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Abstract. A point (x0, . . . , xn) ∈ Xn+1 is covered by a function f : Xn → X

iff there is a permutation σ of n + 1 such that xσ(0) = f(xσ(1), . . . , xσ(n)).

By a theorem of Kuratowski [5], for every infinite cardinal κ exactly κ n-ary
functions are needed to cover all of (κ+n)n+1. We show that for arbitrarily

large uncountable κ it is consistent that the size of the continuum is κ+n and

Rn+1 is covered by κ n-ary continuous functions.
We study other cardinal invariants of the σ-ideal on Rn+1 generated by con-

tinuous n-ary functions and finally relate the question of how many continuous
functions are necessary to cover R2 to the least size of a set of parameters such
that the Turing degrees relative to this set of parameters are linearly ordered.

1. Introduction

It is obvious that R2 is not the union of less than 2ℵ0 graphs of functions.
However, it might be possible to cover R2 by a small number of graphs of functions
and their reflections on the diagonal. It was noticed by several people that this
requires at least (2ℵ0)− functions where (2ℵ0)− is the least cardinal whose successor
is ≥ 2ℵ0 . (See for example [3] or [6].)

In fact, more can be said. Let us say that a point (x0, . . . , xn) ∈ Xn+1 is
covered by a function f : Xn → X iff there is a permutation σ of n + 1 such that
xσ(0) = f(xσ(1), . . . , xσ(n)). A set S ⊆ Xn+1 is covered by a family F of functions
from Xn to X iff every point in S is covered by some function in F . For a cardinal
κ let κ+n denote its n-th successor.

Using a slightly different formulation, Kuratowski [5] proved the following the-
orem, which, in the case n = 1, was brought to the authors’ attention by Ireneusz
Rec law.

Theorem 1.1. For every n ∈ ω and every infinite cardinal κ, (κ+n)n+1 can be
covered by κ n-ary functions, but not by less.

However, if for example |R| = κ+n, then the κ n-ary functions on R given by
Theorem 1.1 are usually not reasonably definable. If we restrict our attention to
nice functions such as Borel functions, continuous functions, or even smaller classes
of functions, it is not at all clear that R2 can be covered by a small number (i.e.,
< 2ℵ0) of such functions. Since already graphs of Borel functions are small subsets
of the plane in terms of measure and category, R2 cannot be covered by countably
many Borel functions.

However, there are several consistency results saying that R2 or squares of related
spaces can be covered by less than continuum many nice functions. Most of these
results use the Sacks model, a model of set theory obtained by adding ℵ2 Sacks reals
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to a model of CH using countable support iteration. The size of the continuum is
ℵ2 in this model. The following is known to be true in the Sacks model:

Steprans [7] proved that Rn+1 can be covered by ℵ1 smooth n-dimensional mani-
folds. It was noticed by Ciesielski and Pawlikowski [1] that Steprans’ result implies
that R2 can be covered by ℵ1 continuously differentiable functions. They also
showed that R2 can be covered by ℵ1 partial smooth functions which are defined
on perfect sets. Hart and van der Steeg [6] proved that (2ω)2 can be covered by
ℵ1 continuous functions and in [3] it was shown that (2ω)2 can be covered by ℵ1

Lipschitz functions. The last two results actually follow from the fact that R2 can
be covered by ℵ1 continuously differentiable functions by the arguments used in [2].

All these proofs have in common that the family of ground model sets of the
required type (functions or manifolds) covers the space under consideration in the
extension. The sets “of the required type” are always Borel sets, and by “ground
model set” we mean a Borel set that has a Borel code in the ground model. In the
following we identify Borel sets in different models of set theory if they share the
same Borel code.

It is a well known problem with countable support iteration that in the resulting
models the continuum is not bigger than ℵ2. So if we want to show the consistency
of a statement like “R2 can be covered by < 2ℵ0 continuous functions” with a
big continuum, we cannot simply generalize the Sacks-model arguments to higher
cardinalities.

However, there is another reasonable strategy of getting models where R2 is
covered by < 2ℵ0 continuous functions. Namely, we start with a model in which
2ℵ0 has the desired size, and then add a small number of continuous real functions
that will, in the final model, cover R2. This really works if the addition of continuous
functions is organized in the right way. Moreover, the method generalizes to higher
dimensions and we obtain models of set theory in which the continuum is of the
form κ+n for some uncountable cardinal κ and Rn+1 can be covered by κ continuous
n-ary functions. This is optimal by the lower bound provided by Theorem 1.1.

The approach of adding continuous functions by forcing in order to cover a square
was implicitly used by Zapletal [8] who showed that under MA(σ-centered)+¬CH
for every set X of size ℵ1 of reals there is a single real r such that the Turing
degrees relative to r of the elements of X are linearly ordered, answering a question
addressed by Blass. We will come back later to the connection between linear
orderings of Turing degrees and coverings of squares by continuous functions.

2. Covering (κ+n)n+1 by n-ary functions

For the convenience of the reader and since we have further use for one part of
the proof, namely Lemma 2.3, we include a proof of Theorem 1.1.

We first show that κ functions are indeed sufficient to cover an n+1-dimensional
cube of size κ+n.

Lemma 2.1. For every n ∈ ω and every infinite cardinal κ, (κ+n)n+1 can be
covered by κ n-ary functions.

Proof. We use an induction on n. For n = 0 the statement is trivial. (Recall that
for n = 0 an n-ary function is a constant.) Suppose n = m + 1 and (κ+m)m+1 can
be covered by κ m-ary functions.

Then for every α < κ+n there is a family Fα = {fβ
α : β < κ} of m-ary functions

on α + 1 which covers (α + 1)m+1.
Let β < κ and α0, . . . , αm < κ+n. Choose a permutation σ of m + 1 such that

ασ(m) ≥ α0, . . . , αm. Put

gβ(α0, . . . , αm) := fβ
ασ(m)

(ασ(0), . . . , ασ(m−1)).
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Claim 2.2. {gβ : β < κ} covers (κ+n)n+1.

For the claim let α0, . . . , αn < κ. We have to find β < κ such that (α0, . . . , αn)
is covered by gβ . We may assume that αn ≥ α0, . . . , αm.

By the choice of Fαn
, there is some β < κ such that (α0, . . . , αm) is covered by

fβ
αn

. It follows that (α0, . . . , αn) is covered by gβ . �

The fact that (κ+n)n+1 cannot be covered by less that κ n-ary functions follows
by induction on n from the following lemma, which gives a bit more information.

For a set X, n ∈ ω, and a class C of functions let IC,n(X) denote the σ-ideal on
Xn+1 generated by the sets

{(x0, . . . , xn) ∈ Xn+1 : (x0, . . . , xn) is covered by f}

where f ∈ C is an n-ary function on X.
The covering number cov(I) of some ideal I on a set X is the least number of

sets from the ideal needed to cover the underlying set X. (Provided, of course, the
whole ideal covers the space. It makes sense to define cov(I) := ∞, otherwise.)

Lemma 2.3. Let X be an infinite set, C a class of functions, and n ∈ ω. Suppose,
for every f : Xn+1 → X with f ∈ C and every x ∈ X, that the function fx :
Xn → X; (x1, . . . , xn) 7→ f(x, x1, . . . , xn) is an element of C. Then cov(IC,n(X)) ≤
cov(IC,n+1(X))+.

Proof. We may assume cov(IC,n+1(X))+ < ∞. Let F ⊆ C be a family of size κ :=
cov(IC,n+1(X)) of n + 1-ary functions on X covering Xn+2. For simplicity assume
that F is closed under permutation of the arguments, i.e., for all f ∈ F and every
permutation σ of n + 1, the function that maps (x0, . . . , xn) to f(xσ(0), . . . , xσ(n))
is an element of F .

Let M be an elementary submodel of Hχ for some sufficiently large χ such that
F ⊆ M , X ∈ M , and |M|=|M ∩X|= κ+. Suppose κ+ < cov(IC,n(X)). Then there
is (x0, . . . , xn) ∈ Xn+1 which is not covered by {fx : x ∈ X ∩ M ∧ f ∈ F}. Let
N be an elementary submodel of Hχ such that F ⊆ N , (x0, . . . , xn), X ∈ N , and
|N|= κ.

Choose x ∈ (X ∩ M) \ N . By the choice of (x0, . . . , xn), there is no f ∈ F
such that (x0, . . . , xn) is covered by fx. On the other hand, for f ∈ F we have
f(x0, . . . , xn) 6= x since f and (x0, . . . , xn) are elements of N but x is not. Since F
is closed under permutations of the arguments, it follows that (x, x0, . . . , xn) is not
covered by F . A contradiction. �

3. Adding continuous functions

Let n > 0 be a natural number and let f be a function from a subset of Rn to
R. We define a forcing notion adding a countable family F of continuous functions
from Rn to R covering f (in the usual sense, i.e., f ⊆

⋃
F). Here we do not assume

that f is a Borel function. If we talk about f in the generic extension, we mean the
same set of pairs as in the ground model. Of course, our forcing notion adds new
reals. Thus, even if f is a total function in the ground model, it is only a partial
function in the extension. The functions in F are total functions in the extension.

For technical reasons we prefer to work over a compact space. The unit interval
I := [0, 1] is homeomorphic to the two-point compactification of R. By transforming
a given function f from a subset of Rn to R into a function from a subset of In to I,
then adding countably many continuous n-ary functions on I covering the transform
of f , and finally transforming the restrictions of the new continuous functions to
(0, 1)n back to n-ary functions on Rn, we obtain a countable family of continuous
functions from Rn to R which covers the original f .
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Consider the set C(In, I) of continuous functions from In to I equipped with
the topology of uniform convergence, i.e., the topology induced by the sup-norm
‖ · ‖∞ on C(In, R). Clearly, the space C(In, I) is separable. Choose a countable
dense set Dn ⊆ C(In, I).

Definition 3.1. Let n > 0 and let f be a function from a subset of In to I. Then
p = (fp, Fp, εp) is a condition in P(In, f) if fp ∈ Dn, Fp is a finite subset of dom(f),
εp is a real number > 0, and for all x ∈ Fp, |f(x)− fp(x)|< εp.

A condition p ∈ P(In, f) extends q ∈ P(In, f), i.e., p ≤ q, if Fp ⊇ Fq, εp ≤ εq,
and ‖fp − fq ‖∞≤ εq − εp.

It is easily checked that ≤ is transitive on P(In, f). If p, q ∈ P(In, f) satisfy
fp = fq, then p and q are compatible, the condition (fp, Fp ∪Fq, min(εp, εq)) being
a common extension. By induction, every finite collection of conditions with the
same first component has a common extension. Since there are only countably
many possibilities for the first component fp of a condition p, namely the elements
of Dn, P(In, f) is σ-centered.

Let G be P(In, f)-generic. Then for every i ∈ ω there is some p ∈ G such that
εp < 1

i+1 . Let gi := fp. Since G is a filter, the sequence (gi)i∈ω uniformly converges
to some continuous function fG : In → I. Recall that even though officially the
fp are functions in the ground model, we identify them with the functions in the
generic extension that have the same Borel definition. The functions in the generic
extension are simply the unique continuous extensions of the old functions to the
new reals. The function fG is of course a function that exists only in the generic
extension. If for some x ∈ In there is p ∈ G with x ∈ Fp, then fG(x) = f(x).

Now let P∗(In, f) denote the finite support product of countably many copies
of P(In, f), say with index set ω. Suppose G is P∗(In, f)-generic over the ground
model. For i ∈ ω let Gi denote the projection of G to the i-th copy of P(In, f) in
the product P∗(In, f). An easy density argument shows that for each x ∈ dom(f)
there is i ∈ ω such that for some p ∈ Gi, x ∈ Fp. For this i we have f(x) = fGi(x).
It follows that f is covered by the functions fGi

, i ∈ ω.

Lemma 3.2. For every n > 0 and every function f from a subset of Rn to R there
is a σ-centered forcing notion P∗(Rn, f) which adds a sequence (fi)i∈ω of continuous
functions from Rn to R such that f ⊆

⋃
i∈ω fi.

Proof. Fix a homeomorphism h : R → (0, 1). Let b : P(Rn×R) → P((0, 1)n×(0, 1))
be the bijection induced by h. The forcing notion P∗(Rn, f) := P∗(In, b(f)) is σ-
centered since it is a finite support product of countably many σ-centered forcing
notions. Let G be P∗(In, b(f))-generic and for i ∈ ω let Gi be the projection of
G to the i-th coordinate in the product P∗(In, b(f)). Let fi := b−1(fGi � (0, 1)n)
where fGi : In → I is the generic function coded by Gi. It is easily checked that
(fi)i∈ω has the desired properties. �

Similarly, for every function f from a subset of 2ω to 2ω there is a σ-centered
forcing notion P∗(2ω, f) adding countably many continuous functions from 2ω to 2ω

covering f . Since 2ω is homeomorphic to (2ω)n for every n > 0, the same forcing
can be used to add continuous functions covering a function f from a subset of
(2ω)n to 2ω.

4. Covering Rn+1 by a small number of continuous functions

Let Cont denote the class of continuous functions between topological spaces.
Following the notation in Section 2, ICont,n(R) is the σ-ideal generated by the sets
of the form

{(x0, . . . , xn) ∈ Rn+1 : (x0, . . . , xn) is covered by f}
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where f is a continuous function from Rn to R.
Using Lemma 3.2 and Theorem 1.1 it is easy to construct models of set theory

where Rn+1 is covered by a small number of continuous n-ary functions. The
only restrictions are cov(ICont,n(R)) ≥ ℵ1 and cov(ICont,n(R))+n ≥ 2ℵ0 . The first
restriction follows from the fact that graphs of continuous functions are meager
and powers of R cannot be covered by countably many meager sets. The second
restriction follows from Theorem 1.1.

Theorem 4.1. Let n ∈ ω. Let κ ≥ ℵ1 be a cardinal and suppose the universe V
satisfies 2ℵ0 ≤ κ+n. Then there is a generic extension V [G] in which Rn+1 can be
covered by κ continuous n-ary functions and which has the same cardinals and the
same size of the continuum as V .

Proof. The case n = 0 is trivial. So assume n > 0. For a family E of functions from
Rn to R let PE be the finite support product of the forcings P∗(Rn, f), f ∈ E . PE
is c.c.c. and does not change the size of the continuum as long as |E |≤ 2ℵ0 . Let
(Qα)α≤ω1 be a finite support iteration such that for all α < ω1, Qα+1 = Qα ∗ PĖα

where
Qα 
 Ėα ⊆ Rn

R∧ |Ėα|= κ ∧ Ėα covers Rn+1.

Let G be Qω1-generic over the universe. We argue in V [G]. For every Qω1-name
ẋ let ẋ[G] denote its evaluation with respect to G.

For each α < ω1 let Fα be the union of the countable sets of continuous functions
added by the factors of PĖα

[G]. Fα is of size κ. Put F :=
⋃

α<ω1
Fα. Now for each

point (x0, . . . , xn) ∈ Rn+1 there is α < ω1 such that x0, . . . , xn have been added
before stage α of the iteration. The point (x0, . . . , xn) is covered by some function
g ∈ Ėα[G]. g is covered by countably many functions from Fα. In particular,
(x0, . . . , xn) is covered by some f ∈ Fα ⊆ F .

It follows that F is a family of size ≤ κ of continuous n-ary real functions covering
Rn+1. V [G] has the same cardinals as V since it is a c.c.c. extension of V . Also,
2ℵ0 is the same in V [G] as in V . �

Corollary 4.2. The following is consistent with ZFC:

2ℵ0 = ℵ27 ∧ cov(ICont,7(R)) = ℵ20

It is worth noting that by Lemma 2.3, cov(ICont,n(R)) ≤ cov(ICont,n+1(R))+. It
follows that if cov(ICont,n(R))+n = 2ℵ0 (as in the model in Corollary 4.2 for κ = ℵ20

and n = 7), then the covering numbers of the ideals ICont,i(R) are pairwise different
for i ≤ n.

Theorem 4.1 says that it is consistent for cov(ICont,n(R)) to be small. The dual
of the covering number of an ideal I is the uniformity non(I) of I, the smallest
size of a subset of the underlying set of I which is not in the ideal. This is where
it becomes important that we defined IC,n(X) to be a σ-ideal. Using Ramsey’s
theorem, it can be shown that for every infinite space X and every infinite A ⊆ X,
An+1 cannot be covered by finitely many functions from Xn to X. But since we
are looking at σ-ideals, every set that can be covered by countably many functions
of the considered class is still in the ideal. Using the idea of the proof of Theorem
4.1 we can show

Theorem 4.3. Assume MA(σ-centered). Then for every n ∈ ω

non(ICont,n(R)) = min(ℵ+n
1 , 2ℵ0).

Proof. Since the ideal ICont,n(R) consists of meager subsets of Rn+1, we have
non(ICont,n(R)) ≤ 2ℵ0 . By Theorem 1.1, non(ICont,n(R)) ≤ ℵ+n

1 .
Now suppose Y ⊆ Rn+1 is of size < min(ℵ+n

1 , 2ℵ0). We have to show that Y can
be covered by countably many continuous n-ary functions.
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We may assume that Y is infinite. By passing to a larger set of the same size,
we may assume that Y is of the form Zn+1 for some Z ⊆ R. By Theorem 1.1 there
is a countable family F of functions from Zn to Z covering Y = Zn+1. Note that
the functions in F are of size |Z|< 2ℵ0 .

MA(σ-centered) implies that every function from a subset of Rn of size < 2ℵ0 to
R is covered by countably many continuous functions from Rn to R. This is easily
seen using the forcing notions P∗(Rn, f). It follows that for every f ∈ F there is a
countable set Gf of continuous functions from Rn to R such that f ⊆

⋃
Gf . The

set
⋃

f∈F Gf is countable and covers Y . �

5. Covering powers of 2ω and ωω

It is natural to ask about the relation between the covering number of the ideal
ICont,n(R) and the covering numbers of ICont,n(X) for other Polish spaces X. In
[2] it was observed that if X is the disjoint union of R and 2ω, then 2ℵ0 continuous
functions from X to X are necessary to cover X2. However, it was also shown that
the covering numbers of the ideals ICont,1(X) are the same for X = R, X = 2ω,
and X = ωω. We generalize this to all finite dimensions and show

Theorem 5.1. For all n ∈ ω,

cov(ICont,n(R)) = cov(ICont,n(2ω)) = cov(ICont,n(ωω)).

The proof of this theorem needs some preparation. We mainly have to show that
cov(ICont,n(2ω)) is not smaller than the dominating number d, the least number of
copies of 2ω needed to cover ωω. For every x ∈ 2ω which has infinitely often the
value 1 let ex : ω → ω be the increasing enumeration of x−1(1) and let dx : ω → ω
be defined by dx(0) := ex(0) and dx(n) := ex(n)− ex(n− 1) for every n > 0.

Let λ be a sufficiently big cardinal and consider the structure (Hλ,∈) with Skolem
functions. For an elementary submodel M of Hλ and sets x1, . . . , xn ∈ Hλ let
M [x1, . . . , xn] denote the Skolem hull of M ∪{x1, . . . , xn}. f : ω → ω is unbounded
over M if for every g ∈ ωω ∩M there are infinitely many n ∈ ω such that f(n) >
g(n). A function g : ω → ω for which {n ∈ ω : f(n) > g(n)} is finite is a bound of
f .

The crucial fact, which was implicitly used in [2], is the following:

Lemma 5.2. Let M 4 Hλ. Suppose x, y ∈ 2ω are such that x 6∈ M and dy is
unbounded over M [x]. Then there is no continuous function f : 2ω → 2ω such that
f ∈ M and f(y) = x.

Proof. Fix M , x, and y as above. Let f : 2ω → 2ω be a continuous function with
f ∈ M . Then for all z ∈ 2ω ∩M , f(z) 6= x. In other words, f−1(x) ∩M = ∅. The
function dz : ω → ω is defined for all z ∈ 2ω that are not eventually constant. In
particular, dz is defined for all z ∈ f−1(x). Since f−1(x) is compact and d : z 7→ dz

is continuous, the set Z := {dz : z ∈ f−1(x)} ⊆ ωω is compact and thus bounded.
Since Z ∈ M [x], dy 6∈ Z. It follows that f(y) 6= x. �

We need a generalisation of Lemma 5.2 to n-ary functions, which we derive from
Lemma 5.2 itself. We first observe that the unboundedness of dx is equivalent to
the unboundedness of ex.

Lemma 5.3. Let M 4 Hλ. For every x ∈ 2ω, dx is unbounded over M iff ex is
unbounded over M .

Proof. It is clear that for every n ∈ ω, dx(n) ≤ ex(n). Therefore ex is unbounded
if dx is. Now suppose that dx is bounded by some function b ∈ ωω ∩M . We may
assume that b is never 0. Let y ⊆ ω be the unique infinite set such that dy = b.
Since b ∈ M , also y ∈ M and ey ∈ M . Obviously ey is a bound of ex. �
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Lemma 5.4. Let M 4 Hλ. Suppose there are x0, . . . , xn ∈ 2ω such that x0 6∈
M and for all i < n, dxi+1 is unbounded over M [x0, . . . , xi]. Then there is no
continuous function f : (2ω)n → 2ω such that f ∈ M and f covers (x0, . . . , xn).

Proof. For a contradiction assume that f : (2ω)n → 2ω is a continuous function in
M which covers (x0, . . . , xn). Let σ be a permutation of n + 1 such that xσ(0) =
f(xσ(1), . . . , xσ(n)). Let m := σ(0). Since f, x0, . . . , xn−1 ∈ M [x0, . . . , xn−1] and
xn 6∈ M [x0, . . . , xn−1], m 6= n.

In M [x0, . . . , xm−1] we have an n−m-ary continuous function on 2ω which covers
(xm, . . . , xn). This function is obtained by plugging the parameters x0, . . . , xm−1

into f at the right places. It follows that we may assume, by varying n if necessary,
that m = 0 and x0 = f(x1, . . . , xn).

For x, y ∈ 2ω let x⊗ y := (x(0), y(0), x(1), y(1), . . . ). f gives rise to a continuous
function g : 2ω → 2ω such that x0 = g((. . . (x1⊗x2)⊗ . . . )⊗xn). Using Lemma 5.2
we arrive at a contradiction, once we can show that d(...(x1⊗x2)⊗... )⊗xn

is unbounded
over M [x0]. But this follows by induction from

Claim 5.5. Let N 4 Hλ. Suppose y, z ∈ 2ω, dy is unbounded over M , and dz is
unbounded over M [y]. Then dy⊗z is unbounded over M .

By Lemma 5.3, it is sufficient to prove the claim with dy, dz, and dy⊗z replaced
by ey, ez, and ey⊗z, respectively.

Suppose that ey is unbounded over M and let b ∈ ωω ∩ M . Consider b as a
candidate for a bound of ey⊗z. We may assume that b is strictly increasing. Let
0 ∈ 2ω be the function that is constantly 0. By the unboundedness of ey, ey⊗0

is not bounded by the function {(n, b(2n)) : n ∈ ω} ∈ M . Therefore in M [y] we
can find a ∈ 2ω such that a−1(1) is infinite and whenever ey⊗a(n) is odd, then
ey⊗a(n) > b(n).

Since ez is unbounded over M [y], {n ∈ ω : ez(n) > ea(n)} is infinite. Let n ∈ ω
be such that ez(n) > ea(n). Let m ∈ ω be such that ey⊗a(m) = 2ea(n) + 1. Then
ey⊗z(m) > ey⊗a(m) > b(m). It follows that b is not a bound of ey⊗z. �

Lemma 5.6. For all n ∈ ω, cov(ICont,n(2ω)) ≥ d.

Proof. Let F be a family of continuous n-ary functions on 2ω. Suppose |F |< d.
Let M be an elementary submodel of Hλ of size |F| +ℵ0 such that F ⊆ M . Since
|M |< d, there are x0, . . . , xn ∈ 2ω such that x0 6∈ M and for all i < n, dxi+1 is
unbounded over M [x0, . . . , xi]. By Lemma 5.4, (x0, . . . , xn) is not covered by a
continuous n-ary function in M . In particular, F does not cover (2ω)n+1. This
shows the lemma. �

We are now ready to give the

Proof of Theorem 5.1. The proof is essentially the same as the proof of

cov(ICont,1(R)) = cov(ICont,1(2ω)) = cov(ICont,1(ωω))

given in [2]. Therefore we will just sketch the argument.
Let X be either R or ωω. Then 2ω is homeomorphic to a subspace of X. Every

family F of continuous functions from Xn to X which covers Xn+1 gives rise to
a family F ′ of no greater size of continuous partial functions from (2ω)n to 2ω

which covers (2ω)n+1. F ′ is obtained by intersecting every f ∈ F with the copy
of (2ω)n+1 inside Xn+1. The functions from F ′ are defined on compact subsets of
(2ω)n and therefore can be extended continuously to all of (2ω)n using the parallel
of the Tietze-Urysohn Theorem for 2ω. This shows

cov(ICont,n(2ω)) ≤ cov(ICont,n(ωω)), cov(ICont,n(R)).
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Now let F be a family of n-ary functions on 2ω which covers (2ω)n+1 and let X
be one of the spaces R and ωω. By Lemma 5.6, |F |≥ d. Recall that ωω can be
covered by d copies of 2ω. Since ωω is homeomorphic to a co-countable subspace of
R, namely the set of irrational numbers, R can also be covered by d copies of 2ω.

It follows that Xn+1 can be covered by d sets that are products of n+1 copies of
2ω. On each of these sets we have a copy of the family F . The union of these copies
of F is a family F ′ of partial continuous functions from Xn to X which covers
Xn+1. The functions from F ′ are defined on compact subsets of Xn and therefore,
by the Tietze-Urysohn Theorem, respectively by the corresponding theorem for ωω,
they can be extended continuously to all of Xn. Thus we have family of not more
than d· |F|=|F| continuous n-ary functions on X which covers Xn+1. This finishes
the proof of the theorem. �

Using almost the same proof as for Lemma 5.6, we see that the dual of Lemma
5.6 is also true. The unboundedness number b is the least size of a subset of ωω

that cannot be covered by countably many copies of 2ω.

Lemma 5.7. For all n ∈ ω, non(ICont,n(2ω)) ≤ b.

Proof. Let A ⊆ ωω be such that A cannot be covered by countably many copies of
2ω. Let F be a countable family of continuous n-ary functions on 2ω and let M be a
countable elementary submodel of Hλ such that F ⊆ M . Since every co-countable
subset of A contains a function that is unbounded over M , there are x0, . . . , xn ∈ 2ω

such that x0 6∈ M and for all i < n, dxi+1 ∈ A and dxi+1 is unbounded over
M [x0, . . . , xi]. By Lemma 5.4, (x0, . . . , xn) is not covered by a continuous n-ary
function in M . In particular, F does not cover B := {(x0, . . . , xn) : ∀i < n+1(dxi ∈
A)}. This shows B 6∈ ICont,n(2ω). Clearly, |B|≤|A|. �

Lemma 5.7 enables us to dualize the proof of Theorem 5.1 and we get

Theorem 5.8. For all n ∈ ω,

non(ICont,n(R)) = non(ICont,n(2ω)) = non(ICont,n(ωω)).

Proof. Since 2ω embeds into R and into ωω, every set A ⊆ (2ω)n+1 which is not
contained in ICont,n(2ω) gives rise to subsets of (ωω)n+1 and Rn+1 of the same size
that are not elements of the respective ideals on (ωω)n+1 and Rn+1. This uses
an argument on extending partial continuous functions on 2ω as in the proof of
Theorem 5.1. We obtain

non(ICont,n(2ω)) ≥ non(ICont,n(R)), non(ICont,n(ωω)).

To show

non(ICont,n(2ω)) ≤ non(ICont,n(R)), non(ICont,n(ωω))

let X be one of the spaces ωω and R and let A ⊆ Xn+1 be a set such that |A|<
non(ICont,n(2ω)). We may assume that A is of the form Bn+1 for some B ⊆ X.
By Lemma 5.7, B can be covered by a countable family C of copies 2ω. Now for
every (C0, . . . , Cn) ∈ Cn+1, A ∩ C0 × · · · × Cn can be covered by countably many
continuous functions from Xn to X, following the argument in the proof of Theorem
5.1. This implies A ∈ ICont,n(2ω). �

We conclude this section with a remark on the other cardinal invariants of the
ideals ICont,1(X). Let I be a σ-ideal on a set X. The additivity add(I) of I is the
least size of a family F ⊆ I whose union is not in I. The cofinality cof(I) of I is
the least size of a set which is cofinal in (I,⊆).

Lemma 5.9. Let X be a set of size > ℵ1 and let C be a class of functions that
includes all constant functions. Then add(IC,1(X)) = ℵ1 and cof(IC,1(X)) =|X|.
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Proof. Let F ⊆ C be a countable family of functions from X to X. For every y ∈ X
let cy : X → X be the constant function with value y, i.e., the set X × {y}.

Claim 5.10. For all but countably many y ∈ X, cy is not covered by F .

Let A ⊆ X be a set of size ℵ1. For each y ∈ A let Ay := {f(y) : f ∈ F}. Clearly,
each Ay is countable. Let B := X \

⋃
y∈A Ay. Since |A|<|X|, B is nonempty.

Now for all x ∈ B, the set C := {f(x) : f ∈ F} is countable. For every y ∈ A\C,
cy is not covered by F . This shows the claim.

From the claim it follows that for every set A ⊆ X of size ℵ1 the set
⋃

y∈X cy is
not in IC,1(X). Similarly, if A ⊆ IC,1(X) is a family of size <|X|, there is y ∈ X such
that cy is not included in any member of A. Thus, A is not cofinal in IC,1(X). �

Corollary 5.11. a) add(ICont,1(R)) = add(ICont,1(ωω)) = add(ICont,1(2ω)) = ℵ1

b) cof(ICont,1(R)) = cof(ICont,1(ωω)) = cof(ICont,1(2ω)) = 2ℵ0

Proof. Since the ideals under consideration consist of meager subsets of their un-
derlying spaces, the corollary holds under CH. If 2ℵ0 > ℵ1, the corollary follows
from Lemma 5.9. �

6. Linear orderings of Turing degrees

In this section we discuss the connection between coverings of (2ω)2 by continuous
functions and linear orderings of Turing degrees relative to a set of parameters.

Let F be a set of continuous functions on 2ω. F induces a binary relation ≤F
on 2ω as follows:

x ≤F y :⇔ ∃f ∈ F(f(y) = x)
It is easily checked that ≤F is transitive if F is closed under composition of

functions. It is obvious that ≤F is reflexive if id2ω ∈ F . A transitive and reflexive
relation is a quasi-ordering. The relation ≤F is linear, i.e., any two points are
comparable, if and only if F covers (2ω)2.

This shows

Lemma 6.1. cov(ICont,1(2ω)) is the least size of a family F of continuous functions
on 2ω such that ≤F is a linear quasi-ordering.

It is well known that in the Sacks model (starting from the constructible universe
L as the ground model) the constructible degrees of reals are wellordered of order
type ω2 (see [4]). If F is the set of constructible continuous functions from 2ω

to 2ω, i.e., the set of continuous functions which have Borel codes in L, then ≤F
refines the quasi-ordering of constructible degrees. Therefore it is not surprising
that we have cov(ICont,1(2ω)) = ℵ1 in the Sacks model. In fact, ≤F refines the
quasi-ordering of Turing degrees relative to F as a set of parameters.

Definition 6.2. Let x, y ∈ 2ω and let C be an oracle Turing machine. We say that
x is Turing-reducible to y via C (x ≤C y) if C equipped with the oracle y decides
x. (Here we identify the elements of 2ω with subsets of ω.) x is Turing-reducible to
y via C relative to the parameter z ∈ 2ω (x ≤C,z y), if x ≤C y⊗ z. (Here ⊗ should
be considered as the Turing join.)

x is Turing-reducible to y relative to a parameter z ∈ 2ω (x ≤T,z y) if there
is an oracle Turing machine C such that x ≤C,z y. For P ⊆ 2ω we say that x is
Turing-reducible to y relative to P (x ≤T,P y) if there is z ∈ P such that x ≤T,z y.

Let C be an oracle Turing machine and z ∈ 2ω. Consider the partial function
fC,z on 2ω that maps y to the unique x such that x ≤C,z y (if such an x exists).
It may happen that C equipped with the oracle y⊗ z does not halt on every input
(the inputs being natural numbers). That is why fC,z can be partial. However,
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the domain of fC,z is a Gδ-set since for each natural number n the set of oracles
on which C halts when it is asked to decide n is open because every computation
is finite and thus only uses some finite part of the oracle. For the same reason
(finiteness of computations), fC,z is continuous.

It follows that if P ⊆ 2ω is such than ≤T,P is a linear quasi-ordering, then there
is a family F of size |P | (note that P must be infinite) of continuous functions
defined on Gδ-subsets of 2ω which covers (2ω)2.

On the other hand, if A ⊆ 2ω is Gδ and f : A → 2ω is continuous, then f can
be coded in a reasonable way as a subset z of ω such that there is an oracle Turing
machine C such that for all x ∈ A, f(x) ≤C,z x. Thus, if F is a family of continuous
partial functions defined on Gδ-subsets of 2ω and F covers (2ω)2, then for the set
P of codes of the functions in F , ≤T,P is linear. We have thus proved that he least
size of a family of partial continuous functions defined on Gδ-subsets of 2ω covering
(2ω)2 is equal to the smallest size of a set P ⊆ 2ω such that ≤T,P is linear.

This proof easily relativizes to subsets of 2ω and we obtain

Theorem 6.3. Let X be an infinite subset of 2ω and let κ be smallest size of a
set P ⊆ 2ω such that ≤T,P � X is linear. Then the least size of a family of partial
continuous functions defined on Gδ-subsets of 2ω needed to cover X2 is equal to
κ + ℵ0.

Blass asked whether it is consistent with ZFC that for every set X of reals
of size ℵ1 there is a real p such that ≤T,{p}� X is linear on X. This was an-
swered positively by Zapletal [8]. His argument essentially showed the consistency
of non(ICont,1(2ω)) = ℵ2, which also follows from Theorem 4.3. Note that if P ⊆ 2ω

is countable, then all the parameters in P can be coded into a single parameter
r ∈ 2ω such that ≤T,P⊆≤T,r. Now it follows from Theorem 6.3 that the least size
of a set X ⊆ 2ω such that for no r ∈ 2ω the quasi-ordering ≤T,r� X is linear is at
least non(ICont,1(2ω)).
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