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Abstract. This is mostly a note to myself to clear up some confusion.

In various places in the literature, including [2], it is stated that every separable

linear order embeds into the real line. This is, however, not the case, at least not

with respect to the usual definition of separability.

Definition 1. Let (L,≤) be a linear order. D ⊆ L is dense in L if for all a, b ∈ L

with a < b there is d ∈ D with a < d < b. L is separable if it has a countable dense

subset.

Two points x, y ∈ L form a jump if x < y and the open interval (x, y) is empty.

Lemma 2. Let L be a suborder of R. Then L is separable and has only countably

many jumps.

Proof. Let x0 < y0 and x1 < y1 be two different jumps in L. Then there are

q0, q1 ∈ Q such that for all i ∈ 2, xi < qi < yi. Since the two jumps are different,

y0 ≤ x1 or y1 ≤ x0. In either case, q0 6= q1. It follows that there are not more

jumps than rationals, i.e., there are only countably many jumps.

To see that L is separable, choose a countable set D ⊆ L such that for all

q ∈ Q and all n > 0 the following holds: if L ∩ (q − 1/n, q + 1/n) 6= ∅, then

D ∩ (q − 1/n, q + 1/n) 6= ∅. It is easily checked that D is dense in L. �

Example 3. Consider the set R×2 ordered lexicographically. Then Q×2 is dense

in R× 2 and hence R× 2 is separable. But R× 2 has uncountably many jumps and

therefore does not embed into R.

Theorem 4. If L is any separable linear order, then there is an order embedding

e : L→ R× 2.

Proof. Let D be a countable dense subset of L. We may assume that D contains

the first and last element of L provided they exist. By the saturation of Q, there

is an order embedding i : D → Q. For each x ∈ L let

e1(x) = sup{i(d) : d ∈ D ∧ d ≤ x}.
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Now e1 : L→ R preserves ≤, but we have e1(x) = e1(y) if

x > y = sup{d ∈ D : d ≤ x}.

Note that this can only happen if x is the successor of y in L and x 6∈ D.

To correct this failure of injectivity, we embed into R × 2 rather than R. For

x ∈ L let

e(x) =

(e1(x), 0), if x = sup{d ∈ D : d ≤ x} and

(e1(x), 1), if x > sup{d ∈ D : d ≤ x}.
�

The proof of Theorem 4 suggests the following notion:

Definition 5. Let L be a linear order. A set D ⊆ L is left dense if for all x ∈ L,

x = sup{d ∈ D : d ≤ x}. We define right dense analogously, using inf instead of

sup.

L is left (right) separable if L has a countable left (right) dense subset.

Theorem 6. For every linear order L the following are equivalent:

(1) L is left separable.

(2) L is right separable.

(3) L is separable and has only countably many jumps.

(4) L order embeds into R.

Proof. If L is left separable, then the map e1 in the proof of Theorem 4 embeds L

into R. This shows the implication from (1) to (4). The implication from (2) to (4)

now follows symmetrically. If L embeds into R, then L is separable and has only

countably many jumps by Lemma 2. Hence (4) implies (3)

If L is separable and has only countably many jumps, let D ⊆ L be countable,

dense, and such that for each jump x < y, x, y ∈ D. It is easily checked that D is

both left and right dense. Hence (3) implies both (1) and (2) �

Note that if x < y is a jump of a linear order L and there is an automorphism ϕ

of L that maps x to y, then y and hence x is isolated. It follows that a separable

homogeneous linear order either has no jumps and therefore embeds into R or all

its elements are isolated and hence the linear order is isomorphic to the integers

Z. It follows that R is universal for homogeneous separable linear orders, but no

universal separable linear order is homogeneous.

Another way to analyze the situation is this: given a linear order L, we consider

two subsets definable without parameters, namely the set J`(L) of left partners

of a jump and the set Jr(L) of right partners of a jump. Also, there is a binary

relation that can be defined without parameters, namely the relation J(L) where

(x, y) ∈ J(L) if x < y or y < x is a jump.
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Every automorphism of L preserves J`(L), Jr(L), and the relation J(L). There-

fore it makes sense to define homogeneity as follows:

Definition 7. A linear order L is jump homogeneous if for all finite sets A,B ⊆ L

every bijection b : A → B that preserves the relations <, J`(L), Jr(L), and J(L)

extends to an automorphism of L.

Lemma 8. The linear order R× 2 is jump homogeneous.

Proof. Let A,B ⊆ R be finite sets and let f : A→ B a bijection that preserves <,

J`(L), Jr(L), and J(L). Note that J(L) is an equivalence relation. Since f preserves

J(L), it induces a a bijection f : A/J(L)→ B/J(L). Since R is homogeneous and

(R×2)/J(L) ∼= R, f extends to an automorphism g of (R×2)/J(L). Now g lifts to

an automorphism g of R× 2. Since f preserves J`(L) and Jr(L), g extends f . �

We now discuss the existence of a universal separable linear order of size ℵ1 <

2ℵ0 .

Definition 9. A set S ⊆ R is ℵ1-dense if for all x, y ∈ R with x < y, S ∩ (x, y) is

of size ℵ1.

Baumgartner showed the following [1]:

Theorem 10. It is consistent with 2ℵ0 = ℵ2 that any two ℵ1-dense set of reals are

order isomorphic.

Corollary 11. It is consistent that there is a universal separable linear order of

size ℵ1 < 2ℵ0 .

Proof. By Baumgartner’s result, we can assume that any two ℵ1-dense sets of reals

are isomorphic and ℵ1 < 2ℵ0 . Let L be a separable linear order of size ℵ1. By

Theorem 4, L is isomorphic to a subset of R × 2. Let S ⊆ R be of size ℵ1 such

that L embeds into S × 2. By enlarging S if necessary, we may assume that S is

ℵ1-dense.

It follows that every separable linear order of size ℵ1 embeds into an order of the

form S × 2 where S is an ℵ1-dense subset of R. But by our assumption, any two

ℵ1-dense subsets of R and therefore also any two linear orders of the form S × 2

with S ⊆ R ℵ1-dense are isomorphic. It follows that every linear order of the form

S × 2 with S ℵ1-dense is universal for separable linear orders of size ℵ1. �
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