
THE SHIFT ON P(ω)/fin

STEFAN GESCHKE

1. Introduction

The map n 7→ n+1 induces an automorphism of the Boolean algebra P(ω)/fin,

which we call the shift and denote by s. In this note we prove a number of re-

sults that are related to the question whether the two structures (P(ω)/fin, s) and

(P(ω)/fin, s−1) can be isomorphic. Here we consider P(ω)/fin with the usual

Boolean operations ∩, ∪, and complementation.

Observe that an isomorphism ψ : (P(ω)/fin, s) → (P(ω)/fin, s−1) is the same

as an automorphism of P(ω)/fin such that s−1 = ψ ◦ s ◦ ψ−1 (see Lemma 3.3

below). Hence (P(ω)/fin, s) is isomorphic to (P(ω)/fin, s−1) iff s is conjugated

to s−1 in the automorphism group of P(ω)/fin.

2. preliminaries

As usual, 4 denotes symmetric difference, i.e., A4B = (A \B) ∪ (B \A). We

write A =∗ B if A4B is finite and A ⊆∗ B if A \ B is finite. The collection of

finite subsets of ω is denoted by fin. In the following, elements of P(ω)/fin are

denoted by small letters from the beginning of the alphabet, while subsets of ω are

denoted by capital letters from the beginning of the alphabet. For each A ⊆ ω,

a = A4 fin = {A4B : B ∈ fin} is the corresponding element of P(ω)/fin.

Let A and B be subalgebras of P(ω)/fin and let ψ : A → B be an isomorphism.

If b : A→ B is a bijection between cofinite subsets of ω, then b induces ψ if for all

a ∈ A and all A ∈ a, ψ(a) = b[A]4 fin. An automorphism of P(ω)/fin that is

induced by a bijection between two cofinite subsets of ω is trivial.

S : P(ω) → P(ω) is the right shift, i.e., the map that maps every set A ⊆ ω to

the set A+ 1 = {n+ 1 : n ∈ A}. Let s be the automorphism of P(ω)/fin induced

by S. Similarly, let S−1 : P(ω) → P(ω) is the left shift, i.e., the map that maps

every set A ⊆ ω to the set A − 1 = {n − 1 : n ∈ A \ {0}}. The automorphism of

P(ω)/fin induced by S−1 is just the inverse s−1 of s. For each k ∈ Z we define

Sk : P(ω)→ P(ω) as follows:

(1) If k = 0, let Sk be the identity on P(ω).

(2) If k > 0, let Sk = Sk.

(3) If k = −` for some ` > 0, let Sk = (S−1)`.

Clearly, for each k ∈ Z, the automorphism of P(ω)/fin induced by Sk is just sk.
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2.1. The shift versus its inverse. Van Douwen [3] showed that the group of

trivial automorphisms of P(ω)/fin has a nontrivial normal subgroup, the group of

automorphisms induced by permutations of ω.

More precisely, given a trivial automorphism ψ and a bijection b : A → B

between cofinite subsets of ω that induces ψ, we assign an index to ψ by putting

index(ψ) = |ω \B| − |ω \A|.

Van Douwen showed that the index is a homomorphism from the group of trivial

automorphisms of P(ω)/fin into (Z,+). The trivial automorphisms of P(ω)/fin

of index 0 are precisely those automorphisms that are induced by a permutation of

ω. The shift s has index 1 and s−1 has index −1.

The following lemma seems to be folklore.

Lemma 2.1. There is no trivial automorphism ψ of P(ω)/fin such that s−1 =

ψ ◦ s ◦ ψ−1.

Proof. If ψ is trivial, then

index(ψ◦s◦ψ−1) = index(ψ)+index(s)+index(ψ−1) = index(ψ)+1−index(ψ) = 1

while index(s−1) = −1. Hence ψ ◦ s ◦ ψ−1 6= s−1. �

3. The algebra of periodic elements

We call a subalgebra A of P(ω)/fin that is closed under s and s−1 shift-

closed. An easy Löwenheim-Skolem argument shows that every countable sub-

set of P(ω)/fin is contained in a shift-closed countable atomless subalgebra of

P(ω)/fin. As it turns out, there is a particularly nice countable atomless subalge-

bra of P(ω)/fin that is shift-closed.

Let Per denote the set of all periodic elements of P(ω)/fin, i.e., let

Per = {a ∈ P(ω)/fin : {sk(a) : k ∈ Z} is finite}.

It is easily checked that Per is a subalgebra of P(ω)/fin and that it is shift-closed.

For each n > 0 let Pern be the set of all elements of P(ω)/fin that are fixed

points of sn. Again, each Pern is a shift-closed subalgebra of P(ω)/fin. Clearly,

Per =
⋃∞
n=1 Pern.

Lemma 3.1. a) Pern ⊆ Perm iff n|m.

b) a ∈ Pern iff there is Ba ⊆ n such that a =
(⋃

k∈ω S
kn(Ba)

)
4 fin. Moreover,

Ba is unique and the map fn : Pern → P(n); a 7→ Ba is an isomorphism.

c) Per is atomless.

Proof. a) Suppose n|m. Let a ∈ Pern. Then sn(a) = a. Now clearly sm(a) = a.

Hence a ∈ Perm. It follows that Pern ⊆ Perm.

On the other hand, suppose Pern ⊆ Perm. Let A = {k ∈ ω : n|k} and let

a = A4 fin. Then a ∈ Pern and hence, by our assumption, a ∈ Perm. In

particular, sm(a) = a. But this can only happen if n|m.
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b) Let a ∈ Pern and choose A ∈ a. Then there is m0 such that for all m ≥ m0,

(A ∩ [nm, n(m+ 1))) + n = A ∩ [n(m+ 1), n(m+ 2)).

Let Ba = [A ∩ [nm0, n(m0 + 1))] − nm0. Then A =∗
(⋃

k∈ω S
kn(Ba)

)
and thus

a =
(⋃

k∈ω S
kn(Ba)

)
4 fin. It is easily checked that fn is an isomorphism.

c) Let a ∈ Per but a > 0. Fix n ∈ ω such that a ∈ Pern. Let fn and f2n be as

in b). Since a > 0, fn(a) has at least one element k. By the definition of f2n, we

have k, k+n ∈ f2n(a). Hence {k} and {k+n} are disjoint elements of P(2n) below

f2n(a). Since f2n is an isomorphism, a is not an atom of Per2n and the therefore

it is not an atom of Per. �

Lemma 3.2. There is an automorphism ϕ of Per such that s−1 � Per = ϕ◦s◦ϕ−1.

Proof. On P(n) we consider the automorphism Smodn that maps every A ⊆ n to

the set {(k+ 1) mod n : k ∈ A}. Clearly, Smodn = fn ◦ s ◦ f−1n and for each A ⊆ n
we have S−1modn(A) = {(k − 1) mod n : k ∈ A}.

For each n > 0 let Φn be the automorphism of P(n) that maps every A ⊆ n to

the set {n− k − 1 : k ∈ A}. Clearly, Φ−1n = Φn. Since for all k we have

n− ((n− k − 1) + 1)− 1 = n− n+ k − 1 = k − 1,

it holds that S−1modn = Φn ◦ Smodn ◦ Φ−1n .

Now let m > 0 and consider the embedding emnn : P(n) → P(mn) that maps

each A ⊆ n to the set

emnn (A) =
⋃
i∈m

(A+ in) = {k + in : k ∈ A ∧ i ∈ m}.

It is easily checked that emnn = fmn ◦ f−1n .

For all n > 0 let ϕn = f−1n ◦ Φn ◦ fn. Now ϕn is an automorphism of Pern such

that s−1 � Pern = ϕn ◦ s ◦ ϕ−1n .

We show that emnn ◦ Φn = Φmn ◦ emnn . Let A ⊆ n. Then

Φmn(emnn (A)) = {mn−k−1 : k ∈ emnn (A)} = {mn−(k+ in)−1 : k ∈ A∧ i ∈ m}

= {(mn− in)− k − 1 : k ∈ A ∧ i ∈ m} = {jn− k − 1 : k ∈ A ∧ j ∈ {1, . . . ,m}}

= {(n− k − 1) + in : k ∈ A ∧ i ∈ m} = emnn (Φn(A)).

It follows that for all m,n > 0, ϕmn is an extension of ϕn. Hence (ϕn)n>0 is

a directed system in the sense that for all m,n > 0, ϕm and ϕn have a common

extension, namely ϕmn. Since

Per =

∞⋃
n=1

Pern =

∞⋃
n=1

domϕn =

∞⋃
n=1

ranϕn,

ϕ =
⋃
n>0 ϕn is an automorphism of Per such that s−1 = ϕ ◦ s ◦ ϕ−1. �

Lemma 3.3. Let X and Y be sets and let p : X → X and q : Y → Y bijections.

A bijection ψ : X → Y is an isomorphism between the structures (X, p) and (Y, q)

if and only if q = ψ ◦ p ◦ ψ−1.
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Proof. The map ψ is an isomorphism between (X, p) and (Y, q) if and only if ψ◦p =

q ◦ ψ. But the latter statement is equivalent to q = ψ ◦ p ◦ ψ−1. �

Lemma 3.4. Let n > 0. Then the powers of Smodn are the only automorphisms of

the structure (P(n), Smodn). Here (P(n), Smodn) is understood to be the Boolean

algebra P(n) with the additional unary operation Smodn.

Proof. Clearly, for all k ∈ Z we have Skmodn ◦ Smodn ◦ S−kmodn = Smodn. Now using

Lemma 3.3 it follows that Skmodn is an automorphism of (P(n), Smodn).

On the other hand, (P(n), Smodn) is generated by the atom {0}. Hence, an

automorphism T of (P(n), Smodn) is already determined by the image of {0}. But

T ({0}) is an atom P(n), i.e., T ({0}) = {k} for some k ∈ n. It follows that

T = Skmodn. �

Lemma 3.5. Let ψ be an automorphism of Per such that s−1 � Per = ψ ◦ s ◦ψ−1.

Let ϕ be the automorphism of Per constructed in Lemma 3.2.

a) For all n > 0, ψn = ψ � Pern is an automorphism of Pern.

b) For all k ∈ Z, if ρ = sk ◦ ψ, then s−1 � Per = ρ ◦ s ◦ ρ−1.

c) For each n > 0 let Ψn = fn ◦ ψn ◦ f−1n where fn is the isomorphism between

Pern and P(n) from Lemma 3.1. Moreover, let ϕn = ϕ � Pern and Φn = fn ◦
ϕn ◦ f−1n as in the proof of Lemma 3.2. Then there is some k ∈ Z such that

Ψn = Skmodn ◦ Φn. In other words, ψn = sk ◦ ϕn.

Proof. a) Since sn(a) = a if and only if s−n(a) = a, we obtain the same set Pern

if in the definition of Pern, s is replaced by s−1. In other words, applying the

(Per, s)-definition of Pern in the structure (Per, s−1 � Per) yields the same set.

Since ψ is an isomorphism between (Per, s � Per) and (Per, s−1 � Per) by Lemma

3.3, ψ � Pern is an isomorphism between (Pern, s � Pern) and (Pern, s
−1 � Pern).

In particular, ψ is an automorphism of Pern.

b) Let k ∈ Z. Clearly, sk ◦ s−1 ◦ s−k = s−1. Hence, by Lemma 3.3, sk is an

automorphism of (Per, s−1 � Per). Since ψ is an isomorphism between (Per, s � Per)

and (Per, s−1 � Per), ρ is an isomorphism between (Per, s � Per) and (Per, s−1 �

Per). Again by Lemma 3.3, s−1 � Per = ρ ◦ s ◦ ρ−1.

c) Let n > 0. Using Lemma 3.3 it is easily checked that Ψn ◦ Φ−1n is an au-

tomorphism of (P(n), Smodn). By Lemma 3.4 there is some k ∈ Z such that

Ψn ◦ Φ−1n = Skmodn. Now Ψn = Skmodn ◦ Φn �

The following lemma is a special case of a result of Bella et al. [2] saying that every

automorphism of a countable subalgebra of P(ω)/fin is induced by a permutation

on ω and therefore extends to all of P(ω)/fin. Bella et al. use a forcing argument

for the proof of their theorem. We will explicitly construct a permutation that

induces the automorphism ϕ of Per.

Lemma 3.6. The automorphism ϕ of Per constructed in Lemma 3.2 is induced by

a permutation b of ω.
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Proof. Let I0 = {0}. For all n > 0 let In = [n!, (n+ 1)!). If n > 0 and k ∈ In, let

b(k) = (n+ 1)!− 1− (k − n!).

Let b(0) = 0. Note that for all n ∈ ω, b � In is a permutation of In. Hence, b is a

permutation of ω. For every a ∈ Per choose A ∈ a and let ψ(a) = b[A]4 fin.

Now, whenever m ≥ n > 0 and k ∈ Im, then

b(k) mod n = ((m+1)!−1−(k−m!)) mod n = (−1−k) mod n = (n−1−k) mod n.

It follows that fn ◦ψ ◦ f−1n = Φn where Φn is the automorphism of P(n) defined in

the proof of Lemma 3.2, i.e., Φn = fn ◦ϕ ◦ f−1n . Hence ψ � Pern = ϕ � Pern. Since

this holds for every n > 0, we have ψ = ϕ and thus, ϕ is induced by b. �

A slight modification of the proof of Lemma 3.6 shows that there are in fact 2ℵ0

permutations of ω that all induce ϕ on Per. We will prove a more general result in

the next section.

4. Isomorphisms between countable subalgebras of P(ω)/fin

We prove a slight generalization of the result of Bella et al. that every automor-

phism of a countable subalgebra of P(ω)/fin is induced by a permutation of ω.

Our proof is rather explicit and does not use forcing.

Theorem 4.1. Let A and B be countable subalgebras of P(ω)/fin and let ψ : A →
B be an isomorphism. Then there is a permutation of ω that induces ψ.

In order simplify the proof of this theorem a bit, we first prove a lemma that

implies that we can restrict our attention to isomorphisms between atomless sub-

algebras of P(ω)/fin. The lemma is intuitively clear, but writing down an exact

proof turns out to be slightly technical.

Lemma 4.2. Let ψ : A → B be an isomorphism between subalgebras of an atomless

Boolean algebra C. Then there are atomless subalgebras A and B of C and an

isomorphism ψ between them such that A ⊆ A, B ⊆ B, and ψ ⊆ ψ. A and B can

be chosen of size |A|+ ℵ0.

Proof. Since C is atomless, for each atom a ∈ A the Boolean algebra C � a = {c ∈
C : c ≤ a} is atomless. In particular, C � a has a countable atomless subalgebra

Aa. Since a is an atom of A, ψ(a) is an atom of B. Choose a countable atomless

subalgebra Bψ(a) of C � ψ(a). Since any two countable atomless Boolean algebras

are isomorphic, there is an isomorphism ψa : Aa → Bψ(a).
Note that every atom b of B is of the form ψ(a) for some atom a of A. Let A be

the subalgebra of C generated by

D = A ∪
⋃
{Aa : a is an atom of A}

and let B be the subalgebra of C generated by

B ∪
⋃
{Bb : b is an atom of B}.
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Consider the set E of all elements of C of the form a0∨ c1∨· · ·∨ cn where a0 ∈ A
and the ci are pairwise disjoint elements of

⋃
{Aa : a is an atom of A} \ A such

that for each atom a of A at most one ci lies in Aa. We explicitly allow n = 0,

so that A ⊆ E . Note that for d ∈ E the representation as a0 ∨ c1 ∨ · · · ∨ cn as

above is unique up to the order of the ci. It is straightforward to check that E is a

subalgebra of C. Since D ⊆ E and all the elements of E are Boolean combinations

of elements of D, E = A.

Now let d ∈ A and let a0 ∨ c1 ∨ · · · ∨ cn be its unique representation as above.

For each i ∈ {1, . . . , n} let ai be the unique atom of A such that ci ∈ Aai . Define

ψ(d) = ψ(a0) ∨ ψa1(c1) ∨ · · · ∨ ψan(cn).

It is easily checked that ψ is an isomorphism between A and B. By definition, ψ

extends ψ. �

Proof of Theorem 4.1. Let A and B be countable subalgebras of P(ω)/fin and let

ψ : A → B be an isomorphism. By Lemma 4.2 we may assume that A and B are

atomless. Being countable and atomless, A is a free Boolean algebra over countably

many generators. Let (an)n∈ω be an independent family generating A. For every

n ∈ ω let An be the subalgebra of A generated by {ai : i < n}. Now An is

isomorphic to P(2n) and in passing from n to n+ 1, every atom of An is split into

two atoms of An+1.

We define to sequences (Pn)n∈ω, (Qn)n∈ω of finite partitions of ω into infinite

sets. Let 2n denote the set of all binary sequences of length n. Let P0 = {A∅} and

Q0 = {B∅} where A∅ = B∅ = ω. Now suppose we have defined Pn = {Aσ : σ ∈ 2n}
and Qn = {Bσ : σ ∈ 2n} so that

(1) {Aσ4 fin : σ ∈ 2n} is the set of atoms of An,

(2) {Bσ4 fin : σ ∈ 2n} is the set of atoms of Bn, and

(3) for all σ ∈ 2n, ψ(Aσ4 fin) = Bσ4 fin.

For each σ ∈ 2n and i ∈ 2 let σ_i denote the sequence σ extended by the single

digit i. Now choose Aσ_0, Aσ_1, Bσ_0, Bσ_1 ⊆ ω such that

(a) Aσ_0 and Aσ_1 are disjoint with union Aσ,

(b) Bσ_0 and Bσ_1 are disjoint with union Bσn ,

(c) Aσ_04 fin and Aσ_14 fin are the two atoms of An+1 below Aσ4 fin,

(d) Bσ_04 fin and Bσ_14 fin are the two atoms of Bn+1 below Bσ4 fin,

and

(e) for all i ∈ 2, ψ(Aσ_i4 fin) = Bσ_i4 fin.

By recursion on n, we define a sequence (bn)n∈ω of injections from finite subsets

of ω to finite subsets of ω. Let b0 = {(0, 0)}. Suppose bn has been defined. For each

σ ∈ 2n+1 let xσ be the first element of Aσ \dom(bn) and let yσ be the first element

of Bσ \ ran(bn). Since the Aσ, σ ∈ 2n+1, are pairwise disjoint, the xσ are pairwise

distinct. Similarly, the yσ are pairwise distinct. It follows that b =
⋃
n∈ω bn is a

bijection between two infinite subsets of ω.
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Claim 4.3. The bijection b is a permutation of ω, i.e., dom(b) = ran(b) = ω.

We only show dom(b) = ω since the proof of ran(b) = ω is practically identical.

Suppose dom(b) 6= ω and let x be the smallest element of ω \ dom(b). Let n be

minimal with x ⊆ dom(bn). Since Pn+1 = {Aσ : σ ∈ 2n+1} is a partition of ω,

there is some σ ∈ 2n+1 such that x ∈ Aσ. But now x is the smallest element of

Aσ \ dom(bn). Hence x = xσ ∈ dom(bn+1) ⊆ dom(b), a contradiction. This proves

the claim.

Claim 4.4. For all n ∈ ω and all σ ∈ 2n+1, b[Aσ \ dom(bn)] = Bσ \ ran(bn).

Let x ∈ Aσ \ dom(bn). Then x = xτ for some τ ∈ 2<ω \ 2n. But since xτ ∈ Aτ
and Aτ intersects Aσ only if σ and τ are comparable, σ ⊆ τ . It follows that

b(x) = yτ ∈ Bτ ⊆ Bσ. But by the choice of yτ , yτ 6∈ ran(bn). Hence

b[Aσ \ dom(bn)] ⊆ Bσ \ ran(bn).

A similar argument shows that

b−1[Bσ \ ran(bn)] ⊆ Aσ \ dom(bn)

and the claim follows.

By Claim 4.3, b induces an automorphism ψ of P(ω)/fin. If for some n ∈ ω, a

is an atom of An, then for some σ ∈ 2n, a = Aσ4 fin. By Claim 4.4,

ψ(a) = b[Aσ]4 fin = Bσ4 fin = ψ(a).

Since A is generated by the union of the sets of atoms of the An, n ∈ ω, we have

ψ � A = ψ and thus ψ is induced by b. �

Corollary 4.5. Every isomorphism between two countable subalgebras of P(ω)/fin

extends to 2ℵ0 automorphisms of P(ω)/fin that are induced by permutations of

P(ω)/fin.

Proof. Let ψ : A → B be an isomorphism between two countable subalgebras of

P(ω)/fin. It is well-known that for every countable subalgebra of P(ω)/fin there

is an element of P(ω)/fin that is independent over the subalgebra. Iterating this

argument we obtain subalgebras A and B of P(ω)/fin such that A is a free product

of A and a countable free Boolean algebra FA ⊆ P(ω)/fin and likewise, B is the

free product of B and a countable free Boolean algebra FB ⊆ P(ω)/fin. There are

2ℵ0 isomorphisms between FA and FB and each of them extends to an isomorphism

between A and B that agrees with ψ on A. In other words, ψ has 2ℵ0 extensions

to isomorphisms between A and B. By Theorem 4.1, each of these extensions of

ψ is induced by a permutation of ω. But if an isomorphism between subalgebras

of P(ω)/fin is induced by a permutation b of ω, then it clearly extends to all of

P(ω)/fin, namely to the automorphism of P(ω)/fin that is induced b. �

Remark 4.6. If every isomorphism between two subalgebras of P(ω)/fin of size

ℵ1 is induced by a bijection between cofinite subsets of ω, then 2ℵ0 = 2ℵ1 .
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Proof. Let F be an independent family in P(ω)/fin of size ℵ1 and let A be the

subalgebra of P(ω)/fin generated by F . There are 2ℵ1 permutations of F and each

of them extends to an automorphism of A. If each of these 2ℵ1 automorphisms of A
is induced by a bijection between cofinite subsets of ω, then 2ℵ1 ≤ 2ℵ0 since there

are only 2ℵ0 bijections between cofinite subsets of ω. �

It was pointed out by Farah that it is consistent with MA+¬CH that there is

an automorphism of a subalgebra A of P(ω)/fin of size ℵ1 that does not extend

to an automorphism of P(ω)/fin. This for example follows from the next remark

together with the fact that MA+2ℵ0 = ℵ2 is consistent with the non-existence of

non-trivial automorphisms of P(ω)/fin (see [7]).

Remark 4.7. If 2ℵ0 = ℵ2, MA holds, and every automorphism of every subalgebra

A of P(ω)/fin of size ℵ1 extends to all of P(ω)/fin, then P(ω)/fin has a nontrivial

automorphism.

Proof. Let (ϕα)α<ω2
list all the trivial automorphisms of P(ω)/fin. Let (aα)α<ω2

be an enumeration of P(ω)/fin. Let A0 be the trivial subalgebra of P(ω)/fin and

let ψ0 be the identity on A0.

Suppose for some α < ω2, we have constructed a subalgebra Aα of size ≤ ℵ1
and an automorphism ψα of Aα. By MA, let a ∈ P(ω)/fin be independent over

Aα. Now ψα has two different extensions to the subalgebra Aα(a) generated by Aα
and a, namely one mapping a to itself and one mapping a to ¬a. One of these two

extensions is not a restriction of ϕα to Aα(a). Since every automorphism of Aα(a)

extends to all of P(ω)/fin, there are a subalgebra Aα+1 of P(ω)/fin of size ℵ1 and

an automorphism ψα+1 of Aα+1 such that a, aα ∈ Aα+1, Aα ⊆ Aα+1, ψα ⊆ ψα+1

and ψα+1 6= ϕα � Aα+1.

If β ≤ ω2 is a limit ordinal and Aα and ψα have been defined for all α < β, let

Aβ =
⋃
α<β Aα and ψβ =

⋃
α<β ψα. By our construction, Aω2 = P(ω)/fin and

ψω2 is an automorphism of P(ω)/fin that is different from all trivial automorphism

of P(ω)/fin. �

5. The shift and its inverse on small subalgebras of P(ω)/fin

Let Sym(ω) denote the group of all permutations of ω.

Lemma 5.1. For every p ∈ Sym(ω), p and p−1 are conjugate in Sym(ω).

Proof. By Lemma 3.3, it is enough to show that the structures (ω, p) and (ω, p−1)

are isomorphic. We construct an isomorphism I : (ω, p)→ (ω, p−1) as follows:

Let ∼ denote the orbit equivalence relation on ω induced by p, i.e., for n,m ∈ ω
let n ∼ m if there is k ∈ Z such that pk(n) = m. Let ω/ ∼ denote the collection

of ∼-classes. For each ∼-class a ∈ ω/ ∼ choose na ∈ a. Now, if n ∈ ω, let a be

the ∼-class of n. Choose k ∈ Z such that n = pk(na) and let I(n) = p−k(na).

It is easily checked that I is well defined and an isomorphism between (ω, p) and

(ω, p−1). �
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Theorem 5.2. Let A and B be countable subalgebras of P(ω)/fin and t : A → B
an isomorphism. Then there are automorphisms τ and ψ of P(ω)/fin such that τ

extends t and ψ ◦ τ ◦ ψ−1 = τ−1.

Proof. By Theorem 4.1, t is induced by by a permutation b of ω. By Lemma 5.1,

there is a permutation p of ω such that b−1 = p◦b◦p−1. Let τ be the automorphism

of P(ω)/fin induced by b and let ψ be the automorphism of P(ω)/fin induced by

p. Then clearly, τ extends t and ψ ◦ τ ◦ ψ−1 = τ−1. �

The weakness of this theorem is that even if A = B and hence A is closed under

τ and τ−1, there is no reason to assume that A is closed under the automorphism

ψ of P(ω)/fin that conjugates τ and τ−1.

We address this issue in case of the shift and its inverse. In this particular case,

for a given sufficiently small subalgebra A of P(ω)/fin there is an explicit way to

construct a permutation of ω that induces the respective automorphism on A.

Definition 5.3. Let σ = (nk)k∈ω be a strictly increasing sequence in ω and put

n−1 = −1. We define two permutations bσ and pσ of ω as follows: For m ∈ ω let

bσ(m) =

m+ 1, if m 6∈ {nk : k ∈ ω},

nk−1 + 1, if m = nk for some k ∈ ω

and

pσ(m) = (nk −m) + nk−1 + 1

where k ∈ ω is minimal with nk ≥ m.

Lemma 5.4. Let B, σ, bσ and pσ be as in Definition 5.3.

a) p−1σ = pσ

b) pσ ◦ bσ ◦ p−1σ = b−1σ

Proof. a) Let m ∈ ω and let k ∈ ω be minimal with nk ≥ m. Now m ∈ (nk−1, nk]

and pσ(m) = (nk −m) + nk−1 + 1, which is at least nk−1 + 1 and at most nk. It

follows that (nk−1, nk] is invariant under pσ. Let z = nk −m. Now m = nk − z
and pσ(m) = nk−1 + 1 + z. Clearly,

pσ(pσ(m)) = pσ(nk−1 + 1 + z) = (nk − (nk−1 + 1 + z)) + nk−1 + 1 = nk − z = m.

Since m was arbitrary, it follows that p−1σ = pσ.

b) We show that pσ ◦ bσ = b−1σ ◦ pσ. Let m ∈ ω and let k ∈ ω be minimal with

m ≤ nk. First assume that m < nk. Now bσ(m) = m+ 1 and

(pσ ◦ bσ)(m) = pσ(m+ 1) = (nk − (m+ 1)) + nk−1 + 1 = (nk −m) + nk−1.

On the other hand, pσ(m) = (nk −m) + nk−1 + 1 > nk−1 + 1 and

(b−1σ ◦ pσ)(m) = b−1σ ((nk −m) + nk−1 + 1) = (nk −m) + nk−1 = (pσ ◦ bσ)(m).

Now assume that m = nk. In this case bσ(m) = nk−1 + 1 and

(pσ ◦ bσ)(m) = pσ(nk−1 + 1) = (nk − (nk−1 + 1)) + nk−1 + 1 = nk.
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On the other hand, pσ(m) = (nk − nk) + nk−1 + 1 = nk−1 + 1 and

(b−1σ ◦ pσ)(m) = b−1σ (nk−1 + 1) = nk = (pσ ◦ bσ)(m).

Since m was arbitrary, it follows that pσ ◦ bσ = b−1σ ◦ pσ �

Lemma 5.5. Let B be an infinite subset of ω and σ = (nk)k∈ω its increasing

enumeration. Then S(B) =∗ pσ[B].

Proof. Let k ∈ ω. Then

pσ(nk) = (nk − nk) + nk−1 + 1 = nk−1 + 1.

If k > 0, nk−1 + 1 ∈ S(B). It follows that pσ[B] ⊆∗ S(B). On the other hand, if

m ∈ S(B), then m = nk−1+1 for some k > 1 and nk−1+1 = (nk−nk)+nk−1+1 =

pσ(nk) ∈ pσ[B] and thus S(B) ⊆ pσ[B]. �

Lemma 5.6. Let A be a subalgebra of P(ω)/fin. Suppose b ∈ P(ω)/fin is such

that for all a ∈ A either b ≤ a or b ≤ ¬a. We say that b diagonalizes A. Choose

B ∈ b and let σ = (nk)k∈ω be the increasing enumeration of B. Then on A, the

shift s is induced by bσ.

Proof. Let a ∈ A. Choose A ∈ a. If b ≤ ¬a, then for almost all k ∈ ω, nk 6∈ A.

Hence for almost all m ∈ A, bσ(m) = m+ 1, and therefore bσ[A] =∗ S[A].

Now suppose that b ≤ a. In this case for almost all k ∈ ω, nk ∈ A. If m ∈ A\B,

then bσ(m) = m + 1. For almost all k ∈ ω we have nk, nk−1 ∈ A and bσ(nk) =

nk−1 + 1. It follows that bσ[A] =∗ S[A].

This shows that on A, the shift s is induced by bσ. �

Lemma 5.7. Let b ∈ P(ω)/fin and let

D(b) = {a ∈ P(ω)/fin : ∀z ∈ Z(b ≤ sz(a) ∨ b ≤ ¬sz(a))}.

Then D(b) is a shift-closed subalgebra of P(ω)/fin. In fact, D(b) is the maximal

shift-closed subalgebra of P(ω)/fin that is diagonalized by b.

Proof. It is clear that D(b) is closed under s and s−1.

Now let a0, a1 ∈ D(b) and z ∈ Z. If b ≤ sz(a0), then b ≤ ¬sz(¬a0). If addition-

ally b ≤ sz(a1), then b ≤ sz(a0 ∧ a1). If b 6≤ sz(a0), then b ≤ ¬sz(a0) and thus

b ≤ ¬sz(a0 ∧ a1). Similarly, if b 6≤ sz(a1), then b ≤ ¬sz(a0 ∧ a1).

Since z was arbitrary, it follows that D(b) is closed under ¬ and ∧ and hence

a subalgebra of P(ω)/fin. From the definition of D(b) it is clear that it is the

maximal shift-closed subalgebra of P(ω)/fin that is diagonalized by b. �

Theorem 5.8. For every countable subset T of P(ω)/fin there are an automor-

phism ψ of P(ω)/fin and a shift-closed subalgebra A of P(ω)/fin that contains T

such that A is closed under ψ and ψ−1 and (ψ ◦ s ◦ ψ−1) � A = s−1 � A.

Under MAκ this extends to all subsets T of P(ω)/fin of size at most κ.
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Proof. Let B be a shift-closed subalgebra of P(ω)/fin of size at most κ such that

T ⊆ B. Let P be an ultrafilter of B. It is well-known that MAκ implies the existence

of b ∈ P(ω)/fin such that b > 0 and b ≤ a for all a ∈ P . (See for instance [6, Ch. II,

Theorem 2.15].) Let A = D(b). By Lemma 5.7, A is a shift-closed subalgebra of

P(ω)/fin such that B ⊆ A. In particular, T ⊆ A. Moreover, A is diagonalized by

b.

Choose B ∈ b and let σ = (nk)k∈ω be the increasing enumeration of B. Let

n−1 = −1. By Lemma 5.6, the shift is induced by bσ on A. Let ψ be the automor-

phism of P(ω)/fin induced by pσ. By Lemma 5.4 b), pσ ◦ bσ ◦ p−1σ = b−1σ . Hence

the theorem follows if we can prove

Claim 5.9. A is closed under ψ.

Let a ∈ A and z ∈ Z. We have to show that b ≤ sz(ψ(a)) or b ≤ ¬sz(ψ(a)). By

the definition of D(b), b ≤ s−z−1(a) or b ≤ ¬s−z−1(a).

First assume that b ≤ s−z−1(a). Then ψ(b) ≤ (ψ ◦ s−z−1)(a). By Lemma 5.4 b),

ψ◦s−z−1 = sz+1◦ψ. By Lemma 5.5, ψ(b) = s(b). It follows that s(b) ≤ (sz+1◦ψ)(a)

and thus, b ≤ sz(ψ(a)).

Similarly, if b ≤ ¬s−z−1(a) = s−z−1(¬a), then b ≤ sz(ψ(¬a)) = ¬sz(ψ(a)).

Since z was arbitrary, this shows ψ(a) ∈ D(b) = A. �

6. The shift as an automorphism of Sym(ω)/FS

Let us briefly consider a structure that is in some sense a non-commutative vari-

ant of P(ω)/fin. Namely, let FS denote the normal subgroup of Sym(ω) consisting

of all permutations of ω that move only finitely many elements. It is well-known

that FS is the largest proper normal subgroup of Sym(ω), and hence the quotient

Sym(ω)/FS is simple, i.e., has no non-trivial normal subgroup.

Let A,B ⊆ ω be cofinite and let F : A → B be a bijection. Then F induces an

automorphism f of Sym(ω)/FS by conjugation in the following way:

For σ ∈ Sym(ω) let σ denote the FS-coset of σ. Now fix σ ∈ Sym(ω). By passing

to a different representative of the FS-coset of σ if necessary, we may assume that

σ does not move any element of ω \B. Let

F (σ) =

n, if n ∈ ω \A, and

(F ◦ σ ◦ F−1)(n), if n ∈ A.

Now let f(σ) = F (σ). This definition does not depend on the choice of σ within

its FS-coset. It is easily checked that f is an automorphism of Sym(ω)/FS.

Redefining notation from the previous sections, let S : ω → ω be the successor

function that maps each n ∈ ω to n + 1. Regarding S as a bijection between two

cofinite subsets of ω, S induces an automorphism s of Sym(ω)/FS, which we call

the shift on Sym(ω)/FS.

Sym(ω) acts in a natural way on P(ω)/fin. Let h : Sym(ω) → Aut(P(ω)/fin)

be the homomorphism given by this action. The kernel of this homomorphism is
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FS. Hence Sym(ω)/FS acts on P(ω)/fin. The image of h is the group of trivial

automorphisms of P(ω)/fin of index 0. Conjugation of elements of h[Sym(ω)] in

Aut(P(ω)/fin) by the shift on P(ω)/fin corresponds to the shift s on Sym(ω)/FS.

The subgroup of Aut(P(ω)/fin) generated by the trivial automorphisms of in-

dex 0 together with the shift on P(ω)/fin is precisely the group of trivial auto-

morphisms of P(ω)/fin. Every trivial automorphism of P(ω)/fin gives rise to an

automorphism of Sym(ω)/FS, as described above.

Alperin, Covington, and Macpherson [1] studied the group of automorphisms

of Sym(ω)/FS and showed that it is generated by all the inner automorphisms of

Sym(ω)/FS together with the shift s. In particular, Aut(Sym(ω)/FS) is isomorphic

to the group of trivial automorphisms of P(ω)/fin. It follows that the shift s on

Sym(ω)/FS is not conjugated to s−1 in the automorphism group of Sym(ω)/FS.

This immediately gives the following theorem:

Theorem 6.1. The structure (Sym(ω)/FS, s) is not isomorphic to (Sym(ω)/FS, s−1).

We derive the following example from the result of Alperin, Covington, and

Macpherson:

Example 6.2. Sym(ω)/FS has two isomorphic countable subgroups such that no

isomorphism between the two extends to all of Sym(ω)/FS.

Proof. Let σ ∈ Sym(ω) be such that σ has only finite orbits, but arbitrarily large

finite orbits. Then for every τ ∈ Sym(ω) with σ = τ , τ has no infinite orbits,

either. For every ϕ ∈ Sym(ω), ϕ ◦ σ ◦ϕ−1 has no infinite orbits. Also, S(σ) has no

infinite orbits. Replacing σ by another element of σ if necessary, we may assume

that σ(0) = 0. Now there is τ ∈ Sym(ω) such that S(τ) = σ. Just as σ, τ has no

infinite orbits. Since the automorphism group of Sym(ω)/FS is generated by the

inner automorphism and the shift, for every automorphism ϕ of Sym(ω)/FS and

every τ ∈ Sym(ω) with ϕ(σ) = τ , τ has no infinite orbits.

Finally, let τ ∈ Sym(ω) have an infinite orbit. Now both σ and τ generate infi-

nite cyclic subgroups of Sym(ω)/FS. By the argument above, no automorphism of

Sym(ω)/FS maps σ to τ or to τ−1. Hence Sym(ω)/FS has two isomorphic count-

able subgroups such that no isomorphism between the two groups extends to an

automorphism of Sym(ω)/FS. �
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