 0}

is a subset of q[cl(U)]. For let y ∈ V . Suppose y 6∈ q[cl(U)]. Since q[cl(U)] is closed,
there is a function h ∈ C(X/ ≡B) such that h(y) 6= 0 but h vanishes on q[cl(U)].
Thus, h ◦ q ∈ f⊥ ∩ B. Now from the choice of g it follows that h ◦ q ∈ g⊥. But
h(y) · g̃(y) 6= 0. A contradiction.

For the other implication suppose that q is semi-open. We show that B is a
regular subalgebra of C(X). Let f ∈ C(X) be non-zero. Put

O = {x ∈ X : f(x) 6= 0}.

O is a non-empty open set. Since q is semi-open, there is a non-empty open set
U ⊆ q[O]. Let g ∈ C(X/ ≡B) be non-zero such that g vanishes outside U . Put
h = g ◦ q. Now g ∈ B and f⊥ ∩B ⊆ g⊥. �

Lemma 2.9. Let X be a compact space which is homogeneous in π-weight. Suppose
there is an increasing sequence (Bα)α<δ of regular closed subalgebras of C(X) such
that

(i)
⋃

α<δ Bα is dense in C(X),
(ii) for every limit ordinal γ < δ,

⋃
α<γ Bα is dense in Bγ , and

(iii) for every α < δ, Bα+1 is countably generated (as a closed subalgebra of
C(X)) over Bα.

Then X is coabsolute with a generalized Cantor space.

Proof. For every α < δ let Xα = X/ ≡Bα
. For α, β < δ with α < β let πβ

α : Xβ →
Xα be the canonical map.

Now X is the limit of the continuous inverse system {Xα, πβ
α, δ}. By Lemma

2.8, the πβ
α are semi-open. By Lemma 2.4 it remains to show that for every α < δ,

πα+1
α is of countable weight.

Let F ⊆ C(X) be a countable set such that Bα+1 the closed subalgebra of C(X)
that is generated by Bα ∪F . Let A be the closed subalgebra of C(X) generated by
F . Note that A is separable. Therefore X/ ≡A is a compact metric space.

Let

h : Xα+1 → Xα ×X/ ≡A

be the canonical embedding and let

p : Xα ×X/ ≡A→ Xα

be the projection to the first coordinate. Now πα+1
α = p ◦ h. Since X/ ≡A is of

countable weight, so is πα+1
α . �
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3. Minimal systems for ω-bounded groups

The crucial fact about homomorphisms of minimal dynamical systems is the
following well known

Lemma 3.1. Let G be a group and (X, G) and (Y,G) minimal dynamical systems.
If h : X → Y is a homomorphism of dynamical systems, then h is onto and semi-
open.

Proof. The set h[X] is a non-empty closed subspace of Y that is G-invariant. By
the minimality of (Y,G), h[X] = Y , i.e., h is onto.

Now let O ⊆ X be non-empty and open. Pick a non-empty open set U ⊆ X such
that cl(U) ⊆ O. By minimality, X is the union of finitely many translates of cl(U)
(even of U). It follows that Y is the union of finitely many translates of h[cl(U)].
By the Baire category theorem, one of these translates must have a non-empty
interior. Since G act on Y by homeomorphisms, h[cl(U)] has a non-empty interior.
Hence h[O] has a non-empty interior. �

Another simple observation is

Lemma 3.2. Let G be a group and (X, G) a minimal dynamical system. Then X
is homogeneous in π-weight.

Proof. Let U ⊆ X be an open set of minimal π-weight. We may assume that πw(U)
is infinite. By minimality, there is a finite set F ⊆ G such that X = FU . Let O be
a π-base of U of size πw(U). It is easily checked that

{fO : f ∈ F,O ∈ O}
is a π-base for X. �

We are now ready to prove

Theorem 3.3. Let G be an ω-bounded group. Suppose that (X, G) is a minimal
dynamical system. Then ro(X) is Cohen, i.e., X is coabsolute with a generalized
Cantor space.

Proof. By Lemma 3.2, it is sufficient to show that there is an increasing sequence
(Bα)α<δ of closed subalgebras of C(X) as in Lemma 2.9.

The natural action of G on C(X) is as follows: Let π denote the action of G on
X. For all g ∈ G and all f ∈ C(X) let gf = f ◦ π(g). It is well known that the
action of G on C(X) is continuous.

Let κ =|C(X)|. Fix an enumeration {fα : α < κ} of C(X). For every α < κ let
Bα be the closed subalgebra of C(X) generated by {gfβ : β < α, g ∈ G}. Clearly,
every Bα is closed under the group action.

For every α < κ, Cα+1 is generated over Cα by the set Gfα. By the continuity
of the action of G on C(X), Gfα is a continuous image of G. We claim that it is
separable.

For this it is sufficient to show that for every ε > 0, Gfα is covered by countably
many open balls of diameter ε. Let U be the open ball around fα of diameter ε.
Then there is an open set V ⊆ G such that V fα ⊆ U . Since G is ω-bounded, there
is a countable set T ⊆ G such that G = TV . This implies Gfα = TV fα. It follows
that Gfα ⊆ TU , i.e., Gfα is covered by countably many translations of U . Since G
acts on C(X) by isometries, the translations of U are open balls of diameter ε.

Since Gfα is separable, Bα+1 is countably generated over Bα as a closed subal-
gebra of C(X).

Since every Bα is closed under the group operation, for all α < κ the natural
map πα from X to X/ ≡Bα is a homomorphism of minimal systems. It follows that
πα is semi-open. Now by Lemma 2.8, Bα is a regular subalgebra of C(X). �
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