THE SHIFT ON P(w)/fin

STEFAN GESCHKE

1. INTRODUCTION

The map n +— n+1 induces an automorphism of the Boolean algebra P(w)/fin,
which we call the shift and denote by s. In this note we prove a number of re-
sults that are related to the question whether the two structures (P(w)/£fin, s) and
(P(w)/£in, s~1) can be isomorphic. Here we consider P(w)/fin with the usual
Boolean operations N, U, and complementation.

Observe that an isomorphism 1 : (P(w)/£in, s) — (P(w)/fin, s~!) is the same
as an automorphism of P(w)/fin such that s™ = 1) o so0 ¢! (see Lemma 3.3
below). Hence (P(w)/fin,s) is isomorphic to (P(w)/fin,s™!) iff s is conjugated

to s~! in the automorphism group of P(w)/fin.

2. PRELIMINARIES

As usual, A denotes symmetric difference, i.e., AAB = (A\B)U(B\A). We
write A =* B if AA B is finite and A C* B if A\ B is finite. The collection of
finite subsets of w is denoted by fin. In the following, elements of P(w)/fin are
denoted by small letters from the beginning of the alphabet, while subsets of w are
denoted by capital letters from the beginning of the alphabet. For each A C w,
a=ANAfin={AA B: B € fin} is the corresponding element of P(w)/fin.

Let A and B be subalgebras of P(w)/fin and let ¢ : A — B be an isomorphism.
If b: A — B is a bijection between cofinite subsets of w, then b induces v if for all
a € Aand all A € a, ¢¥(a) = b[A] Afin. An automorphism of P(w)/fin that is
induced by a bijection between two cofinite subsets of w is trivial.

S : P(w) — P(w) is the right shift, i.e., the map that maps every set A C w to
theset A+1={n+1:n¢€ A}. Let s be the automorphism of P(w)/fin induced
by S. Similarly, let S_; : P(w) — P(w) is the left shift, i.e., the map that maps
every set A Cw totheset A—1={n—-1:n¢€ A\ {0}}. The automorphism of
P(w)/£in induced by S_; is just the inverse s~! of s. For each k € Z we define
Sk : P(w) = P(w) as follows:

(1) If £ =0, let Sk be the identity on P(w).
(2) If k>0, let S, = S*.
(3) If k = —£ for some £ > 0, let Sy, = (S_1)*%.

Clearly, for each k € Z, the automorphism of P(w)/fin induced by Sy, is just s*.
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2.1. The shift versus its inverse. Van Douwen [3] showed that the group of
trivial automorphisms of P(w)/fin has a nontrivial normal subgroup, the group of
automorphisms induced by permutations of w.

More precisely, given a trivial automorphism 1 and a bijection b : A — B

between cofinite subsets of w that induces 1, we assign an indez to 1 by putting
index(¢)) = |w\ B| — |w \ 4]

Van Douwen showed that the index is a homomorphism from the group of trivial
automorphisms of P(w)/fin into (Z,+). The trivial automorphisms of P(w)/fin
of index 0 are precisely those automorphisms that are induced by a permutation of
w. The shift s has index 1 and s~! has index —1.

The following lemma seems to be folklore.

Lemma 2.1. There is no trivial automorphism 1 of P(w)/fin such that s~ =

osopt.

Proof. If 9 is trivial, then

index(¢osoyp™!) = index(¢)) +index(s) +index () ') = index () +1—index(y)) = 1

while index(s™!) = —1. Hence posoyp~t # s7L O
3. THE ALGEBRA OF PERIODIC ELEMENTS

We call a subalgebra A of P(w)/fin that is closed under s and s=! shift-
closed. An easy Lowenheim-Skolem argument shows that every countable sub-
set of P(w)/fin is contained in a shift-closed countable atomless subalgebra of
P(w)/fin. As it turns out, there is a particularly nice countable atomless subalge-
bra of P(w)/fin that is shift-closed.

Let Per denote the set of all periodic elements of P(w)/fin, i.e., let
Per = {a € P(w)/fin: {s(a) : k € Z} is finite}.

It is easily checked that Per is a subalgebra of P(w)/fin and that it is shift-closed.
For each m > 0 let Per, be the set of all elements of P(w)/fin that are fixed
points of s™. Again, each Per,, is a shift-closed subalgebra of P(w)/fin. Clearly,

Per = ;- Per,,.

Lemma 3.1. @) Per,, C Per,, iff n|m.
b) a € Per,, iff there is B, C n such that a = (Uye,, S* (Ba)) A fin. Moreover,
B, is unique and the map f, : Per, — P(n);a — B, is an isomorphism.

¢) Per is atomless.

Proof. a) Suppose n|m. Let a € Per,,. Then s"(a) = a. Now clearly s"(a) = a.
Hence a € Per,,. It follows that Per,, C Per,,.

On the other hand, suppose Per, C Per,,. Let A = {k € w : nlk} and let
a = AAfin. Then a € Per, and hence, by our assumption, a € Per,,. In

particular, s™(a) = a. But this can only happen if n|m.
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b) Let a € Per,, and choose A € a. Then there is mq such that for all m > my,
(ANn[nm,n(m+1)))+n=AnN[n(m+1),n(m+2)).

Let B, = [A N [nmg,n(mg + 1))] — nmg. Then A =* (e, S*"(B,)) and thus
a= (Upe, 5" (B,)) Afin. It is easily checked that f,, is an isomorphism.

¢) Let a € Per but a > 0. Fix n € w such that a € Per,,. Let f,, and fa, be as
in b). Since a > 0, f,(a) has at least one element k. By the definition of fs,, we
have k,k+n € fo,(a). Hence {k} and {k+n} are disjoint elements of P(2n) below
fon(a). Since fa, is an isomorphism, a is not an atom of Persy, and the therefore

it is not an atom of Per. O

Lemma 3.2. There is an automorphism ¢ of Per such that s~ | Per = posop™!.

Proof. On P(n) we counsider the automorphism Sp,0q4, that maps every A C n to
the set {(k+1) mod n: k € A}. Clearly, Smodn = fnoso f, ! and for each A Cn
we have S_ 1. (A)={(k—1) modn:k e A}.

For each n > 0 let ®,, be the automorphism of P(n) that maps every A C n to
the set {n —k —1:k € A}. Clearly, ®,' = ®,,. Since for all k& we have

n—((n-k-1)4+1)—-1=n—-n+k-1=k—-1,

it holds that S}, = ®, 0 Spoan o ;1.

Now let m > 0 and consider the embedding e : P(n) — P(mn) that maps

each A C n to the set
en™A) = J(A+in)={k+in: ke Aniem}.
EMm

It is easily checked that e™" = f,,, o f. L.

For all n > 0 let ¢, = f, ' o ®, o f,. Now ¢, is an automorphism of Per,, such
that s=! | Per,, = ¢, 050 ¢, L.

We show that €] o ®,, = ®,,,,, o el’™. Let A C n. Then

Dn(en™(A) ={mn—k—-1:kee(A)} ={mn—(k+in)—1: k€ ANi Em}

={(mn—in)—k—-1:kecAniem}={jn—k—-1:kc ANje{l,...,m}}

={n—k—-1)+in: k€ ANiem}=e,"(P,(A)).
It follows that for all m,n > 0, @, is an extension of ¢,. Hence (¢n)n>o is

a directed system in the sense that for all m,n > 0, ¢, and ¢, have a common

extension, namely ¢;,,. Since

o0 oo (oo}
Per = U Per, = U dom ¢,, = U ran p,,
n=1 n=1 n=1
¢ = U,>0 ¥n is an automorphism of Per such that s™' = poso @™t O

Lemma 3.3. Let X and Y be sets and letp: X — X and q : Y — Y bijections.
A bijection ¥ : X =Y is an isomorphism between the structures (X, p) and (Y, q)

if and only if g =Y opoy™L.
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Proof. The map v is an isomorphism between (X, p) and (Y, ¢) if and only if ¢pop =
q o 1. But the latter statement is equivalent to ¢ =1 opo =1, g

Lemma 3.4. Let n > 0. Then the powers of Syodn are the only automorphisms of
the structure (P(n), Smodn). Here (P(n), Smodn) s understood to be the Boolean

algebra P(n) with the additional unary operation Smodn-

Proof. Clearly, for all k € Z we have Slljwdn 0 Smodn © Sr;];dn = Smodn. Now using
Lemma 3.3 it follows that S .. is an automorphism of (P(n), Smodn)-

On the other hand, (P(n), Smodn) is generated by the atom {0}. Hence, an
automorphism 7" of (P(n), Smodr) is already determined by the image of {0}. But
T({0}) is an atom P(n), i.e., T({0}) = {k} for some k € n. It follows that
T=5% 4. O
Lemma 3.5. Let ¢ be an automorphism of Per such that s™! | Per = osoyL.
Let ¢ be the automorphism of Per constructed in Lemma 3.2.

a) For allm > 0, 1, = ¢ | Per,, is an automorphism of Per,,.

b) For allk € Z, if p= s o), then s™! [ Per = posop L.

¢) For each n > 0 let W,, = f,, o1, o f 'L where f, is the isomorphism between
Per,, and P(n) from Lemma 8.1. Moreover, let v, = ¢ | Per, and ®, = f, o
©n o frl as in the proof of Lemma 3.2. Then there is some k € Z such that
v, =S*

K odn © Pn. In other words, 1, = s* o @,

Proof. a) Since s™(a) = a if and only if s7"(a) = a, we obtain the same set Per,,

1

if in the definition of Per,, s is replaced by s~'. In other words, applying the

(Per, s)-definition of Per,, in the structure (Per,s~! | Per) yields the same set.

1

Since 1 is an isomorphism between (Per, s [ Per) and (Per,s ! | Per) by Lemma

3.3, ¢ | Per, is an isomorphism between (Per,,,s | Per,) and (Per,,s ' | Per,).
In particular, ¢ is an automorphism of Per,,.

b) Let k € Z. Clearly, s¥ 0 571 0 s7% = 571, Hence, by Lemma 3.3, s* is an
automorphism of (Per, s~! | Per). Since 1 is an isomorphism between (Per, s | Per)

~1 ] Per), p is an isomorphism between (Per,s | Per) and (Per,s™! |

Per). Again by Lemma 3.3, s™! | Per = posop L.

and (Per, s

¢) Let n > 0. Using Lemma 3.3 it is easily checked that ¥, o ®; ! is an au-
tomorphism of (P(n), Smodn). By Lemma 3.4 there is some k € Z such that
U,od, 1 =5k Now ¥,, = Sk o®, O

odn* modn

The following lemma is a special case of a result of Bella et al. [2] saying that every
automorphism of a countable subalgebra of P(w)/fin is induced by a permutation
on w and therefore extends to all of P(w)/fin. Bella et al. use a forcing argument
for the proof of their theorem. We will explicitly construct a permutation that

induces the automorphism ¢ of Per.

Lemma 3.6. The automorphism ¢ of Per constructed in Lemma 3.2 is induced by

a permutation b of w.
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Proof. Let Iy = {0}. For alln > 0let I, = [n!, (n+ 1)!). If n > 0 and k € I, let
bk)=(mn+1)!—=1—(k—n!).

Let b(0) = 0. Note that for all n € w, b | I, is a permutation of I,,. Hence, b is a
permutation of w. For every a € Per choose A € a and let 1(a) = b[A] A fin.
Now, whenever m >n > 0 and k € I,,,, then

b(k)mod n = ((m+1)!—1—(k—m!))mod n = (—1—k)mod n = (n—1—k)mod n.

It follows that f, ot o f, ! = ®, where ®,, is the automorphism of P(n) defined in
the proof of Lemma 3.2, i.e., ®,, = f, opo f 1. Hence ¢ | Per, = ¢ | Per,. Since
this holds for every n > 0, we have 1 = ¢ and thus, ¢ is induced by b. (I

A slight modification of the proof of Lemma 3.6 shows that there are in fact 2%
permutations of w that all induce ¢ on Per. We will prove a more general result in

the next section.

4. ISOMORPHISMS BETWEEN COUNTABLE SUBALGEBRAS OF P(w)/fin

We prove a slight generalization of the result of Bella et al. that every automor-
phism of a countable subalgebra of P(w)/fin is induced by a permutation of w.

Our proof is rather explicit and does not use forcing.

Theorem 4.1. Let A and B be countable subalgebras of P(w)/fin and let ¢ : A —

B be an isomorphism. Then there is a permutation of w that induces 1.

In order simplify the proof of this theorem a bit, we first prove a lemma that
implies that we can restrict our attention to isomorphisms between atomless sub-
algebras of P(w)/fin. The lemma is intuitively clear, but writing down an exact

proof turns out to be slightly technical.

Lemma 4.2. Letvy : A — B be an isomorphism between subalgebras of an atomless
Boolean algebra C. Then there are atomless subalgebras A and B of C and an
isomorphism 1 between them such that A C A, BC B, and ¢ C 1. A and B can
be chosen of size |A| + Rg.

Proof. Since C is atomless, for each atom a € A the Boolean algebra C | a = {c €
C : ¢ < a} is atomless. In particular, C | a has a countable atomless subalgebra
A,. Since a is an atom of A, ¥(a) is an atom of B. Choose a countable atomless
subalgebra By,) of C [ 9(a). Since any two countable atomless Boolean algebras
are isomorphic, there is an isomorphism v, : Aq — By (a)-

Note that every atom b of B is of the form v(a) for some atom a of A. Let A be
the subalgebra of C generated by

D:AUU{Aa :a is an atom of A}
and let B be the subalgebra of C generated by

BU U{Bb : b is an atom of B}.
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Consider the set & of all elements of C of the form agVer V---Ve, where ag € A
and the ¢; are pairwise disjoint elements of (J{A, : a is an atom of A} \ A such
that for each atom a of A at most one ¢; lies in A,. We explicitly allow n = 0,
so that A C £. Note that for d € £ the representation as ag Vc¢1 V--- V¢, as
above is unique up to the order of the ¢;. It is straightforward to check that £ is a
subalgebra of C. Since D C £ and all the elements of £ are Boolean combinations
of elements of D, £ = A.

Now let d € A and let ag V¢1 V --- V ¢, be its unique representation as above.
For each i € {1,...,n} let a; be the unique atom of A such that ¢; € A,,. Define

@(d) =(ao) V Ya,(c1) V -+ V 1a, (cn).

It is easily checked that 1 is an isomorphism between A and B. By definition,
extends . O

Proof of Theorem 4.1. Let A and B be countable subalgebras of P(w)/fin and let
1 : A — B be an isomorphism. By Lemma 4.2 we may assume that A and B are
atomless. Being countable and atomless, A is a free Boolean algebra over countably
many generators. Let (ap)necw be an independent family generating A. For every
n € w let A, be the subalgebra of A generated by {a; : i < n}. Now A, is
isomorphic to P(2") and in passing from n to n + 1, every atom of 4, is split into
two atoms of A,,11.

We define to sequences (Py,)new, (@n)new of finite partitions of w into infinite
sets. Let 2™ denote the set of all binary sequences of length n. Let Py = {4y} and
Qo = {By} where Ay = By = w. Now suppose we have defined P, = {4, : 0 € 2"}
and Q, = {B, : 0 € 2"} so that

(1) {A, Afin: o € 2™} is the set of atoms of A,
(2) {B, Afin: o € 2™} is the set of atoms of B,,, and
(3) for all o € 2™, (A, Afin) = B, Afin.
For each 0 € 2™ and 7 € 2 let 077 denote the sequence o extended by the single
digit . Now choose Ay~q, Ay~1, Bo~0, Bo~1 C w such that
(a
(b

(c
(d

Ay~o and A,~; are disjoint with union A,

B,~¢ and B,~1 are disjoint with union BY,

As~9 A fin and Ay,~1 A fin are the two atoms of A,,11 below A, A fin,
By~9 A fin and B,~1 A fin are the two atoms of B, 11 below B, Afin,
and

(e) for all i € 2, Y(Ay~; Afin) = By~; A fin.

)
)
)
)

By recursion on n, we define a sequence (b, )new of injections from finite subsets
of w to finite subsets of w. Let by = {(0,0)}. Suppose b, has been defined. For each
o € 2" let x, be the first element of A, \ dom(b,) and let 3, be the first element
of B, \ ran(b,). Since the A,, o € 2"*! are pairwise disjoint, the z, are pairwise
distinct. Similarly, the y, are pairwise distinct. It follows that b = |J, . b, is a

necw

bijection between two infinite subsets of w.



THE SHIFT ON P(w)/fin 7

Claim 4.3. The bijection b is a permutation of w, i.e., dom(b) = ran(b) = w.

We only show dom(b) = w since the proof of ran(b) = w is practically identical.
Suppose dom(b) # w and let & be the smallest element of w \ dom(b). Let n be
minimal with 2 C dom(b,). Since P41 = {4, : 0 € 2"} is a partition of w,
there is some o € 2”t! such that z € A,. But now z is the smallest element of
Ay \ dom(by,). Hence z = x, € dom(b,4+1) C dom(b), a contradiction. This proves

the claim.
Claim 4.4. For all n € w and all o € 2"T1 b[A, \ dom(b,)] = B, \ ran(b,,).

Let x € A, \ dom(b,). Then z = x, for some 7 € 2<% \ 2", But since x, € A,
and A, intersects A, only if o and 7 are comparable, o C 7. It follows that
b(x) =y, € B; C B,. But by the choice of y,, y, & ran(b,,). Hence

b[As \ dom(b,)] C B, \ ran(by,).
A similar argument shows that
b~ '[B, \ ran(b,)] C A, \ dom(b,)

and the claim follows.
By Claim 4.3, b induces an automorphism v of P(w)/fin. If for some n € w, a

is an atom of A,, then for some o € 2", a = A, A fin. By Claim 4.4,
¥(a) = b[A,] A fin = B, A fin = ¥(a).

Since A is generated by the union of the sets of atoms of the A,,, n € w, we have

¥ | A =1 and thus v is induced by b. O

Corollary 4.5. Fvery isomorphism between two countable subalgebras of P(w)/fin
extends to 2%° automorphisms of P(w)/fin that are induced by permutations of

P(w)/fin.

Proof. Let ¢ : A — B be an isomorphism between two countable subalgebras of
P(w)/fin. It is well-known that for every countable subalgebra of P(w)/fin there
is an element of P(w)/fin that is independent over the subalgebra. Iterating this
argument we obtain subalgebras A and B of P(w)/£in such that A is a free product
of A and a countable free Boolean algebra F4 C P(w)/fin and likewise, B is the
free product of B and a countable free Boolean algebra Fz C P(w)/fin. There are
280 isomorphisms between F 4 and F and each of them extends to an isomorphism
between A and B that agrees with ¢ on A. In other words, 1 has 2%° extensions
to isomorphisms between A and B. By Theorem 4.1, each of these extensions of
1 is induced by a permutation of w. But if an isomorphism between subalgebras
of P(w)/fin is induced by a permutation b of w, then it clearly extends to all of
P(w)/fin, namely to the automorphism of P(w)/fin that is induced b. O

Remark 4.6. If every isomorphism between two subalgebras of P(w)/fin of size

R; is induced by a bijection between cofinite subsets of w, then 280 = 2%t
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Proof. Let F be an independent family in P(w)/fin of size Ry and let A be the
subalgebra of P(w)/fin generated by F. There are 2% permutations of F and each
of them extends to an automorphism of A. If each of these 2* automorphisms of A
is induced by a bijection between cofinite subsets of w, then 2% < 280 since there

are only 280 bijections between cofinite subsets of w. U

It was pointed out by Farah that it is consistent with MA+—CH that there is
an automorphism of a subalgebra A of P(w)/fin of size 8; that does not extend
to an automorphism of P(w)/fin. This for example follows from the next remark
together with the fact that MA+2R0 = X, is consistent with the non-existence of

non-trivial automorphisms of P(w)/fin (see [7]).

Remark 4.7. If 2% = Ry, MA holds, and every automorphism of every subalgebra
A of P(w)/fin of size Xy extends to all of P(w)/fin, then P(w)/fin has a nontrivial

automorphism.

Proof. Let (¢a)a<w, list all the trivial automorphisms of P(w)/fin. Let (aa)a<w,
be an enumeration of P(w)/fin. Let Ag be the trivial subalgebra of P(w)/fin and
let g be the identity on Ag.

Suppose for some a < wy, we have constructed a subalgebra A, of size < Ny
and an automorphism %, of A,. By MA, let a € P(w)/fin be independent over
Aq. Now 1, has two different extensions to the subalgebra A, (a) generated by A,
and a, namely one mapping a to itself and one mapping a to —a. One of these two
extensions is not a restriction of ¢, to A, (a). Since every automorphism of A, (a)
extends to all of P(w)/fin, there are a subalgebra A, 11 of P(w)/fin of size X; and
an automorphism t,11 of Aei1 such that a,an € Agi1, Ao € Aat1, Yo € Yar1
and Yo11 # Qo | Aat1-

If 8 < ws is a limit ordinal and A, and %, have been defined for all o < 3, let
Ap = Uyep Ao and ¢ = U, 5%a. By our construction, A,, = P(w)/fin and
Y, is an automorphism of P(w)/fin that is different from all trivial automorphism
of P(w)/fin. O

5. THE SHIFT AND ITS INVERSE ON SMALL SUBALGEBRAS OF P(w)/fin

Let Sym(w) denote the group of all permutations of w.

1

Lemma 5.1. For every p € Sym(w), p and p~* are conjugate in Sym(w).

Proof. By Lemma 3.3, it is enough to show that the structures (w,p) and (w,p~!)
are isomorphic. We construct an isomorphism I : (w,p) — (w,p~!) as follows:

Let ~ denote the orbit equivalence relation on w induced by p, i.e., for n,m € w
let n ~ m if there is k € Z such that p¥(n) = m. Let w/ ~ denote the collection
of ~-classes. For each ~-class a € w/ ~ choose n, € a. Now, if n € w, let a be
the ~-class of n. Choose k € Z such that n = p¥(n,) and let I(n) = p~*(n,).
It is easily checked that I is well defined and an isomorphism between (w,p) and
(w,p™h). O
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Theorem 5.2. Let A and B be countable subalgebras of P(w)/fin andt: A — B
an isomorphism. Then there are automorphisms T and v of P(w)/fin such that T

extends t and YoToyp ™l =771,

Proof. By Theorem 4.1, t is induced by by a permutation b of w. By Lemma 5.1,
there is a permutation p of w such that b~! = pobop~!. Let 7 be the automorphism
of P(w)/fin induced by b and let 1) be the automorphism of P(w)/fin induced by
p. Then clearly, 7 extends t and poT oy~ =771 O

The weakness of this theorem is that even if A = B and hence A is closed under
7 and 77!, there is no reason to assume that A is closed under the automorphism
) of P(w)/fin that conjugates 7 and 771.

We address this issue in case of the shift and its inverse. In this particular case,
for a given sufficiently small subalgebra A of P(w)/fin there is an explicit way to

construct a permutation of w that induces the respective automorphism on A.

Definition 5.3. Let 0 = (ng)kcw be a strictly increasing sequence in w and put

n_1 = —1. We define two permutations b, and p, of w as follows: For m € w let

m+1, ifm e {ng:kew},
by (m) =
ng—1 + 1, if m = ny, for some k € w

and
po(m) = (ng —m) +np_1+1

where k € w is minimal with ng > m.

Lemma 5.4. Let B, 0, b, and p, be as in Definition 5.3.
a) p;1 = Do
b)  poobsop,t =b,"

Proof. a) Let m € w and let k € w be minimal with ng, > m. Now m € (ng_1, ng]
and p,(m) = (ng — m) + ng—1 + 1, which is at least ni_1 + 1 and at most ng. It
follows that (ng_1,ng] is invariant under p,. Let z = ny — m. Now m = ny — 2

and p,(m) = nk—1 + 1+ z. Clearly,
Po(Po(m)) =po(nr—1+1+2)= (g — (k-1 +1+2)) +np—1 +1=np —2z=m.

Since m was arbitrary, it follows that p; ! = p,.
b) We show that p, o b, = b;l ops. Let m € w and let k € w be minimal with

m < ny. First assume that m < ni. Now b,(m) =m + 1 and
(po 0 bs)(m) = ps(m+1) = (ng — (m+1)) +ng—1+ 1= (ng —m) + ng_1.
On the other hand, p,(m) = (nx —m) + ng—1 +1 >ng_1 + 1 and
(bt ops)(m) = b, ((ng —m) +ng—1 + 1) = (ng —m) + ng—1 = (Ps 0 by )(m).
Now assume that m = ng. In this case b,(m) = ni_1 + 1 and

(Ps 0 bg)(m) = po(np—1 +1) = (ng — (Np—1 + 1)) + np—1 + 1 = 1y,
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On the other hand, p,(m) = (ny — nk) + ng—1 + 1 =ng_1 + 1 and

(b, ! o pg)(m) = by (n—1 + 1) = ng = (po 0 b ) (m).

Since m was arbitrary, it follows that p, o by, = b, ! 0 p, O

Lemma 5.5. Let B be an infinite subset of w and ¢ = (ng)kew its increasing
enumeration. Then S(B) =* p,[B].

Proof. Let k € w. Then
Po(ni) = (N —ng) +np—1 +1=ng_1 + L.

If k>0, ng_1+ 1€ S(B). It follows that p,[B] C* S(B). On the other hand, if
m € S(B), thenm = ng_1+1 forsome k > land np_1+1 = (np—ng)+ng_1+1 =
po(nk) € po[B] and thus S(B) C p,[B]. O

Lemma 5.6. Let A be a subalgebra of P(w)/fin. Suppose b € P(w)/fin is such
that for all a € A either b < a or b < —a. We say that b diagonalizes A. Choose
B € b and let 0 = (ng)rew be the increasing enumeration of B. Then on A, the
shift s is induced by b, .

Proof. Let a € A. Choose A € a. If b < —a, then for almost all k € w, n, € A.
Hence for almost all m € A, b,(m) = m + 1, and therefore b, [A] =* S[A].

Now suppose that b < a. In this case for almost all k € w, n € A. If m € A\ B,
then by(m) = m + 1. For almost all k € w we have ng,nz—1 € A and by (ni) =
ng—1 + 1. It follows that b,[A] =* S[A].

This shows that on A, the shift s is induced by b,. O

Lemma 5.7. Let b € P(w)/fin and let
D(b) ={a € P(w)/fin:Vz € Z(b < s*(a) Vb < =s*(a))}.

Then D(b) is a shift-closed subalgebra of P(w)/fin. In fact, D(b) is the mazimal
shift-closed subalgebra of P(w)/fin that is diagonalized by b.

Proof. Tt is clear that D(b) is closed under s and s~!.

Now let ag,a; € D(b) and z € Z. If b < s*(ag), then b < =s*(—ap). If addition-
ally b < s%(ap), then b < s%(ag A ay). If b £ s*(ap), then b < —s*(ap) and thus
b < —s*(ag A ay). Similarly, if b € s*(ay), then b < —s%(ag A aq).

Since z was arbitrary, it follows that D(b) is closed under — and A and hence
a subalgebra of P(w)/fin. From the definition of D(b) it is clear that it is the
maximal shift-closed subalgebra of P(w)/fin that is diagonalized by b. O

Theorem 5.8. For every countable subset T of P(w)/fin there are an automor-
phism ¢ of P(w)/fin and a shift-closed subalgebra A of P(w)/fin that contains T
such that A is closed under 1 and =" and (posop™) [ A=3s"1] A.

Under MA,; this extends to all subsets T of P(w)/fin of size at most k.
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Proof. Let B be a shift-closed subalgebra of P(w)/fin of size at most % such that
T C B. Let P be an ultrafilter of B. It is well-known that MA,, implies the existence
of b € P(w)/fin such that b > 0 and b < a for all a € P. (See for instance [6, Ch. II,
Theorem 2.15].) Let A = D(b). By Lemma 5.7, A is a shift-closed subalgebra of
P(w)/fin such that B C A. In particular, T C A. Moreover, A is diagonalized by
b.

Choose B € b and let 0 = (ng)ke, be the increasing enumeration of B. Let
n_y = —1. By Lemma 5.6, the shift is induced by b, on A. Let 1 be the automor-
phism of P(w)/fin induced by p,. By Lemma 5.4 b), p, 0 b, o p;* = b, 1. Hence

the theorem follows if we can prove
Claim 5.9. A is closed under .

Let a € A and z € Z. We have to show that b < s*(¢(a)) or b < =s*(¢(a)). By
the definition of D(b), b < s7*71(a) or b < ~s7*"1(a).

First assume that b < s771(a). Then ¢(b) < (pos *7!)(a). By Lemma 5.4 b),
hos™*71 = s*Tloyh. By Lemma 5.5, 1(b) = s(b). It follows that s(b) < (s*T1ot))(a)
and thus, b < s*(¢(a)).

Similarly, if b < =s7*7"!(a) = s7*7!(=a), then b < s*(¢(—a)) = —s*(Y(a)).
Since z was arbitrary, this shows ¥(a) € D(b) = A. O

6. THE SHIFT AS AN AUTOMORPHISM OF Sym(w)/FS

Let us briefly consider a structure that is in some sense a non-commutative vari-
ant of P(w)/fin. Namely, let FS denote the normal subgroup of Sym(w) consisting
of all permutations of w that move only finitely many elements. It is well-known
that FS is the largest proper normal subgroup of Sym(w), and hence the quotient
Sym(w)/FS is simple, i.e., has no non-trivial normal subgroup.

Let A, B C w be cofinite and let F': A — B be a bijection. Then F induces an
automorphism f of Sym(w)/FS by conjugation in the following way:

For o € Sym(w) let & denote the FS-coset of 0. Now fix 0 € Sym(w). By passing
to a different representative of the FS-coset of ¢ if necessary, we may assume that

o does not move any element of w \ B. Let

n, if n € w\ A, and
F(o) =
(FoooF=1)(n), ifne A.
Now let f(7) = F(o). This definition does not depend on the choice of ¢ within
its FS-coset. It is easily checked that f is an automorphism of Sym(w)/FS.
Redefining notation from the previous sections, let S : w — w be the successor
function that maps each n € w to n + 1. Regarding S as a bijection between two
cofinite subsets of w, S induces an automorphism s of Sym(w)/FS, which we call
the shift on Sym(w)/FS.
Sym(w) acts in a natural way on P(w)/fin. Let h : Sym(w) — Aut(P(w)/fin)

be the homomorphism given by this action. The kernel of this homomorphism is
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FS. Hence Sym(w)/FS acts on P(w)/fin. The image of h is the group of trivial
automorphisms of P(w)/fin of index 0. Conjugation of elements of h[Sym(w)] in
Aut(P(w)/fin) by the shift on P(w)/fin corresponds to the shift s on Sym(w)/FS.

The subgroup of Aut(P(w)/fin) generated by the trivial automorphisms of in-
dex 0 together with the shift on P(w)/fin is precisely the group of trivial auto-
morphisms of P(w)/fin. Every trivial automorphism of P(w)/fin gives rise to an
automorphism of Sym(w)/FS, as described above.

Alperin, Covington, and Macpherson [1] studied the group of automorphisms
of Sym(w)/FS and showed that it is generated by all the inner automorphisms of
Sym(w)/FS together with the shift s. In particular, Aut(Sym(w)/FS) is isomorphic
to the group of trivial automorphisms of P(w)/fin. It follows that the shift s on
Sym(w)/FS is not conjugated to s~! in the automorphism group of Sym(w)/FS.

This immediately gives the following theorem:
Theorem 6.1. The structure (Sym(w)/FS, s) is not isomorphic to (Sym(w)/FS,s™1).

We derive the following example from the result of Alperin, Covington, and

Macpherson:

Example 6.2. Sym(w)/FS has two isomorphic countable subgroups such that no

isomorphism between the two extends to all of Sym(w)/FS.

Proof. Let 0 € Sym(w) be such that ¢ has only finite orbits, but arbitrarily large
finite orbits. Then for every 7 € Sym(w) with @ = 7, 7 has no infinite orbits,
either. For every ¢ € Sym(w), ¢ oo o~ ! has no infinite orbits. Also, S(o) has no
infinite orbits. Replacing o by another element of & if necessary, we may assume
that 0(0) = 0. Now there is 7 € Sym(w) such that S(7) = 0. Just as o, 7 has no
infinite orbits. Since the automorphism group of Sym(w)/FS is generated by the
inner automorphism and the shift, for every automorphism ¢ of Sym(w)/FS and
every 7 € Sym(w) with ¢(&) =7, 7 has no infinite orbits.

Finally, let 7 € Sym(w) have an infinite orbit. Now both & and 7 generate infi-
nite cyclic subgroups of Sym(w)/FS. By the argument above, no automorphism of
Sym(w)/FS maps & to 7 or to 7 . Hence Sym(w)/FS has two isomorphic count-
able subgroups such that no isomorphism between the two groups extends to an

automorphism of Sym(w)/FS. O
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