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Abstract. This article deals with the coinitiality of topological spaces, a

concept that generalizes the cofinality of a Boolean algebra as introduced by
Koppelberg [7]. The compact spaces of countable coinitiality are characterized.

This gives a new characterization of Boolean algebras of countable cofinality.

We also discuss cofinalities of C∗-algebras and of Banach spaces.

0. Introduction

In [7] Koppelberg defined the cofinality cof(B) of an infinite Boolean algebra B
as the least limit ordinal δ such that there is a strictly increasing sequence (Bα)α<δ
of subalgebras of B such that B =

⋃
α<δ Bα. (See also [2].)

Koppelberg showed that for every Boolean algebra B the cofinality of B is at
most 2ℵ0 . Moreover, every infinite Boolean algebra which is almost σ-complete is
of cofinality ℵ1. Almost σ-completeness is a weakening of σ-completeness and is
called countable separation property nowadays.

The main open question concerning cofinalities of Boolean algebras is

Question 0.1. Is it consistent that there is a Boolean algebra whose cofinality is
bigger than ℵ1?

The present article was motivated by this question. We generalize cofinalities
of Boolean algebras to coinitialities of compact spaces and characterize compact
spaces of countable coinitiality by topological means. This is a modest attempt to
add a new perspective to the problem of cofinalities of Boolean algebras.

It should be mentioned that cofinalities of groups and other algebraic struc-
tures have been studied extensively in the literature (see [4, 15] and the references
therein).

1. Basic definitions and elementary facts

Our notation for inverse systems follows [3]. Also, all the topological facts that
we use without reference can be found in that book.

Definition 1.1. Let X be a topological space. The coinitiality ci(X) of X is the
least limit ordinal δ such X is the limit of an inverse system {Xα, π

β
α, δ} whose

bonding maps πβα are onto and not 1-1, provided such an inverse system exists.

Note that the coinitiality of a topological space is defined except for trivial cases.
It is defined for infinite compact spaces.

In Definition 1.1, the requirement about the inverse system is rather weak. If X
is the limit of an inverse system S = {Xα, π

β
α, δ}, δ a limit ordinal, such that the

canonical maps πα : X → Xα are not 1-1, i.e., if X is not already determined by a
single Xα, then S can be replaced by a well-ordered inverse system of limit length
≤ δ whose bonding maps are onto and not 1-1.
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Note that for every X, ci(X) is a regular cardinal. If X is zero-dimensional, let
ci0(X) be the cardinal invariant obtained in Definition 1.1 when requiring the Xα to
be zero-dimensional. By Stone-duality, for every Boolean algebra B, ci0(Ult(B)) =
cof(B) where Ult(B) denotes the Stone-space of B. Clearly, for every infinite
compact zero-dimensional space X, ci(X) ≤ ci0(X). We will show that in fact
ci(X) = ci0(X), but the argument for this is probably most conveniently stated in
terms of C∗-algebras. Following [14], we require every C∗-algebra to have a unit.

Definition 1.2. For an infinite dimensional C∗-algebra A let cofC∗(A) denote the
least limit ordinal δ such that there is a strictly increasing sequence (Aα)α<δ of
(closed) C∗-subalgebras of A such that

⋃
α<δ Aα is dense in A.

For every compact space X let C(X) denote the C∗-algebra of complex contin-
uous functions on X. Then, essentially by the Stone-Weierstraß theorem, for every
infinite compact space X, cofC∗(C(X)) = ci(X).

Lemma 1.3. Let X be compact and zero-dimensional. Then

ci(X) = cofC∗(C(X)) = cof(Clop(X)) = ci0(X).

Proof. We only have to show that cof(Clop(X)) ≤ cofC∗(C(X)). Let A = C(X)
and let (Aα)α<δ be a strictly increasing sequence of C∗-subalgebras of A such that⋃
α<δ Aα is dense in A. Let B = Clop(X). For every α < δ let ∼α denote the

equivalence relation on X which identifies two points if they are not separated by
a function in Aα and let fα : X → X/ ∼α denote the quotient map. Moreover, let
Bα be the image of the natural embedding from Clop(X/ ∼α) into B.

Let α < δ. Since Aα is a proper C∗-subsalgebra of A, ∼α is not just equality.
It follows that Bα is a proper subalgebra of B. Since the sequence (Aα)α<δ is
increasing, also the sequence (Bα)α<δ is increasing. This implies cof(Clop(X)) ≤ δ
provided we can show that B =

⋃
α<δ Bα.

Let b ∈ B. Consider the characteristic function χb : X → {0, 1} of b. Since b is
clopen, χb is continuous and thus χb ∈ A. Since

⋃
α<δ Aα is dense in A, there are

α < δ and f ∈ Aα such that

sup
x∈X
|f(x)− χb(x)| < 1

2
.

Now b = f−1
[(

1
2 ,

3
2

)]
and X \ b = f−1

[(
− 1

2 ,
1
2

)]
. Therefore b ∈ Bα. It follows that

B =
⋃
α<δ Bα. �

We conclude this section with a few observations concerning upper bounds for
the coinitiality of compact spaces. For an infinite compact space X let a(X) denote
the altitude of X, the least limit ordinal δ such that there is a strictly decreasing
sequence (Fα)α<δ of closed subsets of X with |

⋂
α<δ Fα| = 1. It is clear that the

altitude of an infinite space is an infinite regular cardinal. Observe that a compact
space has altitude ℵ0 if and only if it contains a non-trivial convergent sequence.

Lemma 1.4. (a) If X is an infinite closed subspace of a compact space Y , then
ci(Y ) ≤ ci(X).

(b) If X is an infinite compact space, then ci(X) ≤ a(X).
(c) For every infinite compact space X, ci(X) ≤ cf(w(X)) where w(X) denotes

the weight of X.
(d) For every infinite compact space X, ci(X) ≤ 2ℵ0 .

For compact zero-dimensional spaces and ci0, (a), (c) and (d) are due to Kop-
pelberg [7] and (b) is due to van Douwen [2].

Proof. The proofs of (a) and (b) are easy. The proof of (c) is also easy if one
considers X as a subspace of [0, 1]w(X). (d) Follows from (a), (c), and the fact that
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every infinite compact space has an infinite closed subspace that is separable and
hence has weight ≤ 2ℵ0 . �

Note that it is consistent that ci(X) < 2ℵ0 holds for every compact space X.
Just take a model of set theory where 2ℵ0 is singular. In fact, in such a model we
have a(X) < 2ℵ0 for every compact space X.

In the zero-dimensional case, much more information has been provided by
Koszmider [8], who showed that it is consistent to have pa(X) ≤ ℵ1 for every
Boolean space X while 2ℵ0 > ℵ1. Here pa(X) is the pseudo-altitude of X, the least
character of a non-isolated point in a closed subspace of X. It is easily checked that
pa(X) is an upper bound for a(X) and hence for ci(X).

We will go back to this type of results at the end of the next section.

2. Martin’s Axiom and convergent sequences

Koppelberg [7] showed that under Martin’s Axiom every Boolean algebra of size
< 2ℵ0 is of countable cofinality. The following stronger statement (modulo Stone
duality) seems to be set-theoretic folklore (see [11]):

Under MA every infinite compact space of weight < 2ℵ0 has a non-trivial con-
vergent sequence.

However, Koppelberg’s proof of her result is still useful since turned into topology
it actually gives

Theorem 2.1. Assume Martin’s Axiom for countable partial orders. Then every
infinite compact space of weight < 2ℵ0 has a non-trivial convergent sequence.

Since it is not completely straight forward to turn Koppelberg’s algebraic argu-
ment into topology, we give a proof of this theorem.

Proof. First assume that X is scattered. After removing the isolated points from
X, we are left with a closed subspace X ′ of X. Since X is scattered, X ′ has an
isolated point p. Being isolated X ′, p has an open neighborhood O ⊆ X such that
X ′ ∩O = {p}. Since X is scattered, X is zero-dimensional and we can choose O to
be clopen. The compact set O is a one-point compactification of a discrete space
and therefore contains a convergent sequence.

Now assume that X is not scattered. Then by passing to a closed subspace of
X if neccessary, we may assume that X has no isolated points.

We construct a closed subspace of X that maps (via a continuous mapping) onto
2ω. Let (Os)s∈2<ω be a family of nonempty open subsets of X such that for all
s, t ∈ 2<ω,

(1) if s and t are incomparable (with respect to ⊆), then cl(Os) and cl(Ot) are
disjoint, and

(2) if s ⊆ t, then Ot ⊆ Os.
Since X has no isolated points, one can easily choose the family (Os)s∈2<ω by
induction on the length of s.

Let Y =
⋂
n∈ω

⋃
s∈2n cl(Os). For every x ∈ 2ω let f−1(x) =

⋂
n∈ω cl(Ox�n). This

defines a continuous surjection f : Y → 2ω.
By passing to a closed subspace of Y if neccessary, we may assume that f is

irreducible, that is, no proper closed subspace of Y is mapped onto 2ω by f .
We will apply Martin’s Axiom to the countable Boolean algebra Clop(2ω) of

clopen subsets of 2ω. Since w(X) < 2ℵ0 , w(Y ) < 2ℵ0 . Let B be a base for the
topology on Y of size < 2ℵ0 . For every open set O ⊆ Y let

DO = {A ∈ Clop(2ω) : f−1[A] ⊆ O ∨ f−1[A] ∩O = ∅}.
We show that every DO is dense in Clop(2ω).
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Let A be a nonempty clopen subset of 2ω. If f−1[A] is disjoint from O, then
A ∈ DO. If f−1[A] intersects O, then f−1[A] ∩ O is a nonempty open subset of Y
and thus, by the irreducibility of f , f � Y \ (f−1[A]∩O) is not onto. In particular,
there is a nonempty clopen set A′ ⊆ 2ω such that A′ ⊆ 2ω \ f [Y \ (f−1[A] ∩ O)].
Now it is easily checked that A′ ⊆ A and f−1[A′] ⊆ O. This shows the density of
DO.

By Martin’s Axiom, there is an ultrafilter H ⊆ Clop(2ω) that intersects DO

for every O ∈ B. Let p be the element of 2ω corresponding to H, i.e., let p be
the unique element of

⋂
H. Let y ∈ f−1(p). We will show that y is of countable

character in Y . This clearly implies that there is a sequence in Y , and therefore in
X, that converges to y.

We show that {f−1[A] : A ∈ H} is a local base at y. Let U ⊆ Y be a neigh-
borhood of y. Then there is O ∈ B such that y ∈ O ⊆ U . By the choice of H,
there is A ∈ H ∩DO. By the choice of y, y ∈ f−1[A]. Since A ∈ DO and y ∈ O,
f−1[A] ⊆ O. �

Note that this proof actually shows that the weight of a compact space without
a non-trivial convergent sequence is at least cov(M), the smallest size of family of
nowhere dense sets that covers 2ω.

Another formulation of Theorem 2.1 is the following dichotomy:

Corollary 2.2. Assume Martin’s Axiom for countable partial orders. Then every
infinite compact space X either has an infinite closed subspace of countable weight
or all of its infinite closed subspaces are of weight at least 2ℵ0

Without some instance of Martin’s Axiom, this dichotomy can fail even in the
Boolean case. Just and Koszmider [6] showed that it is consistent that there is
a Boolean algebra of size < 2ℵ0 without a countably infinite homomorphic image.
Dualizing this we obtain a compact zero-dimensional space of weight < 2ℵ0 without
an infinite closed subspace of countable weight.

By Lemma 1.4, Theorem 2.1 implies

Corollary 2.3. Assume Martin’s Axiom for countable partial orders. Then every
infinite compact space of weight < 2ℵ0 is of coinitiality ℵ0.

Corollary 2.4. The following statement is consistent with ZFC:

For every compact space X, ci(X) ≤ ℵ1 < 2ℵ0 .

Proof. Just add ℵω1 Cohen reals to a model of CH. In the resulting model we have
cf(2ℵ0) = ℵ1 and Martin’s Axiom holds for countable partial orders. If X is a
compact space of weight 2ℵ0 , then ci(X) ≤ ℵ1 by Lemma 1.4. If X is a compact
space of weight < 2ℵ0 , then ci(X) ≤ ℵ0 by Corollary 2.3. �

Note that this result is close to, but incomparable (at least without further work)
with Koszmider’s result about pseudo-altitudes of Boolean spaces mentioned at the
end of Section 2. Also note that in the proof of Corollary 2.4 we really need that
in Corollary 2.3 we do not assume all of MA since MA implies that 2ℵ0 is regular.

3. Compact spaces of countable coinitiality

Our next goal is to characterize the compact spaces of countable coinitiality.
A sequence (xn)n∈ω in a topological space X is discrete if the sequence is 1-1

and {xn : n ∈ ω} is discrete with respect to the subspace topology inherited from
X. If X is regular Hausdorff, a sequence (xn)n∈ω ∈ Xω is discrete iff there is a
family (Un)n∈ω of pairwise disjoint open sets such that for all n ∈ ω, xn ∈ Un.
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For an ultrafilter p over ω and a sequence (xn)n∈ω in a compact space X let
limp(xn)n∈ω denote the p-limit of (xn)n∈ω, i.e., the unique element of

⋂
A∈p cl({xn :

n ∈ A}).

Lemma 3.1. Let X be an infinite compact space such that for every discrete se-
quence (x0, y0, x1, y1, . . . ) ∈ Xω there is a free ultrafilter p over ω such that

limp(xn)n∈ω 6= limp(yn)n∈ω.

Then ci(X) > ℵ0.

Proof. We first observe that X does not contain a non-trivial convergent sequence.
Suppose that (an)n∈ω is sequence in X that converges to some point a ∈ X and

is not eventually constant. After thinning out this sequence, we may assume that
it is discrete. Putting xn = a2n and yn = a2n+1 we obtain two sequences such that
for every free ultrafilter p over ω,

limp(xn)n∈ω = a = limp(yn)n∈ω,

contradicting our assumption on X. This shows that X has no non-trivial converg-
ing sequences.

Now suppose that X is the limit of an inverse system S = {Xn, π
m
n , ω} whose

bonding maps are onto and not 1-1. For each n ∈ ω let πn denote the canonical
map from X to Xn.

In X we choose sequences (xn)n∈ω and (yn)n∈ω such that, for some strictly
increasing sequence (kn)n∈ω of natural numbers, for every n ∈ ω, πkn(xn) = πkn(yn)
but πkn+1(xn) 6= πkn+1(yn).

Claim 3.2. There are open sets U0, V0 ⊆ X such that x0 ∈ U0, y0 ∈ V0, and for
infinitely many n ∈ ω, {xn, yn} is disjoint from the closure of U0 ∪ V0.

We pick U0 first. Suppose there is no open neighborhood U of x0 such that
for infinitely many n ∈ ω, xn and yn are outside U . Then for every m ∈ ω
the sequences (πm(xn))n∈ω and (πm(yn))n∈ω, which eventually agree, converge to
πm(x0). It follows that the sequences (xn)n∈ω and (yn)n∈ω converge to x0. At least
one of the two sequences is not eventually constant. But this contradicts the fact
that in X there are no non-trivial converging sequences.

It follows that for some open neighborhood U of x0 there are infinitely many
n ∈ ω such that xn and yn are outside U . Let U0 be an open neighborhood of
x0 such that cl(U0) ⊆ U . After thinning out the sequence ((xn, yn))n∈ω, we may
assume that all xn and all yn, n > 0, are outside cl(U0). By the same argument as
for U0, we can pick an open neighborhood V0 of y0 as required. This finishes the
proof of the claim.

By iterated application of the claim, we can thin out the sequence ((xn, yn))n∈ω
such that, after renumbering, the sequence (x0, y0, x1, y1, . . . ) is discrete. Now let
p be any free ultrafilter over ω.

For every m ∈ ω we have

limp(πm(xn))n∈ω = limp(πm(yn))n∈ω
since the sequences (πm(xn))n∈ω and (πm(yn))n∈ω eventually agree. It is easily
checked that this implies

limp(xn)n∈ω = limp(yn)n∈ω,

contradicting our assumption on X. �

Let us call a sequence (xn)n∈ω a double sequence if it is discrete and for every
free ultrafilter p over ω,

limp(x2n)n∈ω = limp(x2n+1)n∈ω.
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Theorem 3.3. Let X be a compact space. Then ci(X) = ℵ0 iff X contains a double
sequence.

Proof. If X is a compact space of countable coinitiality, then X contains a double
sequence by Lemma 3.1.

Now suppose that X contains a double sequence (xn)n∈ω. By Lemma 1.4 it
suffices to show that Y := cl({xn : n ∈ ω}) is of countable coinitiality. For every
k ∈ ω let ∼k denote the equivalence relation on Y that for every m ≥ k identifies
x2m and x2m+1. For every x ∈ Y let [x]k denote the ∼k-class of x.

We show that Y/ ∼k is Hausdorff for every k ∈ ω. Let k ∈ ω and let x, y ∈ Y be
such that x 6∼k y. In order to show that [x]k and [y]k have disjoint open neighbor-
hoods in Y/ ∼k, we have to show that x and y have disjoint open neighborhoods
that are unions of ∼k-classes.

If one of the points x and y is a member of the sequence (xn)n∈ω, then this is
easily checked using the fact that the xn are isolated points of Y since the sequence
(xn)n∈ω is discrete.

If neither x nor y is an element of {xn : n ∈ ω}, then we choose disjoint open
neighborhoods U and V of x and y, respectively. We call a subset A of Y symmetric
if for every m ∈ ω,

x2m ∈ A ⇔ x2m+1 ∈ A.
Note that every symmetric set is the union of ∼k-classes.

Now consider the sets

S = {m ∈ ω : x2m ∈ U ∧ x2m+1 6∈ U}

and
T = {m ∈ ω : x2m+1 ∈ U ∧ x2m 6∈ U}

Since U is disjoint from {x2m+1 : m ∈ S}, x 6∈ cl({x2m+1 : m ∈ S}). Since (xn)n∈ω
is a double sequence, we also have x 6∈ cl({x2m : m ∈ S}). By the same argument,
x 6∈ cl({x2m+1 : m ∈ T}).

Therefore x ∈ U0 = U \ cl({x2m : m ∈ S} ∪ {x2m+1 : m ∈ T}). The set U0 is
symmetric. In the same way we can obtain a symmetric open neighborhood V0 ⊆ V
of y. Now U0 and V0 are disjoint open neighborhoods of x and y, respectively, and
they are unions of ∼k-classes. This shows that Y/ ∼k is Hausdorff.

Clearly, Y is the inverse limit of the spaces Y/ ∼k, k ∈ ω. It follows that
ci(Y ) = ℵ0. �

Corollary 3.4. For every infinite F -space X, ci(X) = ℵ1.

Proof. If X is an infinite compact F -space and (xn)n∈ω is a discrete sequence in
X, then for every A ⊆ N, cl({xn : n ∈ A}) is disjoint from cl({xn : n ∈ ω \A}). In
particular, (xn)n∈ω is not a double sequence. Now by Theorem 3.3, ci(X) ≥ ℵ1.

Moreover, for every discrete sequence (xn)n∈ω in X, cl({xn : n ∈ ω}) ∼= βω. By
the results of Koppelberg [7], ci(βω) = cof(P(ω)) = ℵ1. By Lemma 1.4, ci(X) ≤
ℵ1. �

Note that the compact spaces of the form Y = cl({xn : n ∈ ω}) where (xn)n∈ω
is a double sequence can be described as follows. Let Z be a compact space with
a countably infinite, discrete, dense subset C. Since C is discrete and Z = cl(C),
every z ∈ C is an isolated point of Z. Let D(Z,C) be the disjoint union of Z \ C
and 2× C. We describe a topology on D(Z,C) by defining the basic open sets.

For all z ∈ C and all i ∈ 2 the singleton {(i, z)} is open in D(Z,C). For
every open set O ⊆ Z the set (O \ C) ∪ 2 × (O ∩ C) is open. It is easily checked
that D(Z,C) is compact. Moreover, if (zn)n∈ω is a 1-1 enumeration of C, then
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the sequence ((0, z0), (1, z0), (0, z1), (1, z1), . . . ) is a double sequence. In particular,
ci(D(Z,C)) = ℵ0.

Obviously, there is a largest space of the form D(Z,C), namely D(βω, ω). Every
other space D(Z,C) is a continuous image of D(βω, ω) via a continuous map that
is induced by a 1-1 map from ω into C.

Corollary 3.5. For every compact space X, ci(X) = ℵ0 iff there is an injective
map f : 2× ω → X that has a continuous extension to D(βω, ω).

Let D be the subalgebra of P(ω) × P(ω) consisting of all pairs (a, b) such that
the symmetric difference of a and b is finite. Using Stone-duality, Corollary 3.5
implies

Corollary 3.6. For every Boolean algebra A, cof(A) = ℵ0 iff there is a homomor-
phism h : A→ D whose image contains all atoms of D.

Koppelberg [7] constructed a Boolean algebra of countable cofinality without a
countably infinite quotient. A Boolean algebra has a countably infinite quotient iff
its Stone space has a non-trivial converging sequence. Since βω does not have a
non-trivial converging sequence, neither does D(βω, ω). So by Corollary 3.6, D is
the canonical example of a Boolean algebra of countable cofinality but without a
countably infinite quotient.

Since a compact space is of countable altitude iff it has a non-trivial converg-
ing sequence, both Boolean algebras, Koppelberg’s example and D, answer the
following question of Monk positively:

Is there a Boolean algebra of countable cofinality, whose Stone space is of un-
countable altitude?

We can say a bit more about the altitude of D(βω, ω). By a result of Balcar,
Simon, and Vojtas [1, Theorem 3.5], a(βω) = ℵ1. Since βω is a closed subspace of
D(βω, ω), a(D(βω, ω)) = ℵ1.

4. Remark on the cofinality of a Banach space

Definition 4.1. For an infinite dimensional Banach space X let cof(X) denote the
least limit ordinal δ such that there is a strictly increasing chain (Xα)α<δ of closed
subspaces of X such that

⋃
α<δXα is dense in X.

In [13] Odell asks whether (in our notation) every infinite dimensional Banach
space is of countable cofinality. Johnson and Rosenthal [5] showed that a Banach
space is of cofinality ℵ0 iff it has an infinite dimensional separable quotient. Thus,
Odell’s question is equivalent to the famous separable quotient problem for Banach
spaces, which asks whether every infinite dimensional Banach space has an infinite
dimensional separable quotient.

The current state of this problem seems to be as follows: For all standard (infinite
dimensional) Banach spaces it is known that they have an infinite dimensional
separable quotient and thus, their cofinality is ℵ0 (see [12]). The general case,
however, is open. It follows from Theorem 1.1 in [10] that for every infinite compact
space X, the Banach space C(X) has an infinite dimensional separable quotient.
This was pointed out by Lacey [9].

A direct proof might go like this: By the argument in the proof of Theorem
2.1, an infinite compact space X has a non-trivial convergent sequence or there
is a closed subspace of X that maps onto 2ω. In the first case the space c of
convergent sequences of real numbers is a quotient of C(X). In the second case
the (Haar-)measure on 2ω can be pulled back to a measure µ on X. The space
L1(2ω) ∼= L1(X,µ) embeds into the dual of C(X). It is well known that `2 embeds
into L1([0, 1]) ∼= L1(2ω). Hence `2 embeds into the dual of C(X). It follows that
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`2 is a quotient of C(X). In both cases we obtain a separable, infinite dimensional
quotient of C(X).

By Corollary 3.4, it follows that

ℵ0 = cof(C(X)) < cofC∗(C(X)) = ℵ1

for every infinite compact F -space X.
The characterization of Banach spaces of countable cofinality in terms of sepa-

rable quotients fails for C∗-algebras: Let X = D(βω, ω). Then cofC∗(C(X)) = ℵ0

by Corollary 3.5. As mentioned above, X does not have a non-trivial converg-
ing sequence. Dually, C(X) has no infinite dimensional separable quotient (as a
C∗-algebra).

Let us conclude by mentioning some simple facts about cofinalities of Banach
spaces. For a topological space X let d(X) denote the density of X, the least size of
a dense subset of X. The following lemma is the parallel of Lemma 1.4 for Banach
spaces.

Lemma 4.2. Let X be an infinite dimensional Banach space.
(a) cof(X) ≤ cf(d(X))
(b) If Y is an infinite dimensional Banach space and f : X → Y is a continuous

epimorphism, then cof(X) ≤ cof(Y ).
(c) cof(X) ≤ 2ℵ0

Proof. (a) is easy. For (b) consider two cases. If cof(Y ) = ℵ0, then Y has an
infinite dimensional separable quotient by the result of Johnson and Rosenthal [5]
mentioned above. It follows that X has an infinite dimensional separable quotient
as well. By the other direction of the Johnson-Rosenthal result, X is of countable
cofinality.

If cof(Y ) > ℵ0, then Y has a dense subset of the form
⋃
α<cof(Y ) Yα where

each Yα is a closed subspace of Y . But since cof(Y ) is a cardinal of uncountable
cofinality,

⋃
α<cof(Y ) Yα is actually closed in Y and hence Y =

⋃
α<cof(Y ) Yα. For

each α < cof(Y ) let Xα = f−1[Yα]. Now (Xα)α<cof(Y ) witnesses cof(X) ≤ cof(Y ).
For (c) note that for every infinite dimensional Banach space X there is a con-

tinuous homomorphism f : X → `∞ whose image is infinite dimensional. Just fix
a sequence (fn)n∈ω of linearly independent functionals of norm 1 on X and put
f(x) := (fn(x))n∈ω for every x ∈ X.

The image Y of f equipped with the quotient norm is an infinite dimensional
Banach space of size 2ℵ0 . Now cof(X) ≤ 2ℵ0 follows from (a) and (b). �
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