NEGATIVE INDUCED RAMSEY THEOREMS

STEFAN GESCHKE

We give the proofs, due to Shelah, of two negative partition results. A slightly weaker form of Theorem 1 b) has been claimed by Hajnal and Komjath [2], but their proof was incorrect. Hajnal and Komjath then gave a corrected version of their proof in [3].

Later, Komjath [4] showed that it is consistent that there is a graph G of size \aleph_1 such that for every graph H and every coloring of the edges of H with \aleph_1 colors, every induced copy of G in H has edges of any of the \aleph_1 colors. Komjath proves his result by generically adding an uncountable graph, not just a single Cohen real as we do below.

Theorem 1. Let V be the ground model and $g: \omega \to 2$ a Cohen real over V.

a) In V[g] there is a bipartite graph $(\omega_1 \cup \omega_1, E_{\omega_1, \omega_1})$ such that for all graphs (λ, E) ,

$$(\lambda, E) \not\rightarrowtail (\omega_1 \cup \omega_1, E_{\omega_1, \omega_1})_2^2$$

b) In V[g] there is a bipartite graph $(\omega \dot{\cup} \mathfrak{b}^V, E_{\omega, \mathfrak{b}})$ such that for all graphs (λ, E) ,

$$(\lambda, E) \not\rightarrowtail (\omega \dot{\cup} \mathfrak{b}^V, E_{\omega, \mathfrak{b}})_2^2$$

Note that adding a single Cohen real can decrease \mathfrak{b} [1]. That is why we write \mathfrak{b}^{V} in b).

The proofs of the two parts of the theorem are very similar. They rely on two simple combinatorial lemmas that can be considered as somewhat trivial instances of a much deeper result due to Todorčević [5]. Todorcevic's result plays an important role in Komjath's argument in [4].

Lemma 2. There is a map $c_{\omega_1,\omega_1} : [\omega_1]^2 \to \omega$ such that for every uncountable $S \subseteq \omega_1, c[[S]^2]$ is infinite.

Proof. For each $\alpha < \omega_1$ fix a 1-1 map $f_\alpha : \alpha \to \omega$. For $\alpha < \beta < \omega_1$ let $c_{\omega_1,\omega_1}(\alpha,\beta) = f_\beta(\alpha)$.

Now suppose that $S \subseteq \omega_1$ is uncountable. Let $\beta \in S$ be such that $S \cap \beta$ is infinite. Since f_β is 1-1,

$$\{c_{\omega_1,\omega_1}(\alpha,\beta):\alpha\in S\cap\beta\}=f_\beta[S\cap\beta]$$

Date: November 30, 2010.

is infinite. It follows that $c_{\omega_1,\omega_1}[[S]^2]$ is infinite.

Lemma 3. Let \mathfrak{b} denote the unboundedness number. Then there is a mapping $c_{\omega,\mathfrak{b}}: \omega \times \mathfrak{b} \to \omega$ such that for every uncountable $S \subseteq \mathfrak{b}$ there is $n \in \omega$ such that the set

$$\{c_{\omega,\mathfrak{b}}(n,\alpha):\alpha\in S\}$$

is infinite.

Proof. Let $(f_{\alpha})_{\alpha < \mathfrak{b}}$ be a \leq^* -increasing unbounded sequence in ω^{ω} . For $n \in \omega$ and $\alpha < \mathfrak{b}$ let $c_{\omega,\mathfrak{b}}(n,\alpha) = f_{\alpha}(n)$.

Now suppose that $S \subseteq \mathfrak{b}$ is unbounded in \mathfrak{b} . Since $(f_{\alpha})_{\alpha < \mathfrak{b}}$ is \leq^* -increasing and unbounded, $(f_{\alpha})_{\alpha \in S}$ is also unbounded in ω^{ω} . Assume that for all $n \in \omega$ the set

$$\{c_{\omega,\mathfrak{b}}(n,\alpha):\alpha\in S\}=\{f_{\alpha}(n):\alpha\in S\}$$

is finite. Then the function $f: \omega \to \omega$ defined by $f(n) = \max\{f_{\alpha}(n) : \alpha \in S\}$ is an upper bound of $(f_{\alpha})_{\alpha \in S}$, a contradiction.

It follows that for some $n \in \omega$, $\{c_{\omega,\mathfrak{b}}(n,\alpha) : \alpha \in S\}$ is infinite. \Box

Remark 4. A partial converse of Lemma 3 is also true: If κ regular and uncountable and there is a mapping $c : \omega \times \kappa \to \omega$ such that for all unbounded sets $S \subseteq \kappa$ there is $n \in \omega$ such that $\{c(n, \alpha) : \alpha \in S\}$ is infinite, then $\kappa \geq \mathfrak{b}$:

For $\alpha < \kappa$ and $n \in \omega$ let $f_{\alpha}(n) = c(n, \alpha)$. We claim that $(f_{\alpha})_{\alpha < \kappa}$ is unbounded in ω^{ω} . If not, then there is a function $f : \omega \to \omega$ that is \leq^* -above all f_{α} . For each $\alpha < \kappa$ fix n_{α} such that for all $n \geq n_{\alpha}$, $f(n) \leq f_{\alpha}(n)$. Now for some $m \in \omega$, the set $S = \{\alpha < \kappa : n_{\alpha} = m\}$ is unbounded in κ . By thinning out S further, we may assume that all f_{α} , $\alpha \in S$, agree on all n < m.

By the properties of c, for some $n \in \omega$, $F_n = \{f_\alpha(n) : \alpha \in S\}$ is infinite. However, if n < m, then F_n is a singleton by the choice of S. If $n \ge m$, then F_n is bounded by f(n), a contradiction.

Proof of Theorem 1. a) In V, let $c_{\omega_1,\omega_1} : [\omega_1]^2 \to \omega$ be as in Lemma 2. For $\alpha, \beta < \omega_1$ we let $\{\alpha, \beta\} \in E_{\omega_1,\omega_1}$ if and only if $\alpha \neq \beta$ and $g(c_{\omega_1,\omega_1}(\alpha, \beta)) = 1$. Fix a name $\dot{E}_{\omega_1,\omega_1}$ for E_{ω_1,ω_1} using the maximality pinciple. As usual, for ground model elements we do not distinguish between the actual sets and their canonical names.

Now let (λ, E) be a graph on some cardinal λ . Choose a name E for E. We may assume that every Cohen condition forces \dot{E} to be a subset of $[\lambda]^2$. We define a coloring $c: E \to 2$ as follows:

For $\{\sigma, \tau\} \in E$ let *n* be minimal with the property that the Cohen condition $g \upharpoonright n$ forces $\{\sigma, \tau\} \in \dot{E}$. Let $c(\sigma, \tau) = g(n)$. We claim that (λ, E) does not contain an induced monochromatic copy of $(\omega_1 \cup \omega_1, E_{\omega_1, \omega_1})$.

For suppose that $h_0, h_1 : \omega_1 \to \lambda$ induce an embedding of $(\omega_1 \cup \omega_1, E_{\omega_1, \omega_1})$ into (λ, E) such that all edges in E_{ω_1, ω_1} are mapped to edges of the same color $i \in 2$. Let \dot{h}_0 and \dot{h}_1 be names for h_0 and h_1 , respectively, and let \dot{c} be a name for c. There is some $n \in \omega$ such that the condition $g \upharpoonright n$ forces that \dot{h}_0 and \dot{h}_1 induce an embedding of $(\omega_1 \cup \omega_1, E_{\omega_1, \omega_1})$ into (λ, E) such that all edges in E_{ω_1, ω_1} are mapped to edges of color i and moreover, $g \upharpoonright n$ decides $\dot{h}_0(\alpha)$ and $\dot{h}_1(\alpha)$ for all α in some uncountable set $S \subseteq \omega_1$. Note that S can be chosen in the ground model. We can also choose n so that $g \upharpoonright n$ forces \dot{c} to satisfy the definition of c using the parameter (λ, \dot{E}) . By Lemma 2, the set $c_{\omega_1, \omega_1}[[S]^2]$ is infinite. Hence, there are $\alpha, \beta \in S$ such that $\alpha \neq \beta$ and $m = c_{\omega_1, \omega_1}(\alpha, \beta) \ge n$.

Let $p: m + 1 \to 2$ be an extension of $g \upharpoonright n$ such that p(m) = 1. Now, if \dot{g} is a name for the Cohen real, then p forces that m + 1 is the minimal k such that $\dot{g} \upharpoonright k$ forces $\{\alpha, \beta\}$ to be in $\dot{E}_{\omega_1,\omega_1}$. Since $p \upharpoonright m$ already decides $\dot{h}_0(\alpha)$ and $\dot{h}_1(\beta)$ to be $h_0(\alpha)$ and $h_1(\beta)$, respectively, p also forces that m + 1 is the minimal k such that $\dot{g} \upharpoonright k$ forces $\{h_0(\alpha), h_1(\beta)\} \in E$. Now the condition $p^{\frown}(1-i)$ forces that $\dot{c}(\dot{h}_0(\alpha), \dot{h}_1(\beta)) = 1 - i$, contradicting our assumption that $g \upharpoonright n$ and hence p force that $\{\alpha, \beta\}$ is mapped to an edge of color i.

b) In V, let $c_{\omega,\mathfrak{b}}: \omega \times \mathfrak{b} \to \omega$ be as in Lemma 3. For $n \in \omega$ and $\alpha < \mathfrak{b}^V$ we let $\{n, \alpha\} \in E_{\omega,\mathfrak{b}}$ if and only if $g(c_{\omega,\mathfrak{b}^V}(n, \alpha)) = 1$ and fix a name $\dot{E}_{\omega,\mathfrak{b}}$ for $E_{\omega,\mathfrak{b}}$.

Now let (λ, E) be a graph on some cardinal λ . Choose a name \dot{E} for E. We may assume that every Cohen condition forces \dot{E} to be a subset of $[\lambda]^2$. We define a coloring $c: E \to 2$ exactly as in the proof of a) and claim that (λ, E) does not contain an induced monochromatic copy of $(\omega \dot{\cup} \mathfrak{b}^V, E_{\omega,\mathfrak{b}})$.

Suppose that $h_0: \omega \to \lambda$ and $h_1: \mathfrak{b}^V \to \lambda$ induce an embedding of $(\omega \cup \mathfrak{b}^V, E_{\omega,\mathfrak{b}})$ into (λ, E) such that all edges in $E_{\omega,\mathfrak{b}}$ are mapped to edges of the same color $i \in 2$. Let \dot{h}_0 and \dot{h}_1 be names for h_0 and h_1 , respectively, and let \dot{c} be a name for c. There is some $n \in \omega$ such that the condition $g \upharpoonright n$ forces that \dot{h}_0 and \dot{h}_1 induce an embedding of $(\omega \cup \mathfrak{b}^V, E_{\omega,\mathfrak{b}})$ into (λ, \dot{E}) such that all edges in $E_{\omega,\mathfrak{b}}$ are mapped to edges of color i and moreover, $g \upharpoonright n$ decides $\dot{h}_1(\alpha)$ for all α in some unbounded set $S \subseteq \mathfrak{b}^V$. The set S exists since \mathfrak{b}^V is regular and hence of uncountable cofinality. Note that S can be chosen in the ground model. We can also choose n so that $g \upharpoonright n$ forces \dot{c} to satisfy the definition of c using the parameter (λ, \dot{E}) . By Lemma 3, for some $a \in \omega$ the set $\{c_{\omega,\mathfrak{b}}(a,\beta): \beta \in S\}$ is infinite. By enlarging n if necessary, we may assume that $g \upharpoonright n$ already decides $\dot{h}_0(a)$.

By the choice of a, there is $\beta \in S$ such that $m = c_{\omega,\mathfrak{b}}(a,\beta) \geq n$. Let $p: m+1 \to 2$ be an extension of $g \upharpoonright n$ such that p(m) = 1. Now p forces that m+1 is the minimal k such that $\dot{g} \upharpoonright k$ forces $\{a, \beta\}$ to be in $\dot{E}_{\omega,\mathfrak{b}}$. Since $p \upharpoonright m$ already decides $\dot{h}_0(a)$ and $\dot{h}_1(\beta)$ to be $h_0(a)$ and $h_1(\beta)$, respectively, p also forces that m+1 is the minimal k such that $\dot{g} \upharpoonright k$ forces $\{h_0(a), h_1(\beta)\} \in E$. Now the condition $p^{\frown}(1-i)$ forces that

STEFAN GESCHKE

 $\dot{c}(\dot{h}_0(a), \dot{h}_1(\beta)) = 1 - i$, contradicting our assumption that $g \upharpoonright n$ and hence p force that $\{a, \beta\}$ is mapped to an edge of color i.

References

- J. Cichoń, J. Pawlikowski, On ideals of subsets of the plane and on Cohen reals, J. Symbolic Logic 51 (1986), no. 3, 56-0-569
- [2] A. Hajnal, P. Komjath, Embedding graphs into colored graphs, Trans. Am. Math. Soc. 307, No.1 (1988), 395–409
- [3] A. Hajnal, P. Komjáth, Corrigendum to "Embedding graphs into colored graphs", Trans. Am. Math. Soc. 332, No.1 (1992), 475
- [4] P. Komjáth, A strongly non-Ramsey uncountable graph, European Summer Meeting of the Association for Symbolic Logic (Haifa, 1995), Fund. Math. 154 (1997), no. 2, 203–205
- [5] S. Todorčević, Coloring pairs of countable ordinals, Acta Math. 159 (1987), 261-294

HAUSDORFF CENTER FOR MATHEMATICS//ENDENICHER ALLEE 62// 53115 BONN//GERMANY *E-mail address*: stefan.geschke@hcm.uni-bonn.de