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Abstract. Elementary submodels of some initial segment of the set-theoretic
universe are useful in order to prove certain theorems in general topology as

well as in algebra. As an illustration we give proofs of two theorems due to
Arkhangel’skii concerning cardinal invariants of compact spaces.

1. Introduction

Several theorems in general topology, especially inequalities between certain car-
dinal invariants of a topological space, can be proved in the following way:

For a given topological space X consider a space X0 which is small in some sense
and approximates X sufficiently well. Calculate the cardinal invariant in question
for X0 and show that this cardinal invariant is the same for X0 and X since X0 is
a good approximation of X.

The method of elementary submodels provides a uniform approach for generating
small approximations of topological spaces as well as of other structures.

Typically, mathematics takes place in the set-theoretic universe (V,∈), i.e., the
class of all sets together with the usual ∈-relation. For a given topological space
X we would like to use the Löwenheim-Skolem Theorem to get a small elementary
submodel (M,∈ ∩M2) of the universe (V,∈) such that X and its topology are
contained in M and then consider the space X0 which is what M thinks that X
is. However, there are two problems. First of all, working in V we cannot get
elementary submodels of (V,∈). This follows from Gödel’s Second Incompleteness
Theorem. Moreover, it is not clear what it really is that M thinks that X is.

The first problem can be solved by taking elementary submodels not of the whole
universe but of a sufficiently large initial segment of the universe. The solution of
the second problem depends on the application we have in mind.

Much of the material presented here is contained in [JuWee97]. Much more on
this topic can be found in [Dow88].

2. Models of set theory

Let us briefly recall some basics from logic. [Ku80] and [ChKei90] provide an
excellent background in set theory and model theory, respectively.

The language L of set theory is the first-order language with the binary relation-
symbol ∈. That is, the language L consists of the formulae over the alphabet
{∧,¬,∃, (, ),∈,=} ∪ Var, where Var is a countably infinite set of variables. As
usual, we will freely use abbreviations like ‘⊆’, ‘⇒’, and ‘∃x ∈ y’ inside a formula.

An L-structure is a pair (N,E) where N is a set and E is a binary relation on
N , i.e., E ⊆ N2. By the usual abuse of notation, sometimes we will identify (N,E)
and N . If ϕ(x1, . . . , xn) is a formula and a1, . . . , an ∈ N , then ϕ[a1, . . . , an] is the
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word obtained from ϕ by replacing xi by ai whereever xi occurs freely, i.e., not in
the scope of a quantifier ∃xi, in ϕ for i = 1, . . . , n. Abusing notation, we will refer
to ϕ[a1, . . . , an] as a formula as well. As usual, by induction on the length of ϕ,
one defines when (N,E) satisfies ϕ[a1, . . . , an]. We write (N,E) |= ϕ[a1, . . . , an] for
‘(N,E) satisfies ϕ[a1, . . . , an]’.

(N,E) is a model of ϕ[a1, . . . , an] if it satisfies ϕ[a1, . . . , an]. If Φ is a set of
formulae, (N,E) satisfies Φ or is a model of Φ if it satisfies all formulae in Φ.

An L-structure (M,F ) is called an elementary submodel of (N,E) if M ⊆ N and
for all formulae ϕ[x1, . . . , xn] and all a1, . . . , an ∈ M ,

(M,F ) |= ϕ[a1, . . . , an] if, and only if, (N,E) |= ϕ[a1, . . . , an].

We write (M,F ) 4 (N,E) if (M,F ) is an elementary submodel of (N,E). Note
that (M,F ) 4 (N,E) implies F = E ∩M2. In the following, we will simply write
(M,E), respectively M , instead of (M,E ∩M2).

The well-known Löwenheim-Skolem Theorem guarantees the existence of many
small elementary submodels of a given structure (N,E).

Theorem 2.1 (Löwenheim-Skolem). Let N be an L-structure and A ⊆ N infinite.
Then there is M ⊆ N such that A ⊆ M , |M|=|A|, and M 4 N . �

Intuitively, (V,∈) satisfies all the axioms of our standard set theory ZFC. How-
ever, V is a proper class and not a set. Thus we cannot get an elementary submodel
of (V,∈) from the Löwenheim-Skolem Theorem. Moreover, as mentioned in the in-
troduction, Gödel’s Second Incompleteness Theorem implies that we cannot hope
to get a model of ZFC at all working in ZFC alone. However, every proof of a
theorem of ZFC uses only finitely many axioms. (Note that ZFC contains infinitely
many axioms.) And we can get models of every finite part of ZFC.

Recall the use of
⋃

in set theory: For a set x,
⋃

x := {z : z ∈ y for some y ∈ x}.
For every n ∈ N we define

⋃n
x recursively. Let

⋃0
x := x and

⋃n
x :=

⋃n−1 ⋃
x

for every n ≥ 1. The transitive closure tc(x) of x is the set
⋃

n∈N
⋃n

x. For a
cardinal χ let Hχ := {x :|tc(x)|< χ}. Each Hχ is a set and (Hχ,∈) satisfies some
quite large part of ZFC. Moreover, the following holds:

Theorem 2.2 (Reflection Principle). If ϕi(x1, . . . , xn), i ∈ {1, . . . ,m}, are formu-
lae and ρ is a cardinal, then there is χ > ρ such that for all a1, . . . , an ∈ Hχ and
all i ∈ {1, . . . ,m},
(Hχ,∈) |= ϕi[a1, . . . , an] if, and only if, ϕi[a1, . . . , an] holds in the universe. �

Suppose ϕi(x1, . . . , xn), i ∈ {1, . . . ,m}, and χ are as in the Reflection Principle
and we have M 4 (Hχ,∈). Then for all a1, . . . , an ∈ M and all i ∈ {1, . . . ,m},

M |= ϕi[a1, . . . , an] if, and only if, ϕi[a1, . . . , an] holds in the universe.

Thus, with respect to a given set of finitely many formulae, M looks like an ele-
mentary submodel of the universe. In the situation above, the formulae ϕi are said
to absolute over M .

3. Topological spaces

Let us recall a few basic notions from topology. See [En77] for a lot of information
on general topology.

Let X be a topological space. X is Hausdorff if for any two distinct points
x, y ∈ X there are disjoint open sets U, V ⊆ X such that x ∈ U and y ∈ V . X is
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compact if it is Hausdorff and for every family C of open sets with X =
⋃

C there
is a finite subfamily F of C such that X =

⋃
F . It is an easy exercise to show that

a continuous image of a compact space is compact, provided it is Hausdorff.
If Y is a subset of X, a subset U of Y is open in Y if it is of the form O ∩ Y for

some open subset O of X. The topology on Y we have just defined is the subspace
topology on Y with respect to X. Note that Y is compact with respect to this
topology if X is compact and Y is a closed subset of X.

Two topological spaces X and Y are topologically the same if they are homeo-
morphic, that is, if there is a bijection f : X → Y such that both f and f−1 are
continuous. f is called a homeomorphism.

The topology of a space X can be described by giving a base for the topology.
Let τ be the topology of X, i.e., the collection of open subsets of X. B ⊆ τ is a
base of X if for all x ∈ X and all U ∈ τ with x ∈ U there is V ∈ B such that
x ∈ V ⊆ U . If we do not require B to be a subset of τ , we get the notion of a
network. N ⊆ P(X) is a network of X if for all x ∈ X and all U ∈ τ there is V ∈ N
such that x ∈ V ⊆ U . If B is a base of X, then the open subsets of X are precisely
the unions of elements of B.

Example 3.1. Consider the set R of real numbers with the usual topology, i.e., the
topology consisting of unions of open intervals. The set {(p, q) : p, q ∈ Q, p < q} is
a base of R. The set {[p, q] : p, q ∈ Q, p < q} fails to be a base since it consists of
sets which are not open. However, this set is a network of R. �

3.1. Cardinal invariants. A cardinal invariant of topological spaces is a mapping
i assigning a cardinal i(X) to each space X such that i(X) = i(Y ) if X and Y are
homeomorphic. An easy example is the cardinality of a space. Clearly, any two
spaces which are homeomorphic have the same cardinality. Two less trivial cardinal
invariants are the weight and the network-weight.

The weight w(X) of a topological space X is the least infinite cardinal κ such
that X has a base of size at most κ.

The network-weight nw(X) of a topological space X is the least infinite cardinal
κ such that X has a network of size at most κ.

Since every base of X is a network, nw(X) ≤ w(X). Example 3.1 shows nw(R) =
w(R) = ℵ0.

4. Arhangel’skii’s Theorem

Theorem 4.1 (Arhangel’skii, see [En77]). Let X and Y be compact. If there is a
continuous mapping f : X → Y which is onto, then w(Y ) ≤ w(X).

For the proof let us first observe that the corresponding statement for network-
weight holds for all topological spaces.

Lemma 4.2. Let X and Y be topological spaces and let f : X → Y be continuous
and onto. Then nw(Y ) ≤ nw(X).

Proof. Let N be a network for X. Then N ′ := {f [V ] : V ∈ N} is a network for Y :
Let U ⊆ Y be open and non-empty. Let y ∈ U . Let x ∈ X be such that

f(x) = y. Since f is continuous, f−1[U ] is open. Clearly, x ∈ f−1[U ]. Thus, there
is V ∈ N such that x ∈ V ⊆ f−1[U ]. Now f [V ] ∈ N ′ and y ∈ f [V ] ⊆ U . �
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Theorem 4.1 follows from this lemma once we know that for compact spaces
weight and network-weight are the same. We give a proof of this fact using elemen-
tary submodels.

Lemma 4.3. If X is compact, then w(X) = nw(X).

Proof. Let N be a network of X with κ :=|N |= nw(X) and let τ be the topology
of X. Let χ be sufficiently large. That is, let χ be large enough for Hχ to contain
X and τ and such that all those finitely many formulae are absolute over Hχ we
want to be absolute in the following proof. We could write down these formulae
having a close look at the rest of the proof. But this it not necessary since the
Reflection Principle says that a suitable χ exists for any finite set of formulae. Now
pick M 4 Hχ such that N ∪ {N,X, τ} ⊆ M and |M|= κ. We claim that τ ∩M is
a base of X.

Let U ∈ τ be non-empty and let x ∈ U . For y ∈ X \ U there are disjoint open
sets Uy and Vy such that x ∈ Uy and y ∈ Vy. Since N is a network, there are sets
Ay, By ∈ N such that x ∈ Ay ⊆ Uy and y ∈ By ⊆ Vy. Since χ is sufficiently large,

Hχ |= ∃U ′
y, V ′

y ∈ τ(U ′
y ∩ V ′

y = ∅ ∧Ay ⊆ U ′
y ∧By ⊆ V ′

y).
Therefore,

M |= ∃U ′
y, V ′

y ∈ τ(U ′
y ∩ V ′

y = ∅ ∧Ay ⊆ U ′
y ∧By ⊆ V ′

y).

Let U ′
y, V ′

y ∈ M be such that U ′
y, V ′

y ∈ τ , Ay ⊆ U ′
y, By ⊆ V ′

y , and U ′
y ∩ V ′

y = ∅.
Now U ′

y, V ′
y ∈ τ ∩M ⊆ τ , x ∈ U ′

y, and y ∈ V ′
y . Clearly, X \ U ⊆

⋃
y∈X\U V ′

y . Since
X \ U is compact, there is a finite set F ⊆ X \ U such that X \ U ⊆

⋃
y∈F V ′

y .
Note that F does not have to be a subset of M . However, {U ′

y : y ∈ F} is a subset
of M . Since this set is finite, it can be defined in Hχ. More precisely, suppose
{U ′

y : y ∈ F} = {U1, . . . , Un}. Let ϕ(z, x1, . . . , xn) be the formula saying that
the elements of z are precisely x1, . . . , xn. Now ϕ[W,U1, . . . , Un] holds in Hχ if,
and only if, W = {U1, . . . , Un}. Here we could argue as follows: ϕ is one of those
formulae we want to be absolute over Hχ and thus, by the choice of χ, we have

Hχ |= ϕ[W,U1, . . . , Un] if, and only if, W = {U1, . . . , Un}.

However, it turns out that formulae which are as simple as ϕ are absolute over every
Hθ, no matter what cardinal θ is. This is due to the fact that for every b ∈ Hθ and
every a ∈ b we have a ∈ Hθ. This property of the Hθ’s is called transitivity. Since

Hχ |= (∃zϕ)[U1, . . . , Un],

M |= (∃zϕ)[U1, . . . , Un].
Thus {U ′

y : y ∈ F} ∈ M . Therefore U ′ :=
⋂

y∈F U ′
y ∈ M ∩ τ . Clearly, x ∈ U ′ ⊆

X \
⋃

y∈F V ′
y ⊆ U . This finishes the proof of the claim and thus the proof of the

lemma. �

Proof of the theorem. Let X and Y be compact and f : X → Y continuous and
onto. Then by Lemma 4.3 and Lemma 4.2,

w(X) = nw(X) ≥ nw(Y ) = w(Y ).

�

Theorem 4.1 does not hold if the spaces are only assumed to be Hausdorff.
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Example 4.4 (Alexandroff and Niemytzki, McAuley, see [En77]). Consider X :=
R2 and let the topology τ on X be generated by the base B which is defined as
follows:

For each point (x, y) ∈ X and i ∈ N let Ui(x, y) := {(a, b) ∈ R2 :|(a, b)− (x, y)|<
1

i+1} and Ci(x, y) := {(a, b) ∈ R2 :|(a, b)− (x, y)|≤ 1
i+1}. Let

B := {Ui(x, y) : x, y ∈ R, y 6= 0, and i ∈ N}

∪ {{(x, 0)} ∪ Ui(x, 0) \ (Ci(x,
1

i + 1
) ∪ Ci(x,− 1

i + 1
)) : x ∈ R and i ∈ N}.

This space is Hausdorff. It turns out that nw(X) = ℵ0 while w(X) = 2ℵ0 . Let
N be a countable network of X. Let σ be the topology on X which is generated by
N as a base. By the properties of a network, τ ⊆ σ. Thus (X, σ) is Hausdorff and
the identity idX : (X, σ) → (X, τ);x 7→ x is continuous. However, by definition of
σ,

ℵ0 = w(X, σ) < w(X, τ) = 2ℵ0 .

�

5. Better submodels

In the proof of Lemma 4.3, we used the fact that for every elementary submodel
M of Hχ a finite subset of M already is an element of M . On the other hand, for
every M 4 Hχ, N = ℵ0 ∈ M . Clearly, N ⊆ M . Thus, if x ∈ M is countable, then
M contains a bijection f : N → x. But now x = f [N] ⊆ M . The same argument
shows that x ⊆ M if x ∈ M has size κ and κ ⊆ M . However, typically we do not
know whether for some y ⊆ M , y is an element of M . The following lemma comes
in handy.

Lemma 5.1. Let δ be an ordinal and χ a cardinal. Suppose (Mα)α<δ is a chain
of elementary submodels of Hχ, i.e., for all α < δ, Mα 4 Hχ and for all α, β < δ
with α < β, Mα 4 Mβ. Then M :=

⋃
α<δ Mα 4 Hχ. �

This lemma allows it to construct elementary submodels of Hχ with various
closure properties.

Lemma 5.2. Let χ, κ, and λ be infinite cardinals such that κλ = κ and λ < χ.
Then for every A ⊆ Hχ with |A|≤ κ there is M 4 Hχ such that A ⊆ M , |M |≤ κ,
and for x ⊆ M with |x|≤ λ, x ∈ M .

Proof. By the Löwenheim-Skolem Theorem, there is M0 4 Hχ with A ⊆ M0 and
|M0 |≤ κ. By induction on α < λ+, construct a chain (Mα)α<λ+ of elementary
submodels of Hχ of size ≤ κ as follows:

For a limit ordinal α < λ+ let Mα :=
⋃

β<α Mβ . By Lemma 5.1, Mα 4 Hχ. By
κλ = κ, λ < κ and thus α < κ. Since |Mβ|≤ κ for all β < α, |Mα|≤ κ.

If α is a successor, say α = β+1, let Mα 4 Hχ be such that |Mα|≤ κ, Mβ ⊆ Mα,
and for each x ⊆ Mβ with |x|≤ λ, x ∈ Mα. This is possible by the Löwenheim-
Skolem Theorem together with the fact that Mβ has not more than κλ = κ subsets
of size λ.

M :=
⋃

α<λ+ Mα works for the lemma: Clearly, A ⊆ M . Since λ+ ≤ κ, |M|≤ κ.
By Lemma 5.1, M 4 Hχ. Let x ⊆ M be of size λ. For each y ∈ x let αy < λ+

be such that y ∈ Mαy
. Let α := sup{αy : y ∈ x}. Note that α < λ+ since |x|≤ λ.

Now x ⊆ Mα and thus x ∈ Mα+1 ⊆ M . �
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Using this lemma, we can give an easy proof of another famous theorem of Ar-
hangel’skii. For a topological space X and x ∈ X, a family B of open subsets of X
is called a local base at x if every element of B contains x and for every open set
O ⊆ X containing x there is U ∈ B with U ⊆ O. X is first countable if for every
x ∈ X there is an at most countable local base at x.

Theorem 5.3 (Arhangel’skii, see [En77]). Let X be compact and first countable.
Then |X|≤ 2ℵ0 .

Proof. Let τ be the topology of X. Let χ be large enough and pick M 4 Hχ such
that X, τ ∈ M , |M |≤ 2ℵ0 , and for all countable a ⊆ M , a ∈ M . M exists by
Lemma 5.2.

Claim 1. X ∩M is a closed subspace of X.
Let x ∈ X be in the closure of X ∩ M . Since X is first countable, there is a

sequence (xn)n∈N in X ∩ M converging to x. Since every countable subset of M
is an element of M and (xn)n∈N can be considered as a subset of N × (X ∩M) ⊆
M , (xn)n∈N ∈ M . Since X is Hausdorff, x is the unique limit of (xn)n∈N. By
compactness of X, M thinks that (xn)n∈N has a limit. Thus x ∈ M . This finishes
the proof of the claim.

Clearly, the lemma follows from
Claim 2. X ⊆ M .
Suppose there is x ∈ X \M . Since M knows that X is first countable, for every

y ∈ X ∩ M , M contains a countable local base By at y. Since N ∈ M , By ⊆ M
for all y ∈ X ∩M . For each y ∈ X ∩M pick Uy ∈ By such that x 6∈ Uy. Clearly,
X ∩M ⊆

⋃
y∈X∩M Uy and x ∈ X \

⋃
y∈X∩M Uy. Since X ∩M is compact by Claim

1, there is a finite set F ⊆ X ∩M such that X ∩M ⊆
⋃

y∈F Uy. Since F ⊆ M is
finite, {Uy : y ∈ F} ∈ M . Now

Hχ |= X \
⋃
{Uy : y ∈ F} 6= ∅.

Thus
M |= X \

⋃
{Uy : y ∈ F} 6= ∅.

Therefore X ∩M 6⊆
⋃
{Uy : y ∈ F}. A contradiction. �

Note that for every M that contains all its subsets of size ≤ λ, we have |M|≥ 2λ.
And even 2ℵ0 can be large. Sometimes it is sufficient to consider models M 4 Hχ

with the property that all subsets of M of size ≤ λ are covered by elements of M
of size ≤ λ. For example, for every n ∈ N and every set A ⊆ Hχ of size ℵn there is
M 4 Hχ such that A ⊆ M , |M|= ℵn, and for every countable subset x of M there
is a countable set y ∈ M with x ⊆ y. Recently, models of this kind have been very
useful in [FuGeSou∞]. Another application of such models, more closely connected
to the topic of this article, is Dow’s proof ([Dow88]) of the result of Hajnal and
Juhasz ([Juh80]) that a topological space X has countable weight if every subspace
of size at most ℵ1 has countable weight. Another important class of models are the
internally approachables. One instance of internal approachability is Vκ-likeness.

For a cardinal κ an elementary submodel M of some Hχ, χ > κ, is called Vκ-like
if there is a chain (Mα)α<κ of elementary submodels of Hχ with M =

⋃
α<κ Mα

such that for each α, Mα has size less than κ and (Mβ)β≤α ∈ Mα+1. Note that if
(Mβ)β≤α ∈ Mα+1, then Mα ∈ Mα+1 since Mα ∈ Hχ, Mα can be defined in Hχ as
the last element of the sequence (Mβ)β≤α, and Mα+1 4 Hχ. Also note that every
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Vκ-like model has size κ. Among other nice properties, if κ is regular, every subset
of a Vκ-like model M of size less than κ is covered by an element of M of size less
than κ. For let a ⊆ M be of size less than κ. By regularity of κ, there is α < κ such
that a ⊆ Mα. Now Mα ∈ Mα+1 covers a, has size less than κ, and is contained in
M .

Various kinds of internally approachable models have been successfully used by
Shelah and others. For example, some socalled black box principles are formulated
using internally approachable models. These principles hold in ZFC and can be
used to construct structures with certain second order properties (e.g. in [MeSh93]
or in [EkMe90]). That is, while constructing a structure by induction, one can keep
track of its later endomorphisms. More on this topic will be contained in [Sh∞].
Vκ-like models were used in [FuSou97] in order to characterize partial orderings
with the socalled weak Freese-Nation property.

6. How to get approximations of X from M

What we really did in the proof Lemma 4.3 was to consider the the topology on
X which is generated by the open subsets of X that are contained in the elementary
submodel M . We basically showed that this topology coincides with the original
topology on X.

Similar things happened in the proof of Theorem 5.3. Here we concidered the
space X ∩M and showed that X ∩M already coincides with X. However, there are
many proofs using elementary submodels M of some Hχ where the approximation
of a topological space X given by M is really smaller than X. All we did so far was
to consider a space obtained from X by thinning out the topology or by passing to
a subspace of X. Another method, which is especially useful if the spaces under
consideration are compact, is to pass to a quotient.

Let X be compact and χ sufficiently large. For M 4 Hχ define an equivalence
relation ∼M on X as follows:

x ∼M y if, and only if, for all continuous f : X → R with f ∈ M , f(x) = f(y).

X/∼M is compact and in some sense the most reasonable approximation of X we
can obtain from M .

For a set A let [A]ℵ0 denote the set of countably infinite subsets of X. C ⊆ [A]ℵ0

is closed and unbounded in [A]ℵ0 if every countable B ⊆ A is included in some
element of C and the union of every countable chain in C is again an element of C.
Note that by the Löwenheim-Skolem Theorem together with Lemma 5.1, for every
infinite cardinal χ the set {M ∈ [Hχ]ℵ0 : M 4 Hχ} is closed and unbounded in
[Hχ]ℵ0 .

Bandlow ([Ba91]) proposed the following type of characterization of a class K of
compact spaces by a class F of continuous mappings:

A compact space X is in the class K if, and only if, for every sufficiently
large χ there is a closed and unbounded subset C of [Hχ]ℵ0 consisting of
elementary submodels of Hχ such that for every M ∈ C the quotient map
q : X → X/ ∼M belongs to F .

For example, this works well in the case of openly generated compact spaces, which
were studied by Ščepin ([Šč81]). Among other things, Ščepin proved that every
openly generated compact space X satisfies the countable chain condition (c.c.c.),
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i.e., every family pairwise disjoint non-empty open subsets of X is at most count-
able. Bandlow ([Ba91]) characterized openly generated compact spaces in terms
of elementary submodels of Hχ’s using the ∼M -approach and gave a simple proof
Ščepin’s result on the c.c.c. of openly generated spaces using his characterization.
The class F of mappings used to characterize open generatedness is the class of
open mappings. A continuous mapping is called open if the images of open sets
under this mapping are again open.
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