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Sakaé Fuchino, Stefan Geschke and Lajos Soukup

January 9, 2007

Abstract

We show that, for any poset P, the existence of P-indestructible mad

family F ⊆ [ω]ℵ0 is equivalent to the existence of such a family over ℵn for

some/all n ∈ ω. Under very weak square principle ¤∗∗∗
ω1,µ of Fuchino and

Soukup [7] and cf([µ]ℵ0 ,⊆) = µ+ for all limit cardinal µ of cofinality ω, the

equivalence for a proper poset P transfers to all cardinals. That is, under

these assumptions, if P is a proper poset, then there is a P-indestructible

mad family on ω if and only if there is a P-indestructible mad family on

some/all infinite cardinal κ.

1 Introduction

For X ⊆ [S]ℵ0 we say that an infinite family F ⊆ X is pairwise almost disjoint

(abbreviation: ad) if x ∩ y is finite for all distinct x, y ∈ F . F is maximal almost
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disjoint (mad, for short) in X if it is pairwise almost disjoint and maximal among

such subsets of X (with respect to ⊆). If F is mad in [S]ℵ0 we shall also say that

F is mad on S or F is a mad family on S.

For S ⊆ On such that otp(sup S) = ω, let

(S)ω = {x ∈ [S]ℵ0 : sup x = sup S, otp(x) = ω}.

If F is mad in (S)ω we shall also say that F is cof-mad on S or F is a cof-mad

family on S.

For a poset P, a mad (cof-mad) family F on S ⊆ On is said to be P-indestructible

if ‖–P “F is mad on S ” ( ‖–P “F is cof-mad on S ”). We shall call F a P-

indestructible mad family on S in a broad sense if F is either a P-indestructible

mad family on S or F is finite partition of S modulo finite (i.e F is finite, F is ad

and (
∪

F)4S is finite).

P-indestructible mad families on ω for various poset P are studied extensively

in recent papers, e.g., Hrušák [8], Hrušák and Ferreira[9], Brendle and Yatabe [5],

and authors’ [6].

The present note shows that results on P-indestructibility of mad families on

ω can be transfered to corresponding results on mad families on an uncountable

support.

For a poset P and a set S ⊆ On, let AP(S) and AP
cof (S) be the following

assertions:

AP(S) ⇔ there exists a P-indestructible mad family on S;

AP
cof (S) ⇔ there exists a P-indestructible cof-mad family on S.

2 P-indestructible mad families on sets of ordi-

nals

In this section, let P be an arbitrary poset.

Lemma 1. If AP(ω) then AP
cof (α) for all limit α < ω1.

Proof. Let C be a P-indestructible mad family on ω. Without loss of generality

we may assume that C = {cξ : ξ < η} and ω is the disjoint union of cn, n ∈ ω.
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If α = β + ω, let f : ω → α; n 7→ β + n.

Then C̃ = {f ′′cξ : ξ < η} is a P-indestructible cof-mad family on α: Clearly

C̃ ⊆ (α)ω and C̃ is ad. Suppose that x is an element of (α)ω in a P-generic extension

such that x 6∈ C̃. By P-indestructibility of C, there is ξ < η such that | cξ∩f−1 ′′x | =

| f ′′cξ ∩ x | = ℵ0. Hence C̃ ∪ {x} is not ad. This shows that C̃ is a P-indestructible

cof-mad family on α.

If α < ω1 is a limit of limits, then let 〈αn : n ∈ ω〉 be a strictly increasing

sequence of ordinals such that α = supn<ω αn, α0 = 0 and αn+1 \ αn is infinite for

all n < ω.

Let f : ω → α be such that f ′′cn = αn+1 \ αn for all n ∈ ω. Let D = {f ′′cξ :

ξ ∈ η \ω}. Then, similarly to the previous case, D is a P-indestructible mad family

on (α)ω. (Lemma 1)

For F ⊆ [A]ℵ0 and A′ ⊆ A, let

F ¹ A′ = {a ∩ A′ : a ∈ F} ∩ [A]ℵ0 .

Lemma 2. Suppose that F is a P-indestructible mad family on A.

(1) If A′ ⊆ A is uncountable, then F ¹ A′ is a P-indestructible mad family on

A′.

(2) If A′ ⊆ A is countable and F ¹ A′ is infinite, then F ¹ A′ is a P-

indestructible mad family on A′.

Proof. (1): Clearly F ¹ A′ is an ad family. If A′ is infinite then F ¹ A′ is also

infinite since otherwise A′ \
∪

(F ¹ A′) would be infinite so any countable subset of

this set would be almost disjoint to F .

If F ¹ A′ were not a P-indestructible mad family, then there would be an

element x of [A′]ℵ0 in a P-extension such that x is almost disjoint to every element

of F ¹ A′. But then x would be also almost disjoint to every element of F . A

contradiction to P-indestructibility of F .

(2): Similarly. (Lemma 2)

Lemma 3. For any ordinal α, if AP(α) then AP(β) for all ω ≤ β ≤ α.

Proof. We prove this for | β | = ω. The case for | β | > ω follows from Lemma

2,(1).
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Let F ⊆ [α]ℵ0 be a P-indestructible mad family. For ω distinct elements ai,

i < ω of F , let s =
∪

i<ω ai. Then s is countable and F ¹ s is infinite. By Lemma

2,(2), it follows that F ¹ s is a P-indestructible mad family on s.

Let ϕ : s → β be a bijection. Then F∗ = {ϕ ′′a : a ∈ F ¹ s} is a P-indestructible

mad family on β. (Lemma 3)

Lemma 4. For any ordinal α with cf(α) = ω, if AP(α) then AP
cof (α).

Proof. By Lemma 3, we have AP(ω). Hence, by Lemma 1, there is a P-indestructible

cof-mad family Cβ on each β ∈ Lim(ω1).

Let F be a P-indestructible mad family on α.

Without loss of generality we may assume that sup a is a limit for each a ∈ F .

For a ∈ F , let fa : otp(a) → a be the order isomorphism. Let

D = {fa
′′b : a ∈ F , sup a = α, b ∈ Cotp(a)}.

Then D is a P-indestructible cof-mad family on α: Clearly D ⊆ (α)ω and D is ad.

Suppose that x is an element of (α)ω in a P-generic extension such that x 6∈ D. By

P-indestructibility of F , there is a ∈ F such that | a∩x | = ℵ0. Let x′ = a∩x. Then

we have sup a = sup x′ = α. Hence x′ ∈ (a)ω. By P-indestructibility of the cof-mad

family {fa
′′b : b ∈ Cotp(a)} on a, there is b ∈ Cotp(a) such that | fa

′′b ∩ x′ | = ℵ0.

Thus D ∩ {x} is not ad. (Lemma 4)

Theorem 5. (1) For any cardinal κ, AP(κ) implies AP(κ+).

(2) If cf(κ) > ω and AP(λ) for all λ < κ then AP(κ).

Proof. (1): By Lemma 4, there is a P-indestructible cof-mad family Cα on α for

each α ∈ Eω
κ+ = {α < κ+ : cf(α) = ω}. Let

F =
∪

α∈Eω
κ+

Cα.

Then F is a P-indestructible mad family on κ+: Clearly F is ad. Suppose that x

is an element of [κ+]ℵ0 in a P-generic extension such that x 6∈ F . By cutting off

a finite end segment of x and thinning it out, if necessary, we may assume that

x ∈ (α)ω for some limit α < κ+ of cofinality ω. By P-indestructibility of Cα, there

is a ∈ Cα such that |x ∩ a | = ℵ0. Thus F ∪ {x} is not ad.

(2): Similarly to (1). (Theorem 5)
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Corollary 6. For any poset P and n < ω, AP(ω) if and only if AP(ωn).

Proof. By Lemma 3 and Theorem 5, (1). (Corollary 6)

The following lemma is used as a building block for Theorem 10:

Lemma 7. For an uncountable κ, suppose that AP(κ) and κ =
∪
{An : n < ω}.

For an ad family F ⊆ [κ]ℵ0, if F ¹ An is a P-indestructible mad family in a broad

sense for all n < ω and F =
∪

n<ω

(
F ∩ [An]ℵ0

)
, then there is a P-indestructible

mad family B on κ with B ⊇ F .

Proof. Let A′
n = An \

∪
{Am : m < n} for n < ω and

δ =
∑

n<ω otp(A′
n).

That is, δ is the order type of the linear order obtained by concatenating A′
n, n < ω

one after another. Note that we have cf(δ) = ω. Let f : κ → δ be a bijection such

that

f ′′A′
n =

[∑
k<n otp(A′

k),
∑

k<n+1 otp(A′
k)

)
for all n < ω. By Lemma 4, there is a P-indestructible cof-mad family B′ on δ.

Claim 7.1. B = F ∪ {f−1 ′′b : b ∈ B′} is a P-indestructible mad family on κ.

` To show that B is ad, it is enough to show that for all a ∈ F and b ∈ B′ we

have | a ∩ f−1 ′′b | < ℵ0. By assumption there is n < ω such that a ⊆ [An]ℵ0 . Thus

a corresponds to a bounded subset of δ. Hence | a ∩ f−1 ′′b | = | f ′′a ∩ b | < ℵ0.

To show that B is P-indestructibly mad, suppose that x is an element of [κ]ℵ0

in a P-generic extension such that x 6∈ B. If f ′′x is cofinal in δ, then by P-

indestructibility of B′, there is b ∈ B′ such that |x ∩ b | = ℵ0. If f ′′x is not cofinal

in δ, there is n < ω such that x ∈ [An]ℵ0 . Then by P-indestructibility of F ¹ An,

there is a ∈ F such that |x ∩ a | = ℵ0. a (Claim 7.1) (Lemma 7)

3 Very weak weak square principle

In this section we review some results from [7] and prove a consequence of them

(Theorem 9) which will be used in the proof of our main theorem (Theorem 10).
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For a regular cardinal κ and µ > κ, let ¤∗∗∗
κ,µ be the following assertion: there

exists a sequence 〈Cα〉α<µ+ and a club set D ⊆ µ+ such that for all α ∈ D with

cf(α) ≥ κ

(3.1) Cα ⊆ α, Cα is unbounded in α;

(3.2) [α]<κ ∩ {Cα′ : α′ < α} dominates [Cα]<κ (with respect to ⊆).

Note that, in (3.2), we also consider α′ < α of cofinality < κ.

Since (3.2) remains valid when Cα’s for α ∈ D are slimed down, we may replace

(3.1) by

(3.1)′ Cα ⊆ α, Cα is unbounded in α and otp(Cα) = cf(α).

Suppose now that κ is a regular cardinal and µ > κ is such that cf(µ) < κ. Let

µ∗ = cf(µ) — the case we later consider is when κ = ω1 (and cf(µ) = ω). For a

sufficiently large regular χ and x ∈ H(χ), let us call a sequence 〈Mα,β〉α<µ+,β<µ∗

a (κ, µ)-dominating matrix over x, or just dominating matrix over x if it is clear

from the context which κ and µ are meant — if the following conditions hold:

(3.3) Mα,β ≺ H(χ), x ∈ Mα,β, κ + 1 ⊆ Mα,β and |Mα,β | < µ for all α < µ+ and

β < µ∗ ;

(3.4) 〈Mα,β〉β<µ∗ is an increasing sequence for each α < µ+ ;

(3.5) if α < µ+ is such that cf(α) ≥ κ, then there is β∗ < µ∗ such that, for every

β∗ ≤ β < µ∗, [Mα,β]<κ ∩ Mα,β is cofinal in ([Mα,β]<κ,⊆) ;

For α < µ+, let Mα =
∪

β<µ∗ Mα,β. By (3.3) and (3.4), we have Mα ≺ H(χ).

(3.6) 〈Mα〉α<µ+ is continuously increasing and µ+ ⊆
∪

α<µ+ Mα.

Theorem 8. (Theorem 7 in [7], see also the remark after Theorem 7 in [7]) Suppose

that κ is a regular cardinal and µ > κ is such that µ∗ = cf(µ) < κ. If we have

cf([λ]<κ,⊆) = λ for cofinally many λ < µ and ¤∗∗∗
κ,µ holds, then, for any sufficiently

large χ and x ∈ H(χ), there is a (κ, µ)-dominating matrix over x such that

(3.7) for α < α′ < µ+ and β < µ∗, there is β′ < µ∗ such that Mα,β ⊆ Mα′,β′.

In [7] it is shown that, for any singular cardinal µ and regular cardinal κ < µ

such that cf([λ]<κ) ≤ µ for all λ < µ, Jensen’s weak square principle ¤∗
µ implies
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¤∗∗∗
κ,µ (Lemma 4 in[7]) and ¤∗∗∗

ω1,ℵω
does not hold in a model of GCH + Chang’s

Conjecture for ℵω, i.e. (ℵω+1,,ℵω)→→ (ℵ1,ℵ0) (Theorem 12 in [7]).

The following is the consequence of Theorem 8 we need in the proof of Theorem

10:

Theorem 9. Suppose that ω < µ, cf(µ) = ω, cf([µ]ℵ0 ,⊆) = µ+ and cf([λ]ℵ0 ,⊆) = λ

for cofinally many λ < µ. If ¤∗∗∗
ℵ1,µ holds then there is a matrix 〈Aα,k〉α<µ+,k<ω, such

that

(3.8) Aα,k ∈ [µ]<µ for all α < µ+ and k < ω;

(3.9) 〈Aα,k〉k<ω is an increasing sequence (with respect to ⊆) for all α < µ+;

(3.10) 〈
∪

k<ω Aα,k : α < µ+〉 is a continuously increasing sequence.

(3.11)
∪

α<µ+

∪
k<ω[Aα,k]

ℵ0 = [µ]ℵ0;

(3.12) for α < µ+, if cf(α) > ω, then
∪

k<ω[Aα,k]
ℵ0 =

∪
γ<α

∪
`<ω[Aγ,`]

ℵ0.

Proof. Let 〈cα : α < µ+〉 be such that x = {cα : α < µ+} is a cofinal subset of

[λ]ℵ0 . By Theorem 8, there is a (ω1, µ)-dominating matrix 〈Mα,n〉α<µ+,n<ω over x

with (3.7). Let

Aα,k = µ ∩ Mα,k

for α < µ+ and k < ω. We claim that these Aα,k’s satisfy the conditions (3.8) to

(3.12).

(3.8) follows from (3.3); (3.9) from (3.4). (3.10) follows from (3.6).

To show (3.11), suppose that a ∈ [µ]ℵ0 . Let β < µ+ be such that a ⊆ cβ

and let α∗ < µ+, and k∗ < ω be such that β ∈ Mα∗,k∗ — we can find such α∗

and k∗, by (3.6). Since 〈cα : α < µ+〉 ∈ Mα∗,k∗ , we have cβ ∈ Mα∗,k∗ and thus

a ⊆ cβ ⊆ Mα∗,k∗ . It follows that a ∈ [Aα∗,k∗ ]ℵ0 .

To show (3.12), assume that α < µ+ and cf(α) > ω. First, suppose that

a ∈
∪

k<ω[Aα,k]
ℵ0 . By (3.4) and (3.5), there is k∗ < ω and c ∈ [Mα,k∗ ]ℵ0 ∩ Mα,k∗

such that a ⊆ c. By the first part of (3.6), there is α∗ < α such that c ∈ Mα∗ . Let

k∗∗ < ω be such that c ∈ Mα∗,k∗∗ . Then a ⊆ c ⊆ Mα∗,k∗∗ . Hence a ∈ [Mα∗,k∗∗ ]ℵ0 .

Now, suppose a ∈
∪

γ<α

∪
`<ω[Aγ,`]

ℵ0 , say a ∈ [Aγ∗,`∗ ]
ℵ0 for some γ∗ < α and

`∗ < ω. Then by (3.7) there is m∗ < ω such that Mγ∗,`∗ ⊆ Mα,m∗ . It follows that

a ∈ [Aα,m∗ ]ℵ0 . (Theorem 9)
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Since 〈Aα,k〉k<ω for each α < µ+ may be replaced by its subsequence, we may

assume that 〈Aα,k〉α<µ+,k<ω satisfies the following strengthening of (3.9):

(3.9)’ 〈Aα,k〉k<ω is an increasing sequence, and Aα,0 as well as Aα,k+1 \Aα,k for all

k < ω are uncountable for all α < µ+.

4 AP(µ) at limit cardinals of countable cofinality

under the very weak weak square principle

Theorem 10. Suppose that ω < µ, cf(µ) = ω, cf([µ]ℵ0 ,⊆) = µ+, cf([λ]ℵ0 ,⊆) = λ

for cofinally many λ < µ and ¤∗∗∗
ℵ1,µ. If P is a proper poset and AP(κ) holds for all

κ < µ then we have AP(µ).

Proof. Let 〈Aα,k〉α<µ+,k<ω be as in Theorem 9 with (3.9) replaced by (3.9)’. By

induction on α < µ+, we define Fα ⊆ [µ]ℵ0 such that, for all α < µ+

(4.1) Fα is ad;

(4.2) Fβ ⊆ Fα for all β < α;

(4.3) Fα ⊆
∪

k<ω[Aα,k]
ℵ0 ;

(4.4) For all k < ω, Fα induces a P-indestructible mad family over Aα,k; I.e.

Fα ¹ Aα,k = {a ∩ Aα,k : a ∈ Fα} ∩ [Aα,k]
ℵ0

is a P-indestructible mad family over Aα,k.

Suppose that Fα, α < µ+ as above have been constructed. Let F =
∪

α<µ+ Fα.

Claim 10.1. F is a P-indestructible mad family over µ.

` F is ad by (4.1) and (4.2). Suppose that x is an element of [µ]ℵ0 in a P-

generic extension such that x 6∈ F . Since P is proper, there is c ∈ [µ]ℵ0 in the

ground model such that x ⊆ c. By (3.11), there is α < µ+ and k < ω such that

c ∈ [Aα,k]
ℵ0 . So x ∈ [Aα,k]

ℵ0 in the P extension. By (4.4) there is a ∈ Fα such that

| a ∩ Aα,k ∩ x | = ℵ0. Thus F ∪ {x} is not an ad family. a (Claim 10.1)

For inductive construction of Fα, α < µ+, let Aα,−1 = ∅ for each α < µ+.

Suppose that Fβ, β < α have been constructed in accordance with (4.1) ∼ (4.4).

We define Fα as follows:
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Case 0: α = 0. For each k ∈ ω, let F0,k be a P-indestructible mad family

on A0,k \ A0,k−1. This is possible by the assumption of the theorem and since

|A0,k | < µ by (3.8). Let

F0 =
∪

k<ω F0,k.

Then F0 satisfies (4.3) and (4.4).

Case 1: cf(α) > ω. Let Fα =
∪

β<α Fβ. Then Fα satisfies (4.2). By (3.12)

we also have

Fα ⊆
∪

β<α

∪
k<ω[Aβ,k]

ℵ0 =
∪

k<ω[Aα,k]
ℵ0 .

Thus Fα satisfies (4.3). It also satisfies (iii):

Claim 10.2. Fα is a P-indestructible mad family over Aα,k for all k < ω.

` Similarly to the proof of Theorem 5. a (Claim 10.2)

Case 2: α = β + 1. For each k, ` < ω , let

Bk,` =
(
Aα,k \ Aα,k−1

)
∩ Aβ,`

and

Bk =
∪
{Fβ ¹ Bk,` : ` < ω}.

Each Fβ ¹ Bk,` is a P-indestructible mad family on Bk,` by (4.4) for Fβ and

Lemma 2, (1). Hence by Lemma 7, there is Fα,k ⊆ [Aα,k]
ℵ0 for each k < ω such

that Fα,k ∪ Bk is a P-indestructible mad family on Aα,k. Let

Fα = Fβ ∪
∪

k<ω Fα,k.

Case 3: cf(α) = ω. Let 〈αn : n ∈ ω〉 be an increasing sequence of ordinals

below α such that limn<ω αn = α. Let {C` : ` < ω} be an enumeration of

{Aαn,k : n, k < ω} and let

F−
α =

∪
β<α Fβ =

∪
n<ω Fαn .

For each k, ` < ω, let Bk,` = Aα,k \Aα,k−1∩C`. By (4.4) for Fαn , n < ω and Lemma

2, F−
α ¹ Bk,` is a P-indestructible mad family. Hence by Lemma 7, there is a Bk,

such that
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Fα,k = Bk ∪
∪

`<ω F−
α ¹ Bk,`

is a P-indestructible mad family. Then

Fα =
∪

k<ω Fα,k

is as desired. (Theorem 10)

It is easy to see that

(4.5) cf([κ+]ℵ0 ,⊆) = max{κ+, cf([κ]ℵ0 ,⊆)} for all cardinal κ and

(4.6) cf([κ]ℵ0 ,⊆) = sup({κ} ∪ {cf([λ]ℵ0 ,⊆) : λ < κ}) for all limit cardinal of

cofinality > ω.

Hence if cf([µ]ℵ0 ,⊆) = µ+ for all limit cardinal of cofinality ω, we have cf([κ]ℵ0 ,⊆) =

κ for all cardinal of cofinality > ω.

Corollary 11. Assume that cf([µ]ℵ0 ,⊆) = µ+ and ¤∗∗∗
ℵ1,µ holds for all limit cardinals

> ω of countable cofinality. If P is a proper poset, then AP(ω) holds if and only if

AP(κ) holds for some/any cardinal κ.

Proof. By Lemma 2, Theorem 5 and Theorem 10. Note that Theorem 10 is

applicable here by the remark above. (Corollary 11)

5 Almost disjoint number for uncountable

supports

The construction of mad families on large underlying sets given in the proofs of

the previous sections are also quite optimal concerning the possible minimal size

of the mad families.

Note first that an ad family F is mad if and only if it is hitting where a family

F ⊆ [S]ℵ0 is hitting if, for any x ∈ [S]ℵ0 , there is an a ∈ F such that |x ∩ a | = ℵ0.

The authors were informed about the following lemma by I. Juhász who learned

it from P. Nykos.

Lemma 12. (Baumgartner) For any cardinal κ the minimal possible size of a

hitting family ⊆ [κ]ℵ0 is equal to cf([κ]ℵ0 ,⊆).
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Proof. Let λ be the minimal possible cardinality of a hitting family in [κ]ℵ0 . The

inequality λ ≤ cf([κ]ℵ0 ,⊆) is clear. To prove λ ≥ cf([κ]ℵ0 ,⊆) consider T = ω>κ as

a κ-ary tree of height ω. We have |T | = κ. So let F ⊆ [T ]ℵ0 be a hitting family of

cardinality λ.

For x ∈ [κ]ℵ0 , let f : ω → x be an onto mapping. Let B(f) = {f ¹ n : n ∈
ω} ∈ [T ]ℵ0 . Since F is hitting there is some a ∈ F such that B(f) ∩ a is infinite.

It follows that {rng(t) : t ∈ a} ⊇ x. This shows that {{rng(t) : t ∈ a} : a ∈ F}
is cofinal in [κ]ℵ0 . Thus we have

| F | ≥ | {{rng(t) : t ∈ a} : a ∈ F} | ≥ cf([κ]ℵ0 ,⊆).

(Lemma 12)

For a family S of countable sets, let a(S) be the minimal size of a maximal

pairwise almost disjoint family ⊆ S. Thus the usual almost disjoint number a can

be written as a = a([ω]ℵ)).

Theorem 13. Assume that cf([µ]ℵ0 ,⊆) = µ+ and ¤∗∗∗
ℵ1,µ holds for all limit cardinals

> ω of countable cofinality. Then a([κ]ℵ0) = max{a, κ} for any cardinal κ of

cofinality > ω and a([µ]ℵ0) = max{a, µ+} for any cardinal µ of countable cofinality.

Proof. Starting from a mad family F of size a, we can construct P-indestructible

mad families on all κ > ω using the constructions of Theorem 5 and Theorem 10,

e.g. for the trivial poset P = {1lP}. We can check easily that the mad families

obtained thus have the needed minimal cardinality. (Theorem 13)
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