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Abstract. In this survey we explain the general idea of forcing, present Sacks

forcing with some of its properties, give an overview of closely related forcing

notions, and investigate the influence of some combinatorial principles to the

question whether a c.c.c. forcing notion can have the Sacks property. Moreover,

we discuss the iterated Sacks model, which is the standard model of set theory

in which the Continuum Hypothesis fails, but where all other reasonably defined

cardinal characteristics of the continuum have the minimal possible value. We

also discuss the countable support side-by-side product of Sacks forcing.

0 Introduction and outline of the paper

The technique of forcing was invented by Paul Cohen [Coh63] in order
to produce a model of the commonly accepted system of set-theoretic
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axioms, ZFC, the Zermelo-Fraenkel axioms ZF together with the axiom

of choice, in which the Continuum Hypothesis (CH) fails. The existence
of such a model shows that CH does not follow from ZFC. Earlier it was
shown by Gödel (see [Kun80, Chapter VI]) that CH cannot be refuted

from ZFC, assuming of course that ZFC is consistent.

Forcing turned out to be a very powerful tool for proving indepen-
dence results in mathematics. Starting from a model V , the ground model,

which satisfies ZFC, a partial order P ∈ V is fixed which codes the de-
sired properties of the model one wishes to construct. Then forcing with
P over V yields a generic extension V [G] where all this information is

decoded and ZFC holds as well. V [G] is obtained by adding a certain
generic object G (a subset of P) to V . V [G] is the smallest model of ZFC

which extends V and contains G.

Sacks forcing is one such partial order and was invented by Gerald
Sacks to produce a minimal forcing extension V [G] in the following

sense: If W is a model of ZFC such that V ⊆ W ⊆ V [G], then ei-
ther W = V or W = V [G]. In this article we give an overview of the
properties and applications of Sacks forcing.

In Section 1 we illustrate the idea of forcing by an example. The
reader who is interested in learning the details of forcing is referred to
[Kun80], [Jec78], or [Jec02]. Our notation follows [Kun80] and when-

ever we state a fact about forcing without mentioning a source, this fact
can be found in [Kun80] or, if Borel sets and descriptive set theory are
involved, in [Jec78]. This section is ment as a sketchy introduction to

forcing, and it certainly does not replace some detailed treatment as in
the books mentioned above.

After that, in Section 2, we introduce Sacks forcing and study some

of its properties. We isolate the so-called Sacks property and mention
some of its consequences in Section 3. Section 4 is devoted to relatives

of Sacks forcing which share some of its important features. Sacks forc-
ing does not satisfy the countable chain condition (c.c.c.). So in Section 5
we wonder whether there is any c.c.c. forcing that has the Sacks property.
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We then turn to iterations of Sacks forcing. Section 6 deals with

countable support side-by-side products of Sacks forcing and in Section
7 we discuss the countable support iteration of Sacks forcing of length
ω2.

1 Collapsing the continuum to ℵ1

When Gödel proved that CH is consistent with ZFC, he started from a
model V of ZFC and constructed a definable class L, the class of con-
structible sets, inside V such that L satisfies ZFC+CH. (Actually, Gödel

started from a model of ZF and produced a model of ZFC+CH.) Forcing
works the opposite way. We start from a model V of ZFC and extend it.
As usual, we will frequently talk about models of set theory, which just

means models of ZFC. Whenever we consider two models V0, V1 of set
theory such that V0 ⊆ V1, we will tacitly assume that V0 is transitive in

V1, i.e., for all x ∈ V0 and y ∈ V1, if y ∈ x in V1, then y ∈ V0. This guar-
antees that V0 and V1 agree on elementary properties of sets, for instance
whether a set x ∈ V0 is an ordinal or not. (See [Kun80, IV.3] for more

information on this subject.)

Suppose we wish to construct a model of ZFC+CH by forcing. Let V
be a model of ZFC. If V satisfies CH, we are done. Otherwise, in V the
cardinal 2ℵ0 , the size of R and of P(ω), is bigger than ℵ1. In this case we

try to add a function f : ℵ1 → P(ω) which is onto. Since V does not
satisfy CH, no such function exists in V . However, for every countable
ordinal α, f ! α could be an element of V . We define a forcing notion

P , i.e., a partial order, which consists of possible initial segments of a
surjective map f : ℵ1 → P(ω).

Let P := {p : ∃α < ω1(p : α → P(ω))}. The order on P is reverse
inclusion. More precisely, for p, q ∈ P let p ≤ q iff q ⊆ p, i.e., if p
extends q. If p ≤ q, we say that p is stronger than q. The elements of P
are the forcing conditions or just conditions. Two conditions p0, p1 ∈ P
are compatible iff there is q ∈ P such that q ≤ p0, p1. Otherwise p0
and p1 are incompatible. In this case we write p0 ⊥ p1. Our particular
forcing notion P is a tree of height ℵ1 (the root is the empty function,

and stronger (i.e., smaller with respect to ≤) conditions are higher up the
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tree). In general, a forcing notion can be any partial order. For technical

reasons, we assume that every partial order Q has a largest element 1Q.

We now describe how we get a surjection f : ℵ1 → P(ω) from P .

G ⊆ P is a filter iff

(i) for all p, q ∈ G there is r ∈ G such that r ≤ p, q and
(ii) for all p ∈ G and all q ∈ P with p ≤ q, q ∈ G.

In our case, a filter in P is the same as a branch in the tree P . If G ⊆ P
is a filter such that {α < ω1 : ∃p ∈ G(p : α → P(ω))} = ω1, then
fG :=

⋃

G is a function from ℵ1 to P(ω). However, if G is an element

of V , then fG is not onto P(ω) since 2ℵ0 > ℵ1 in V . This is where
genericity comes into play. We have to make sure that G is sufficiently
complicated. D ⊆ P is dense in P if for all p ∈ P there is q in D such

that q ≤ p. A filter G ⊆ P is P -generic over V if it has nonempty inter-
section with every D ∈ V which is dense in P . A set D ⊆ P is dense

below a condition p ∈ P if for all q ∈ P with q ≤ p there is q′ ∈ D
with q′ ≤ q. It is not difficult to check that if D is dense below p and G
is P -generic over V with p ∈ G, then D ∩G )= ∅.

Except for trivial cases, filters that are generic over V cannot be ele-

ments of V . Thus, we need someone outside V who chooses a P -generic
filter over V . It can be shown that for each partial order Q in V it is safe
(i.e., it does not lead to a contradiction unless ZFC itself is contradictory)

to assume that a Q-generic filter over V exists. More precisely, whenever
we consider a specific forcing notion Q it will have a reasonable descrip-
tion. If the existence of a forcing notion with this description is consistent

with ZFC, then there is a model V of set theory such that in V we have
a partial order Q′ satisfying the description of Q and there is a model W
of set theory such that V ⊆ W and in W there is a Q′-generic filter G
over V .

So, let G be P -generic over V . For every x ∈ P(ω) the set Dx :=
{p ∈ P : x ∈ ran(p)} is dense in P . Since Dx ∈ V and G is generic,

there is p ∈ G ∩ Dx, i.e., there is p ∈ G such that x ∈ ran(p). This im-
plies that f := fG is a function onto P(ω). Similarly, for every α < ω1,
the set Dα := {p ∈ P : α ∈ dom(p)} is dense in P . It follows that

for every α < ω1 there is p ∈ G such that α ∈ dom(p). This implies
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dom(f) = ℵ1. It follows that f : ℵ1 → P(ω) is onto.

After constructing the desired map f from G, we have to explain how
to get a model V [G] of ZFC from V and G. Roughly speaking, V [G] con-

sists of all sets that are definable from G together with parameters from
V . More precisely, a class of so-called P -names is defined in V . Then,
by means of some simple algorithm, from every P -name ẋ ∈ V a set ẋG

is computed using G. The set ẋG is the evaluation of ẋ with respect to G.
V [G] consists of all ẋG. Every element y of V has a canonical P -name

y̌ with the property that for every P -generic G, y̌G = y. In other words,
V is included in V [G]. Moreover, there is a name Ġ such that for every
P -generic filter G, ĠG = G. V [G] turns out to be a model of ZFC, and it

has the same ordinals as V .

In V [G] we have the function f = fG, as defined above. The function

f has at least one name in V , so we can pick one and call it ḟ . Thus,
f is the interpretation of the name ḟ under G, and we denote this fact
by f = ḟG. We argued that f : ℵ1 → P(ω) is onto. However, we were

talking about the ℵ1 and P(ω) of V , not of V [G]. Formally, the symbols
ℵ1 and P(ω) stand for definitions of certain sets. P(ω) is the power set

of the first limit ordinal and ℵ1 is the first ordinal α such that there is no
map from ω onto α. As it turns out, ω is the same in V as in V [G], and

this holds for every forcing extension. Let ℵV
1 and ℵV [G]

1 denote the first
uncountable ordinal in V , respectively in V [G]. P(ω)V and P(ω)V [G]

are defined similarly. In order to prove that V [G] is a model of CH it

is enough to show ℵV
1 = ℵV [G]

1 and P(ω)V = P(ω)V [G]. Both of these
statements follow from the fact that V [G] does not contain any countable
sequences of ordinals that are not already elements of V (i.e., there are

no new countable sequences of ordinals), which we prove in a moment.

We need some information on how properties of V [G] are connected

to the properties of P . Let ϕ(x1, . . . , xn) be a formula in the language of
set theory (first order logic with the binary relation symbol ∈) with all

free variables among x1, . . . , xn. Then for every condition p ∈ P and P -
names ẋ1, . . . , ẋn we say that p forces ϕ(ẋ1, . . . , ẋn) (whereϕ(ẋ1, . . . , ẋn)
denotes ϕ with every free xi replaced by the name ẋi) iff for every P -

generic filter G with p ∈ G, V [G] satisfies ϕ((ẋ1)G, . . . , (ẋn)G). In this
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case we write p "P ϕ(ẋ1, . . . , ẋn). It is crucial for the theory of forcing

that the relation "P is actually definable in V . Moreover, we have the
following important fact:

Theorem 11 (The Forcing Lemma) Let Q be a forcing notion and sup-

pose that G is Q-generic over V . Then

V [G] |= ϕ((ẋ1)G, . . . , (ẋn)G)

(i.e., ϕ((ẋ1)G, . . . , (ẋn)G) is true in V [G]) iff there is q ∈ G such that

q "P ϕ(ẋ1, . . . , ẋn).

Thus, nothing in V [G] depends on chance, everything is forced at
some point. We say that a condition p decides a statement ϕ if p " ϕ or
p " ¬ϕ. Similarly, if ẋ is a name, we say that p decides ẋ if there is some

ground model set x such that p " ẋ = x̌. It is worth noting that for con-
ditions p and q with q ≤ p, q forces everything that p forces. Moreover,

for every condition p and every statement ϕ there is q ≤ p such that q
decides ϕ.

Returning to our example, how can we see that there are no new
countable sequences of ordinals? The forcing notion P is σ-closed, that

is, if (pi)i<ω is a sequence of conditions in P such that pi+1 ≤P pi for
each i, then there is some p ∈ P such that p ≤ pi for every i ∈ ω. Just
let p :=

⋃

i∈ω pi.

Assume there is a P -name ḣ and a condition p which forces that ḣ
is a function from ω to the ordinals. Let p′ ≤ p be arbitrary. Then, using

Theorem 11 and the remarks following it, we find a decreasing sequence
(qi)i<ω of conditions such that q0 ≤P p′ and for each i there is some or-

dinal αi such that qi "P ḣ(i) = αi. (Formally, the last part should have
been stated as qi "P ḣ(̌i) = α̌i since we have to use names to the right of
the forcing relation. However, we identify the elements of V with their

canonical names as long as it is clear what we mean.)

Let q ∈ P be such that q ≤ qi for all i ∈ ω. Now for all i ∈ ω,
q " ḣ(i) = αi. In other words, q forces that ḣ is the sequence (αi)i∈ω,
which is an element of the ground model. Since q ≤ p′ and p′ was arbi-

trary below p, the set of conditions that force ḣ to be a sequence in the
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ground model is dense below p. It follows that every generic filter G that

contains p intersects this set. Thus, whenever G is P -generic over V and
p ∈ G, then ḣG ∈ V . It follows that for every P -generic filter G over V ,
in V [G] there are no new countable sequences of ordinals and thus, ℵ1

and P(ω) are the same in V [G] as in V . But this implies that V [G] is a
model of ZFC+CH since in V [G] there is a surjection from ℵ1 onto P(ω).

It is worth mentioning that if p forces ḣ to be a function from ω to the
ordinals, then we may already assume that every condition q forces ḣ to

be a function from ω to the ordinals. This is because we can replace ḣ by
a name ġ such that every condition q forces “ġ is a function from ω to the
ordinals and if p̌ ∈ Ġ, then ḣ = ġ”. The existence of ġ follows from the

next theorem, the so-called Maximality Principle.

Theorem 12 Let ϕ(x, y1, . . . , yn) be a formula in the language of set

theory. Let Q be a forcing notion, q ∈ Q, and suppose that ẏ1, . . . , ẏn are

Q-names such that

q " ∃xϕ(x, ẏ1, . . . , ẏn).

Then there is a Q-name ẋ such that

q " ϕ(ẋ, ẏ1, . . . , ẏn).

In particular, if every q ∈ Q forces ∃xϕ(x, ẏ1, . . . , ẏn), then 1Q forces
this and thus, by Theorem 12, there is a Q-name ẋ such that every q ∈ Q
forces ϕ(ẋ, ẏ1, . . . , ẏn).

2 Sacks forcing and its properties

The forcing notion which we introduced in Section 1 for collapsing 2ℵ0

to ℵ1 was a rather special case. As mentioned before, forcing was in-
vented to enlarge 2ℵ0 , not to make it smaller. Enlarging 2ℵ0 can be done
by adding new reals, where a “real” is an element of one of the sets P(ω),
2ω, ωω, R, and [0, 1]. In our context, usually it does not matter whether
we look at P(ω), 2ω, ωω, R, or [0, 1], and here is why:

The first two spaces can be identified in a natural way. The space ωω

is homeomorphic to the set of irrational numbers, a subset of R whose

complement is countable and therefore neglegible for our purposes. The
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compact unit interval is a continuous image of 2ω via a mapping that fails

to be injective only on countably many places, i.e., again on a neglegi-
ble set. Finally, [0, 1] is homeomorphic to the two-point compactification
of R. These mappings, which are almost bijections between the differ-

ent spaces, are all nicely definable and show that once we know all the
elements of one of those spaces, we know all the elements of the other

spaces too. Moreover, if we investigate some frequently studied ideals
such as the ideal of measure zero sets, of meager sets, or of countable
sets, it turns out that, as far as the basic properties of these ideals con-

cerned, it does not matter on which incarnation of “the reals” the respec-
tive ideals are considered.

The forcing notion used by Cohen to add new reals is now called Co-

hen forcing and is defined as follows. Let C be the set 2<ω of all finite

sequences of 0’s and 1’s. C is ordered by reverse inclusion. If G is C-
generic over the ground model, then the Cohen real added by C is just
⋃

G, a function from ω to 2. Thus, Cohen forcing uses finite approxima-

tions to create a new real. To enlarge the continuum using C one has to
use iterate Cohen forcing in order to add many new reals. Iterated forcing
will be discussed later.

Let us consider another description of Cohen forcing. Whenever we

consider a Boolean algebra B as a forcing notion, we mean the partial
order (B \ {0B},≤) where ≤ is the natural order on B. Let (P,≤P )
and (Q,≤Q) be two partial orders. A mapping e : P → Q is a dense

embedding iff the following conditions hold:

(i) ∀p, p′ ∈ P (p ≤P p′ ⇒ e(p) ≤Q e(p′))
(ii) ∀p, p′ ∈ P (p ⊥P p′ ⇒ e(p) ⊥Q e(p′))

(iii) ∀q ∈ Q∃p ∈ P (e(p) ≤Q q)

Note that we do not demand e to be 1-1. But condition (ii) implies that
for all p, p′ ∈ P with e(p) = e(p′) and every P -generic filter G we

have p ∈ G iff p′ ∈ G. Every partial order P has a so-called comple-

tion, a complete Boolean algebra B such that P densely embeds into

(B \ {0B},≤). B is unique up to isomorphism.

We call two partial orders P and Q forcing equivalent (or just equiv-

alent) iff they have isomorphic completions. If P and Q are equivalent,



On Sacks Forcing and the Sacks Property 9

then they produce the same generic extensions. Therefore, equivalent

partial orders can be considered the same as far as forcing is concerned.

Many forcing notions adding generic reals can be described in the fol-

lowing way: Let Bor(R) denote the Boolean algebra of Borel subsets of
the reals. If I ⊆ Bor(R) is an ideal, then Bor(R)/I is a Boolean algebra.

As a forcing notion, this Boolean algebra is equivalent to (Bor(R)\I,⊆).
Let M denote the ideal of meager subsets of the real line. Then Cohen
forcing is equivalent to Bor(R)/M since Bor(R)/M has a dense subset

which is isomorphic to C.

Another important ideal in Bor(R) is the ideal N of Borel sets of
measure zero. The forcing notion Bor(R)/N is called random real forc-

ing and adds a random real. Both forcing notions, Cohen and random

real forcing satisfy the countable chain condition (c.c.c.), that is, they
only have countable antichains. Here an antichain is a set of pairwise
incompatible elements. Forcing notions with the c.c.c. do not collapse

cardinals. More exactly, if P is c.c.c. and G is P -generic over the ground
model V , then an ordinal α is a cardinal in V [G] iff it is a cardinal in V .

If I ⊆ Bor(R) is a σ-ideal, then the generic real added by Bor(R)/I
is determined as follows: We work with Bor(R)\I instead of Bor(R)/I.

Let G be Bor(R) \ I-generic over the ground model V . Then
⋂

G is
nonempty and contains a unique real xG, and this real is the generic real

added by Bor(R)/I. While xG is not a generic filter for some partial
order, G can be recovered from xG (i.e., G and xG are interdefinable),
and thus it makes sense to talk about xG as the generic object added by

Bor(R)/I. In a moment we will see how G can be recovered from xG.

To describe the properties of xG, we have to mention Borel codes (see
[Jec78, page 537]). A Borel set X ⊆ R is not merely a set of real num-
bers, but it has a description of how it can be obtained from open sets by

taking complements and unions over countable families. This description
can be coded as an element of ωω, and this code is a Borel code for X .
(Note that a Borel code for a given set X is not unique.)

In fact, usually mathematicians use Borel codes when they are talking

about Borel sets. E.g., they are talking about the open set (0, 1) instead of
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thinking about every single real inside this interval. The notation (0, 1)
can be considered as a Borel code for a certain open set. This Borel code
has different interpretations in different models of set theory. However,
usually the structure of a set matters, and the individual elements which

are inside are unimportant. When we talk about a Borel set X in two dif-
ferent models of set theory, we really choose a Borel code for X and then

identify the two Borel sets that are obtained in the respective models by
applying the definition of a Borel set coded by the Borel code. This does
not depend on the particular Borel code we chose for X .

The generic real xG has the property that it is not an element of any
element of I. More precisely, let X ∈ I. Then X is Borel and thus has

a Borel code. (We work in V , so far.) Now the Borel set in V [G] which
has this Borel code does not contain xG. Roughly speaking, xG avoids
all sets from I.

Now G can be recovered from xG as follows: Let (Bor(R))V de-

note the set of ground model Borel sets. Then G is the set of all X ∈
(Bor(R))V which in V [G] contain xG. Since xG avoids all elements of
the ideal I, the ground model Borel sets which in V [G] contain xG are

indeed elements of (Bor(R))V \ I. By the definition of xG, every ele-
ment of G contains xG (in V [G]). On the other hand, if X is a ground
model Borel set which in V [G] contains xG, then X is an element of

(Bor(R))V \ I which is compatible with all elements of G since the in-
tersection of X with an arbitrary element of G is again a ground model

Borel set that in V [G] contains xG. It is a general fact about generic fil-
ters that they contain a condition iff the condition is compatible with all
the elements of the filter. This implies X ∈ G. (Note that all the time we

considered I as the actual set of ground model Borel sets, i.e., as an ideal
in (Bor(R))V . Usually I fails to be an ideal in Bor(R) in V (G). If I is
nicely definable like M and N , then typically the ground model ideal

I is different from the ideal in V [G] which is obtained by applying the
definition of I in V [G].)

One σ-ideal of Bor(R) stands out as the smallest σ-ideal containing
all the singletons, namely the ideal countable of countable sets. Sacks

forcing is Bor(R)/countable. A Sacks real is a generic real for Sacks
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forcing.

There is another ideal related to Sacks forcing, Marczewski’s ideal

s0 introduced in [Mar35]. (See [Bre95] for some information on Mar-
czewski’s ideal and other similarly defined ideals.) A set X ⊆ R is per-

fect iff it is nonempty, closed, and has no isolated points. A set X ⊆ R

is in the ideal s0 iff every perfect set P ⊆ R has a perfect subset Q ⊆ P
which is disjoint from X . Note that no perfect set is in s0. A set X ⊆ R is

s-measurable iff for every perfect set P ⊆ R there is a perfect set Q ⊆ P
such that either Q ∩ X = ∅ or Q ⊆ X . The set of s-measurable sets is
called the Marczewski field.

A well known theorem due to Alexandroff and Hausdorff says that

every uncountable Borel set includes a perfect set (see [Jec78, Theorem
94]). It follows that every Borel set is s-measurable and that the Borel

sets in s0 are precisely the countable sets. Moreover, every s-measurable
set X ⊆ R which is not in the ideal s0 has a perfect subset. And per-
fect sets are clearly Borel. It follows that there is a dense embedding

from the partial order Bor(R) \ countable into the partial order of s-
measurable sets that are not in s0. This implies that the Boolean alge-

bra Bor(R)/countable and the quotient of the Boolean algebra of s-
measurable sets modulo the ideal s0 have isomorphic completions and
are thus forcing equivalent.

We give a combinatorial description of Sacks forcing. First note that

every perfect set X ⊆ R has a perfect subset which is homeomorphic
to 2ω. (See [Jec78, Lemma 4.2] for this. The statement follows from the

usual proof of the fact that every perfect set is of size 2ℵ0 .) It follows that
the copies of 2ω are dense in Bor(R) \ countable. Therefore forcing
with the partial order of perfect subsets of 2ω gives the same generic ex-

tensions as forcing with Bor(R)/countable.

Let X be a subset of 2ω. Then the set T (X) := {x ! n : n ∈ ω ∧ x ∈
X} of initial segments of elements of X is a subtree of the tree (2<ω,⊆).
For a subtree T of 2<ω let [T ] := {x ∈ 2ω : ∀n ∈ ω(x ! n ∈ T )} be
the set of branches through T . For every subtree T of 2<ω the set [T ] is
closed. For every closed set X ⊆ 2ω, [T (X)] = X . In this translation

between closed subsets of 2ω and subtrees of 2<ω the perfect sets cor-
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respond to perfect trees. A nonempty subtree T of 2<ω is perfect iff for

every s ∈ T there are t0, t1 ∈ T such that s ⊆ t0, t1 and t0 and t1 are
incomparable with respect to ⊆.

This gives rise to our official definition of Sacks forcing S.

Definition 21 Sacks forcing is the set S of all perfect subtrees of 2<ω

ordered by inclusion.

With this definition of Sacks forcing, whenever we refer to a Sacks

real we mean the unique element x of
⋂

p∈G[p] where G is an S-generic

filter. If x is a Sacks real and this is witnessed by G, then G is the set of
all perfect trees p in the ground model such that x ∈ [p].

It is quite obvious that Sacks forcing does not have the c.c.c. In fact,
there are antichains of size 2ℵ0: Fix an almost disjoint family {Aα | α <
2ℵ0} of subsets of ω, and for each α < 2ℵ0 choose a perfect tree Tα

whose splitting levels are exactly the elements of Aα, for example, Tα :=
{s ∈ 2<ω : ∀n < |s|(n /∈ Aα → s(n) = 0)}. If α )= β, then Tα ∩ Tβ

includes no perfect tree, so they are incompatible. Nevertheless, S does
not collapse ℵ1 either, since it satisfies Baumgartner’s Axiom A [Bau83,

Section 7]:

Definition 22 A forcing notion (P,≤) satisfies Axiom A iff there is a

decreasing chain of partial orders ≤=≤0⊇≤1⊇≤2 . . . on P such that

(i) for every sequence (pn)n<ω in P such that for all n ∈ ω, pn+1 ≤n pn
there is p ∈ P such that for all n ∈ ω, p ≤n pn (such a sequence

(pn)n∈ω is called a fusion sequence and p is a fusion of (pn)n∈ω) and

(ii) if A ⊆ P is an antichain and p ∈ P , then for every n ∈ ω there

is q ≤n p such that q is compatible with at most countably many

members of A.

Axiom A can be seen as a generalisation of the c.c.c. since each

c.c.c. forcing satisfies Axiom A: Just let ≤n be equality for all n > 0.
Axiom A forcings belong to a wider class of forcing notions preserving

ℵ1, namely the class of proper forcings [She98, III.1]. Properness was
introduced by Shelah as a strengthening of “not collapsing ℵ1” which
behaves nicely with respect to iterations. Countable support iterations of

proper forcings are again proper while countable support iterations of
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ℵ1-preserving forcing notions may collapse ℵ1 [She98, III.3].

Instead of invoking properness it can be seen very quickly that Axiom
A suffices to guarantee that ℵ1 is preserved.

Lemma 23 Let P be a forcing notion satisfying Axiom A. Then for every

P -generic filter G over the ground model V the following holds: If x is

a countable set of ordinals in V [G], then there is a set y ∈ V such that

x ⊆ y and y is countable in V . In particular, forcing with P does not

collapse ℵ1.

PROOF: Let ẋ be a P -name and suppose that p ∈ P forces that ẋ is

a countable set of ordinals. We will construct a fusion sequence (qn)n∈ω
starting with q0 = p and a countable set y such that for every fusion q
of this sequence, q " ẋ ⊆ y̌. We start by choosing a name ḣ for a func-

tion from ω into the ordinals such that p forces ḣ to be a function from
ω onto ẋ. The existence of ḣ is guaranteed by the Maximality Principle.
Let n ∈ ω and suppose we have already defined qn. The set of conditions

deciding ḣ(n) is dense in P . It follows that there is a maximal antichain
An ⊆ P consisting of conditions that decide ḣ(n). By condition (ii) of

Axiom A there is qn+1 ≤n qn such that qn+1 is compatible with at most
countably many elements of An.

Let q be a fusion of (qn)n∈ω, and put

y := {α : ∃q′ ≤ q∃n ∈ ω(q′ " ḣ(n) = α)}.

Then, whenever G is P -generic over V and q ∈ G, for every n ∈ ω there

is q′ ∈ G such that q′ ≤ q and q′ " ḣ(n) = α̌ where α = ḣG(n). (Recall
that V [G] has the same ordinals as V .) It follows that ẋG = ḣG[ω] ⊆ y.

It remains to show that y is countable. Let n ∈ ω and q′ ≤ q. Since An

is a maximal antichain, there is r ∈ An such that q′ and r are compatible.

By the choice of An, there is αr such that r " ḣ(n) = α̌r. It follows
that if q′ decides ḣ(n), then q′ decides ḣ(n) to be αr. Since q′ ≤ q,

r and q are compatible. By the choice of qn+1 and since q ≤ qn+1, q
is compatible with at most countably many elements of An. It follows
that {α : ∃q′ ≤ q(q′ " ḣ(n) = α̌)} is countable. But this implies the

countability of y. /0
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The conclusion of Lemma 23 is useful enough to get a name.

Definition 24 Let V0 and V1 be models of set theory such that V0 ⊆ V1

and V0 and V1 have the same ordinals. We say that V1 has the ℵ0-covering

property over V0 iff for every set A ∈ V1 of ordinals which is countable

in V1 there is a set B ∈ V0 of ordinals which is countable in V0 such that

A ⊆ B.

Lemma 23 says that if P is a forcing notion satisfying Axiom A,
then for every P -generic filter G over the ground model V , V [G] has the
ℵ0-covering property over V . Properness instead of Axiom A is actually

sufficient for this (see [She98, III.1.16]).

The definition of Axiom A seems rather technical. However, it is

a quite natural property which is typically satisfied by forcing notions
where the conditions are trees which are required to split often. Let us

show

Lemma 25 Sacks forcing S satisfies Axiom A.

PROOF: For n ∈ ω and p ∈ S let pn consist of those t ∈ p that

are minimal in p (with respect to ⊆) such that t has exactly n proper ini-
tial segments that have two immediate successors in p. For p, q ∈ S let

p ≤n q iff p ≤ q and pn = qn. Suppose (pn)n∈ω is a sequence in S such
that pn+1 ≤n pn for all n ∈ ω. Then q :=

⋂

pn is easily seen to be a
perfect tree, i.e., an element of S. Clearly, q ≤n pn for every n ∈ ω. In

the context of Sacks forcing we will refer to the intersection of a fusion
sequence as the fusion of the sequence.

Now let n ∈ ω, p ∈ S, and suppose that A is an antichain in S. Every
σ ∈ 2n uniquely determines an element tσ of pn (using the natural bijec-

tion between 2n and pn). Let p ∗σ := {s ∈ p : s ⊆ tσ ∨ tσ ⊆ s}. Clearly,
p ∗ σ ∈ S and p ∗ σ ≤ p.

For every σ ∈ 2n let qσ ≤ p ∗ σ be such that qσ is compatible with
at most one element of A. Now q :=

⋃

σ∈2n qσ ∈ S and q ≤n p. Note
that with this definition of q, for every σ ∈ 2n we have qσ = q ∗ σ. If q
is compatible with some r ∈ A, then there is σ ∈ 2n such that q ∗ σ is
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compatible with r. But every q∗σ is compatible with at most one element

of A. It follows that q is compatible with at most 2n elements of A. /0

Since Sacks forcing satisfies Axiom A, it does not collapse ℵ1. Under
CH, S is of size ℵ1 and therefore does not collapse any cardinal above
ℵ1, either. However, if CH fails in the ground model, forcing with S
could easily collapse 2ℵ0 . In fact, it is possible to have a ground model V
such that CH fails in V and whenever G is S-generic over V , 2ℵ0 = ℵ1

in V [G]. We will give the argument for this in Section 7. Petr Simon

[Sim93] showed that adding a Sacks real collapses 2ℵ0 to the unbounded-

ness number b, the least size of a set U ⊆ ωω such that for all f : ω → ω
there is g ∈ U such that for infinitely many n ∈ ω, g(n) > f(n). But
b < 2ℵ0 is not the only reason for Sacks forcing to collapse cardinals.

Judah, Miller, and Shelah [JudMilShe92] showed that it is consis-
tent with Martin’s Axiom (which implies b = 2ℵ0) that Sacks forcing

collapses cardinals. On the other hand, Shelah showed that it is con-
sistent with ZFC+¬CH that Sacks forcing does not collapse cardinals

(see [CarLav89]). Moreover, Carlson and Laver [CarLav89] showed that
some strengthened form of Martin’s Axiom implies that Sacks forcing
does not collapse 2ℵ0 to ℵ1. This stronger version of Martin’s axiom is

known to be consistent with ZFC+2ℵ0 = ℵ2. This also implies that it is
consistent with ZFC+¬CH that Sacks forcing does not collapse any car-
dinal.

Let us go back to the proof of Lemma 25. This proof shows that
Sacks forcing S actually satisfies a stronger form of Axiom A: Given a
condition p, an integer n, and an antichain A, we can find q ≤n p which is

compatible with only finitely many members of A. This already implies
that Sacks forcing has the so-called Sacks property. However, we can do
even better.

Definition 26 Let f : ω → ω \ {0}. C : ω → [ω]<ℵ0 is an f -cone iff

for all n ∈ ω, |C(n)| ≤ f(n). A real r ∈ ωω is covered by C iff for all

n ∈ ω, r(n) ∈ C(n). Let V0 and V1 be models of set theory such that

V0 ⊆ V1. We say that V1 has the Sacks property over V0 iff every real

r : ω → ω in V1 is covered by a 2n-cone C : ω → [ω]<ω in V0. (Here 2n
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is meant as a shortcut for the function n 3→ 2n.) A forcing notion P has

the Sacks property iff for every P -generic filter G over the ground model

V , V [G] has the Sacks property over V .

A subtree T of ω<ω is binary iff every t ∈ T has at most 2 immediate

successors in T . A real r : ω → ω is covered by T iff r ∈ [T ]. Let V0 and

V1 be as before. Then V1 has the 2-localization property over V0 iff every

real r ∈ ωω in V1 is covered by a binary tree in V0. A forcing notion P
has the 2-localization property iff for every P -generic filter G over the

ground model V , V [G] has the 2-localization property over V .

The Sacks property clearly follows from the 2-localization property.

Lemma 27 Sacks forcing has the 2-localization property. In particular,

it has the Sacks property.

PROOF: Let p ∈ S, and suppose that ż is an S-name such that p "

ż ∈ ω̌ω̌. It suffices to find a binary tree T and q ≤ p such that q forces ż
to be a branch through T . The condition q will be the fusion of a fusion

sequence (pn)n∈ω. We then define T to be

Tq(ż) := {s ∈ ω<ω : ∃q′ ≤ q(q′ " š ⊆ ż)},

the tree of q-possibilities for ż. Note that q forces ż to be a branch of
Tq(ż). While choosing the sequence (pn)n∈ω all we have to make sure is

that Tq(ż) becomes binary.

The set

{q ∈ S : q decides all of ż}

∪ {q ∈ S : ∀r ≤ q(r does not decide all of ż)}

is dense in S. If there is some q ≤ p which decides all of ż we are done
since in this case Tq(ż) does not have incomparable elements. Thus, we

may assume that no condition below p decides all of ż.

For every condition q ≤ p let żq be the longest initial segment of
ż that is decided by q. In particular, q " (żq)ˇ ⊆ ż. Since no condition
below p decides all of ż, żq ∈ ω<ω. Let p0 := p. Let n ∈ ω and sup-

pose that we have already chosen pn. For σ ∈ 2n consider the conditions
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pn ∗ (σ& 0) and pn ∗ (σ& 1) where s& i denotes the concatenation of s
with the sequence of length 1 that has the value i. Since pn ∗ (σ& 0) and
pn ∗ (σ& 1) do not decide all of ż, there are qσ " 0 ≤ pn ∗ (σ& 0) and
qσ " 1 ≤ pn ∗ (σ& 1) such that żqσ" 0

and żqσ" 1
are incomparable with

respect to ⊆. Now pn+1 :=
⋃

i∈2,σ∈2n qσ" i ≤n pn.

Let q :=
⋂

n∈ω pn. It is easily checked by induction on n that for all
n ∈ ω the finite tree Tn which is generated by (i.e., consists of all initial
segments of elements of) {żq∗σ : σ ∈ 2n} has the following properties:

1. Tn is a finite binary tree of height at least n,
2. Tn ⊆ T = Tq(ż), and
3. if t ∈ T is of length ≤ n, then t ∈ Tn.

It follows that T =
⋃

n∈ω Tn and that T is binary. /0

Let us analyze this proof. For every p ∈ S and every name ż for an

element of ωω such that no condition below p decides all of ż we found a
condition q ≤ p such that Tq(ż) is binary. It follows from the construction

of q that

h : [q] → [Tq(ż)]; x 3→
⋃

{żq∗σ : σ ∈ 2<ω ∧ x ∈ [q ∗ σ]}

is well-defined and in fact a homeomorphism. Obviously, q forces the
Sacks real to be a branch of q (every condition in S does this). Moreover,
q forces that h maps the Sacks real to ż.

This shows the following: Let G be S-generic over the ground model
V . Then for every element z of ωω in V [G] with z )∈ V there is a home-

omorphism h ∈ V between a perfect subset of 2ω (the set [q] for some
suitable q ∈ G) and a perfect subset of ωω (the set [Tq(ż)] for some

name ż for z) such that (in V [G]) h maps the Sacks real x added by
G to z. The homeomorphism h induces an order isomorphism between
the set of perfect subtrees of q and the set of perfect subtrees of Tq(ż).
The partial orders of perfect subtrees of q and of Tq(ṙ) are clearly iso-
morphic to S. It is easily checked that {p ≤ q : z ∈ [p]} is a generic

filter for the partial order of perfect subtrees of q. But this implies that
{p ∈ S : p ⊆ Tq(ż) ∧ z ∈ [p]} is a generic filter for the partial order
of perfect subtrees of Tq(ż). From this fact it easily follows that if z hap-

pens to be an element of 2ω, then z is a Sacks real belonging to some
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S-generic filter which is usually different from, but interdefinable with

G using ground model parameters. It follows that every new element of
2ω is again a Sacks real. (This was proved by Sacks in [Sac71].)

The existence of a ground model homeomorphism h mapping the
original Sacks real x to z implies that x can be reconstructed from z us-

ing a ground model parameter, namely h (or rather h−1). This observation
already indicates the minimality of the Sacks extension mentioned in the
introduction: For every S-generic filter G over the ground model V and

every model W of set theory such that V ⊆ W ⊆ V [G], either W = V
or V [G] = W . A real r which codes (i.e., is interdefinable with) some
P -generic filter G over V for some partial order P is called a minimal

real iff V [G] is a minimal extension of V .

From [Jec78, Lemma 25.2 and Lemma 25.3] we quote the follow-
ing: If G is a P -generic filter over the ground model V for some forcing
notion P and W is a model of ZFC such that V ⊆ W ⊆ V [G], then

there is a set A of ordinals such that W = V [A] where V [A] is the small-
est model of ZFC which extends V and contains A. Note that it is not
obvious that V [A] exists at all for a given set A ∈ V [G] of ordinals.

However, it can be shown that for every set A ∈ V [G] of ordinals there is
a forcing notion Q ∈ V and a complete embedding e : Q → P such that

V [e−1[G]] is the smallest model of ZFC which extends V and contains A.

A mapping e : Q → P is a complete embedding iff for all q, q′ ∈ Q,

(i) q ≤ q′ implies e(q) ≤ e(q′) and
(ii) e(q) ⊥ e(q′) iff q ⊥ q′

and

(iii) for all p ∈ P there is q ∈ Q such that for all q′ ∈ Q with q′ ≤ q, e(q′)
is compatible with p.

If e : Q → P is a complete embedding (in the ground model V ), then for

every P -generic filter G over V , e−1[G] is Q-generic over V .

Lemma 28 Sacks reals are minimal.

PROOF: Let Ȧ be a name for a set of ordinals. Then there is an ordi-

nal α such that 1S forces Ȧ to be a subset of α. Let ż be a name for the
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characteristic function of Ȧ from α to 2. Let p ∈ S and let ṙ be a name

for the Sacks real added by the S-generic filter. We have to find q ≤ p
such that q decides all of ż or such that for every S-generic filter G over
the ground model V with q ∈ G, ṙG can be reconstructed from żG using

parameters in V .

We proceed essentially as in the proof of Lemma 27. Again we may
assume that no condition below p decides all of ż since otherwise we
are done. For every condition q ≤ p let żq be the longest initial seg-

ment of ż that is decided by q, as before. Since no condition below p
decides all of ż, the domain of żq is an ordinal < α. Let p0 := p. Let

n ∈ ω and suppose that we have already chosen pn. For σ ∈ 2n con-
sider the conditions pn ∗ (σ& 0) and pn ∗ (σ& 1). Since pn ∗ (σ& 0) and
pn ∗ (σ& 1) do not decide all of ż, there are qσ " 0 ≤ pn ∗ (σ& 0) and

qσ " 1 ≤ pn ∗ (σ& 1) such that żqσ" 0
and żqσ" 1

are incomparable with
respect to ⊆. Let pn+1 :=

⋃

i∈2,σ∈2n qσ " i ≤n pn.

Let q :=
⋂

n∈ω pn. Now if G is S-generic over V and q ∈ G, then ṙG
is the unique element of [q] such that for all σ ∈ 2<ω with ṙG ∈ [q ∗ σ],
żq∗σ ⊆ żG. This shows that q ∈ G implies ṙG ∈ V [ȦG] and we are done.

/0

Brendle [Bre00] proved some interesting theorems about the set of
all Sacks reals over the ground model V in a generic extension V [G]. He
showed that after adding a single Sacks real over V , the set of ground

model reals is in the ideal s0. Since every new real is a Sacks real, this
means that the set of Sacks reals is big with respect to s0, i.e., its com-

plement is in s0. It follows that after adding a Sacks real x0 over V and
then adding a Sacks real x1 over V [x0], in V [x0][x1] the set of Sacks reals
over V is in s0.

The results about Sacks forcing mentioned so far show that when

adding a single Sacks real, we have a very good control about all the new
reals. Let us mention another result along these lines. Let U be an ultrafil-

ter on ω in the ground model V . Suppose G is P -generic over V for some
forcing notion P . Then U is destroyed by adding G if the filter generated
by U in V [G] is not an ultrafilter anymore. Otherwise the ultrafilter is

preserved. It can be shown that adding any new real destroys some ultra-
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filter from the ground model [BarJud95, Theorem 6.2.2]. However, some

ground model ultrafilters are preserved when adding a Sacks real.

An ultrafilter U on ω is a p-point if for every countable family F ⊆ U
there is a set U ∈ U which is almost included in all elements of F . U
is called a pseudo-intersection of F . In [BarJud95, Theorem 7.3.48] it

was shown that Miller forcing (see Section 4 for the definition of Miller
forcing) preserves p-points. The same proof works for Sacks forcing.

Lemma 29 If U is a p-point in the ground model V and G is S-generic

over V , then U generates a p-point in V [G]. In other words, Sacks forcing

preserves p-points.

It should be pointed out that it is very easy to destroy every ground
model ultrafilter by adding a new real. A real r ∈ 2ω is called a splitting

real over the ground model V if for A := r−1(1) and all B ∈ P(ω) ∩ V
that are neither finite nor cofinite, A ∩ B and B \ A are both infinite.

Both random reals and Cohen reals are splitting. It is easily checked that
adding a splitting real destroys all ultrafilters from the ground model.

To conclude this section, we mention a result about the Π1
3-theory of

L[x] where x is a Sacks real over Gödel’s universeL of constructible sets.

Note that the minimality of the Sacks extension implies that by adding a
Sacks real x to L, one obtains a minimal model of V )= L, i.e., for every
class C ⊆ L[x] that is a model of ZFC, either C = L[x] or C = L, and

in the latter case C |= V = L.

Recall that ϕ(x) is a Σ1
2-formula if ϕ(x) is of the form

∃r1 ∈ ωω ∀r2 ∈ ωω ψ(x, r1, r2)

where ψ is arithmetical, i.e., only has quantifiers ranging over natural

numbers (see, e.g., [Jec78, 7.40]). Shoenfield’s Absoluteness Theorem
(see [Jec78, Theorem 98]) implies that Σ1

2-formulas are absolute for forc-

ing extensions. That is, if V [G] is a forcing extension of the ground model
V , ϕ(x) is a Σ1

2-formula, and r is an element of ωω in V , then ϕ(r) holds
in V iff it holds in V [G].
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A Π1
3-statement is a statement of the form

∀r0 ∈ ωω ∃r1 ∈ ωω ∀r2 ∈ ωω ψ(r0, r1, r2)

where ψ is arithmetical.

Lemma 210 If ϕ is a Π1
3-statement which holds in a universe containing

a non-constructible real, then it holds in L[G] where G is S-generic over

L.

It follows that if there is any model V which is different from L such
that in V every real r satisfies the Σ1

2-formula

∃r1 ∈ ωω ∀r2 ∈ ωω ψ(r, r1, r2),

then Sacks forcing over L adds no real for which this statement fails.

As Woodin remarked in [Woo99, Theorem 1.5], Lemma 210 is the
consequence of the following result of Mansfield (see [Jec78, Theorem

99]):

Theorem 211 Let A be a set of reals defined by a Σ1
2-formula with con-

structible parameters. If A contains a non-constructible element, then it

includes a constructibly coded perfect subset.

To see why this implies Lemma 210, let V be a model of ZFC con-
taining a non-constructible real, let ϕ(x) be a Σ1

2-formula with only con-
structible parameters, and suppose that V |= ∀rϕ(r). Fix a generic exten-

sion V [G] in which ℵL
1 is countable. Then in particular, all constructible

dense sets of S are countable in V [G]. We have already seen that in the

Sacks extension every new real is itself a Sacks real. Therefore it suf-
fices to show that the Sacks generic real satisfies ϕ in L[G] where G is
S-generic over L.

In order to show this, let T ∈ S∩L. In V [G], A = {r ∈ [T ] | ϕ(r)} is
a Σ1

2-set containing a non-constructible element (from V ), and thus The-
orem 211 yields a perfect tree T ′ ∈ L such that [T ′] ⊆ A. By the choice

of V [G], [T ′] also contains a Sacks real over L, and since Σ1
2-statements
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are absolute, neither T ′ nor any perfect subtree of it can force ¬ϕ(ṙ).

As Brendle and Löwe observed in [BreLöw99], a slight generaliza-
tion of Theorem 211 can be used to show the equivalence of the state-

ments “every Σ
1
2-set of reals is s-measurable” and “every ∆1

2-set of reals
is s-measurable”. Here a set of reals is Σ1

2 iff it is the set of reals satis-
fying a fixed Σ1

2-formula with a fixed additional real parameter. A set of

reals is ∆1
2 iff the set and its complement are Σ1

2. The class of Σ1
2-sets

can also be defined topologically (see [Jec78, page 500]). The Σ1
1-sets

are the analytic sets, i.e., the projections of Borel sets, the Π1
1-sets are

the complements of Σ1
1-sets, and the Σ1

2-sets are the projections of Π1
1-

sets.

3 Consequences of the Sacks property

Before discussing consequences of the Sacks property, let us observe that
in the definition of the Sacks property it is not essential that the size of

C(n) is bounded by 2n. 2n could be replaced by any other non-decreasing
unbounded function from ω to ω. This can be seen as follows:

Let V0 and V1 be models of set theory with V0 ⊆ V1. Let f, g : ω →
ω \ {0} be non-decreasing and unbounded functions in V0. Suppose that

every real in V1 is covered by an f -cone in V0. In other words, suppose
that V1 has the Sacks property over V0 with 2n replaced by f . We show
that every new real in V1 is covered by a g-cone from V0. Note that we

may assume f(0) ≤ g(0) since every f -cone is the coordinatewise union
of finitely many f -cones C with |C(0)| = 1.

Let r : ω → ω be a real in V1. In V0 choose a strictly increasing se-
quence (mn)n∈ω of natural numbers such that for every n ∈ ω, g(mn) ≥
f(n). By our assumption f(0) ≤ g(0), we may assume m0 = 0. Identi-

fying ω with ω<ω for a moment, we find an f -cone C : ω → [ω<ω]<ℵ0 in
V0 which covers (r ! mn)n∈ω. Let D : ω → [ω]<ℵ0 be defined as follows:

For every n ∈ ω let D(n) := {s(n) : s ∈ C(n)∧ n ∈ dom(s)}. Now for
every n ∈ ω, if m is in the interval [mn, mn+1), then |D(m)| ≤ f(n) ≤
g(mn) ≤ g(m). It follows that D is a g-cone in V0 covering r.
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The Sacks property implies that the new reals in the generic extension

are very well controlled by ground model reals. For example, if V1 has
the Sacks property over V0, then the 2ℵ0 of V0 is still uncountable in V1.
This is because in V1, countably many 2n-cones do not suffice to cover

all of ωω, but the 2n-cones from V0 do cover all of ωω.

We mention two more examples of this: If a forcing notion P has the
Sacks property and G is P -generic over the ground model V , then the

ideal N V [G] of measure zero sets in the generic extension V [G] is gener-
ated by the measure zero Borel sets from the ground model. (Whether a
Borel code codes a measure zero set is absolute, that is, it does not depend

on the model of set theory in which we evaluate the Borel code. The ana-
logue is true for Borel codes of nowhere dense sets and of meager sets.

See [Jec78, Lemma 42.4].) Similarly, the ideal of nowhere dense subsets
of 2ω in V [G] is generated by the nowhere dense Borel sets in V . Both
of these consequences of the Sacks property follow from the following

lemma.

Lemma 31 Let V0 and V1 be models of set theory such that V0 ⊆ V1 and

V0 and V1 have the same ordinals. Suppose that V1 has the Sacks property

over V0. Then

a) for every measure zero set A ⊆ R in V1 there is a Borel set B ⊆ R

in V0 of measure zero such that A ⊆ B holds in V1 and

b) for every nowhere dense set A ⊆ 2ω in V1 there is a nowhere dense

Borel set B ⊆ 2ω in V0 such that A ⊆ B holds in V1.

PROOF: a) Let λ denote the Lebesgue measure on R. Recall that if

A ⊆ R is of measure zero, then for every sequence (εn)n∈ω of positive
real numbers there is a sequence (Un)n∈ω of finite unions of open inter-
vals with rational endpoints such that A ⊆

⋃

n∈ω Un and for all n ∈ ω,

λ(Un) < εn.

We do some preparations in V0. Let (On)n∈ω be an enumeration of all
finite unions of open intervals with rational endpoints, let e : ω×ω → ω
be a bijection, and fix a matrix (εij)i,j∈ω of positive real numbers such
that for all i ∈ ω,

∑

j∈ω

εij <
1

2i
.
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Now for every i ∈ ω there is fi ∈ ωω in V1 such that A ⊆
⋃

j∈ω Ofi(j)

and for every j ∈ ω,

2e(i,j) · λ(Ofi(j)) < εij.

Consider the real r : ω → ω defined by r(n) := m iff m = fi(j)
and n = e(i, j). By the Sacks property of P there is a 2n-cone C : ω →
[ω]<ℵ0 in V0 that covers r. By the definition of r, A is a subset of

B :=
⋂

i∈ω

⋃

j∈ω

⋃

{Om : m ∈ C(e(i, j)) ∧ 2e(i,j) · λ(Om) < εij}.

Since only ground model parameters are used in the definition of B,
B is a Borel set coded in the ground model. For all i, j ∈ ω, the set

C(e(i, j)) has at most 2e(i,j) elements. It follows that the measure of
⋃

{Om : m ∈ C(e(i, j)) ∧ 2e(i,j) · λ(Om) < εij} is not greater than

εij . Therefore, and by the choice of (εij)i,j∈ω, for every i ∈ ω,

λ
(

⋃

j∈ω

⋃

{Om : m ∈ C(e(i, j)) ∧ 2e(i,j) · λ(Om) < εij}
)

<
1

2i
.

It follows that B is of measure zero.

b) Note that if A ⊆ 2ω is nowhere dense, then for all n ∈ ω there is
m > n and t : [n,m) → 2 such that {x ∈ 2ω : t ⊆ x} is disjoint from A.

(Here [n,m) denotes the interval {n, . . . ,m− 1} in ω.) This can be seen
as follows: Let n ∈ ω and let (si)i<2n be an enumeration of 2n. Since
A is nowhere dense, there is a sequence (ti)i<2n in 2<ω such that for all

i < 2ω the set {x ∈ 2ω : s!i t
!

0 . . .! ti ⊆ x} is disjoint from A (recall that
s!t is the concatenation of the two finite sequences s and t). Now it is

easy to check that t := t!0 . . .! t2n has the desired property.

Using this observation we can choose a strictly increasing sequence

(ni)i∈ω of natural numbers and a sequence (ti)n∈ω such that for all i ∈ ω,
ti ∈ 2[ni,ni+1) and {x ∈ 2ω : ti ⊆ x} is disjoint from A. In other words,

letting z := t0 & t1 & . . . we have the following: For all i ∈ ω the set
{x ∈ 2ω : x ! [ni, ni+1) = z ! [ni, ni+1)} is disjoint from A. This
property of z does not change if we replace the sequence (ni)i∈ω by

another strictly increasing sequence (mi)i∈ω, provided for every i ∈ ω



On Sacks Forcing and the Sacks Property 25

there is j ∈ ω such that [nj , nj+1) ⊆ [mi, mi+1). By the Sacks prop-

erty, there is a 2n-cone C : ω → [ω]<ω in V0 covering i 3→ ni. Putting
m0 := max(C(0)) and mi+1 := max(C(mi + 1)) for every i ∈ ω, we
obtain sequence in V0 such that for every i ∈ ω the set {x ∈ 2ω : x !

[mi, mi+1) = z ! [mi, mi+1)} is disjoint from A.

Now let (ji)i∈ω be a sequence in V0 of natural numbers such that
for all i ∈ ω, ji+1 − ji > 2i. By the Sacks property, there is a 2n-cone
C : ω → [2<ω]<ℵ0 in V0 covering i 3→ z ! mji+1

. We may assume that for

every i ∈ ω every t ∈ C(i) has dom(t) = mji+1
. Since ji+1−ji > 2i and

|C(i)| ≤ 2i, there is ui : [mji, mji+1
) → 2 such that for every t ∈ C(i)

there is k ∈ [ji, ji+1) such that t agrees with ui on [mk, mk+1). Since

z ! mji+1
∈ C(i), no x ∈ A extends ui. The sequence (ui)i∈ω can be

chosen in V0. Now the set {x ∈ 2ω : ∃i ∈ ω(ui ⊆ x)} is coded in V0 and

disjoint from A in V1. Its complement B is a nowhere dense Borel set in
the ground model which covers A in V1. /0

The last lemma implies that forcing notions with the Sacks property

neither add Cohen reals nor random reals. Moreover, we can compute
the cofinality of N , the least size of a family F ⊆ N such that for all
A ∈ N there is B ∈ F with A ⊆ B, in forcing extensions with the Sacks

property over the ground model.

Corollary 32 Let V0 and V1 be models of set theory such that V0 ⊆ V1,

V0 and V1 have the same ordinals, and V1 has the Sacks property over V0.

Then in V1 the cofinality of N (ordered by ⊆) is at most |(2ℵ0)V0 | where

(2ℵ0)V0 denotes the ordinal which is the size of 2ω in V0. In particular, if

V0 satisfies CH , then the cofinality of N is ℵ1 in V1.

PROOF: By Lemma 31, the Borel measure zero sets coded in V0 are

cofinal in N V1 . In V0 there is a bijection between 2ℵ0 and all Borel subsets
of 2ω. Since (2ℵ0)V0 is an ordinal, and since V0 and V1 have the same

ordinals, in V1 there is a bijection between |(2ℵ0)V0| and all Borel sets in
2ω which are coded in V0. Therefore, in V1 the cofinality of N is at most
|(2ℵ0)V0 |. Now suppose that V0 satisfies CH . Then V1 |= |(2ℵ0)V0 | ≤ ℵ1.

But the cofinality of N is uncountable and therefore it must be ℵ1 in V1.
/0

The cofinality of N is the largest cardinal that appears in Cichoń’s

diagram (see [BarJud95, Chapter 2]). Thus, Corollary 32 implies that if
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one starts from a model of CH and then adds a P -generic filter over the

ground model for some forcing notion P which has the Sacks property,
then one ends up with a model where all the cardinals in Cichoń’s dia-
gram are ℵ1. Of course this is only interesting if there is a forcing notion

with the Sacks property that increases 2ℵ0 . We will go back to this when
we discuss iterated forcing. The cardinals in Cichoń’s diagram, as well

as other cardinal characteristics of the continuum, are studied in depth in
[BarJud95]. In this book the values of many cardinal characteristics of
the continuum are computed in various models of set theory. Corollary

32 and further characterizations of the Sacks property for proper forcing
notions can be found there. For a nice overview of cardinal characteristics
of the continuum see [Bla0*].

4 Variants of Sacks forcing

We give a brief overview of some relatives of Sacks forcing. Except for
forcing with finitely branching trees, all the forcing notions we mention

in this section are discussed in [BarJud95].

All the variants of Sacks forcing in this section satisfy Axiom A and
have the Laver property, a weakening of the Sacks property. A forcing

notion P has the Laver property iff for every P -generic filter G over the
ground model V and every r : ω → ω in V [G] the following holds: If r
is bounded by a ground model real, i.e., if there is b : ω → ω in V such

that for all but finitely many n ∈ ω we have r(n) ≤ b(n) in V [G], then r
is covered by a 2n-cone from the ground model.

Since the Sacks property implies that every r : ω → ω in the generic

extension is bounded by some ground model real, the Sacks property is
equivalent to the Laver property together with the property that every
element of ωω in the extension is bounded by a ground model real. A

forcing notion with the latter property is called ωω-bounding. (For exam-
ple, random real forcing is ωω-bounding, Cohen forcing is not.) Random

real forcing and Cohen forcing do not have the Laver property, because
the Laver property implies that any new real in the generic extension can
be covered by a meager set of measure zero. In particular, forcing notions

with the Laver property neither add random nor Cohen reals. Except for
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Mathias forcing, all the variants of Sacks forcing in this section give min-

imal generic extensions like Sacks forcing does.

We first summarize the properties of Sacks forcing S. S consists of
all perfect subtrees of 2<ω, ordered by inclusion. It has the Sacks prop-
erty (even the 2-localization property) and preserves p-points. Moreover,

if ϕ is a Π1
3-statement which holds in some model of set theory with a

non-constructible real, then it holds in L[G] where G is S-generic over L.

Forcing with finitely branching trees. There are some forcing no-

tions which are very closely related to Sacks forcing in that the conditions
are also finitely branching trees with certain perfectness properties. For
example, for n ∈ ω with n ≥ 2 a subtree p of n<ω is n-perfect iff ev-

ery s ∈ p has an extension which has exactly n immediate successors in
p. The forcing notion consisting of n-perfect trees ordered by inclusion

has the n-localization property (which is obtained from the 2-localization
property by replacing “binary tree” by “n-ary tree” where n-ary trees are
those trees in which every node has at most n immediate successors)

but not the (n − 1)-localization property [NewRos93]. Note that the n-
localization property implies the Sacks property.

Laver forcing LT [Lav76] consists of all subtrees p of ω<ω such that

almost all s ∈ p have infinitely many immediate successors in p. LT is
ordered by inclusion. Laver forcing adds a dominating real, i.e., a func-
tion d : ω → ω which bounds all ground model functions from ω to ω.

This implies that Laver forcing destroys every ultrafilter from the ground
model. If G is LT -generic over the ground model V , then in V [G] the set

R ∩ V has outer measure one.

Modifying Mansfield’s proof of Theorem 211, one can show that if ϕ
is a Π1

3-statement which holds in a universe with a dominating real over
L, then ϕ holds in L[G] where G is LT -generic over L. For this notice

that if there is a dominating real over L, then there is a so-called strongly

dominating real over L (see [GolRepSheSpi95]). Moreover, if A is a Σ1
2-

set in constructible parameters which contains a strongly dominating real
over L, then A contains all the branches of a constructibly coded Laver
condition. This can be shown using ideas from [GolRepSheSpi95].
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Miller forcing or rational perfect set forcing RP [Mil84] consists

of all subtrees p of ω<ω such that every s ∈ p has an extension t ∈ p
which has infinitely many immediate successors in p. The elements of
RP are sometimes called superperfect trees. Miller forcing is ordered by

inclusion. It preserves p-points and therefore does not add a dominating
real. If G is RP -generic over the ground model V , then R ∩ V is neither

meager nor of measure zero in V [G].

As for Laver forcing, a variant of Theorem 211 is true for Miller forc-
ing. A real r : ω → ω is unbounded over a class C iff it is not bounded

by a function in ωω ∩C. Using ideas from [Kec77] it is possible to show
that every constructibly coded Σ1

2-set which contains an unbounded real

over L contains all the branches of a constructibly coded Miller condi-
tion. This implies that every Π1

3-statement which holds in a model of set
theory with an unbounded real over L also holds in every model of the

form L[G] where G is RP generic over L.

Mathias forcing M [Mat77] consists of all pairs (s, A) such that

s ⊆ ω is finite and A ⊆ ω \
⋃

s is infinite. M is ordered as follows:
(s, A) ≤ (t, B) iff t ⊆ s, A ⊆ B and s \ t ⊆ B. Mathias forcing adds a

dominating real. If G is M-generic over the ground model V , then R∩V
is a meager set of measure zero in V [G].

Of course, we can only mention the most popular relatives of Sacks

forcing. More forcing notions which use trees as conditions, usually called
tree forcings, are studied in [Bre95]. A general framework for construct-

ing tree forcings (creature forcing with tree creatures) was developed by
Rosłanowski and Shelah in [RosShe99].

Some forcing notions can be considered as suborders of Sacks forc-
ing, but have not been mentioned in this section since they seem to be
based on a different philosophy. Cohen forcing is an example of this: Ev-

ery Cohen condition p, a finite partial function from ω to 2, determines a
perfect tree

Tp := {q ∈ 2<ω : p ∪ q is a function}.

The mapping p 3→ Tp is an embedding of Cohen forcing into Sacks forc-

ing, but this embedding is obviously not a complete embedding. In the
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same way, Silver forcing and Gregorief forcing can be considered as sub-

orders of Sacks forcing. (See [She98, VI.4] for the definitions of these
two forcing notions. Shelah used Gregorief forcing to construct a model
of set theory without p-points.) However, Silver forcing and Gregorief

forcing are much closer to Sacks forcing than Cohen forcing is since
they use as their conditions partial functions from ω to 2 whose domains

may be infinite. They are both proper. Gregorief forcing is ωω-bounding,
but Silver forcing is not. Note that the Silver forcing in [She98, VI.4]
is different from the similar Prikry-Silver forcing as defined in [Bau83,

Section 7]. Prikry-Silver forcing consists of all functions from co-infinite
subsets of ω to 2 and is ordered by reverse inclusion. Prikry-Silver forc-
ing satisfies Axiom A.

In the next section we mention some results about possible c.c.c. rel-
atives of Sacks forcing.

5 The Sacks property and the c.c.c.

In the past many people investigated the question how close or how far

away a c.c.c. forcing notion can be from Cohen forcing or random real
forcing. Here “being close” simply means that Cohen forcing, respec-

tively random real forcing can be completely embedded into the given
forcing notion. If so, then such a forcing also adds a Cohen, respectively
random real. One instance of this question, namely the question whether

random real forcing completely embeds into every ωω-bounding forcing
notion that is c.c.c. goes back to the Scottish Book [Mau81] problem of
von Neumann about measure algebras.

Since the Sacks property implies that neither Cohen nor random re-
als are added, it is a good test question to ask when a c.c.c. forcing can
have the Sacks property. Concerning reasonably definable partial orders,

Shelah showed in [She94] that no c.c.c. Souslin forcing has the Laver
property where a forcing notion is Souslin iff its underlying set, the or-

der, and the incompatibility relation are analytic, i.e., Σ1
1. So in particular,

a c.c.c. Souslin forcing cannot have the Sacks property. Moreover, She-
lah showed that if a c.c.c. Souslin forcing adds an unbounded real, then it

adds a Cohen real. It is unknown whether there is a model of ZFC where
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every c.c.c. forcing adding an unbounded real adds a Cohen real.

There are some combinatorical statements which imply or negate the
existence of c.c.c. forcings (not necessarily nicely definable) with the

Sacks property. We mention the combinatorial statements involved and
give a summary of results.

♦: There is a sequence (Aα)α<ω1
such that for all α < ω1, Aα ⊆ α

and for every A ⊆ ω1 the set {α < ω1 | A ∩ α = Aα} is stationary.

In [Jen70], Jensen constructed a c.c.c. forcing with the Sacks prop-
erty from ♦. The principle ♦, which implies CH, is used in an inductive

construction of length ω1 to predict initial parts of antichains of the final
forcing notion already at a countable stage of the construction. During
the construction one makes sure that the predicted antichains cannot be

extended to uncountable antichains in the final forcing notion, so that the
final forcing notion becomes c.c.c. This is similar to the standard con-

struction of a Souslin tree from ♦ as presented in [Kun80, Theorem 7.8].

CCC(S): For every family D of size at most 2ℵ0 of dense subsets of

Sacks forcing S there is a c.c.c. suborder P of S such that D∩P is dense
in P for each D ∈ D.

This principle together with a large size of the continuum was shown
to be consistent with ZFC by Velic̆ković [Vel91]. From CCC(S) one can

easily extract a c.c.c. suborder of S which has the Sacks property.

OCA (Open Coloring Axiom): Let X be a subset of the reals and

suppose that K0 and K1 are disjoint subsets of [X ]2 with [X ]2 = K0∪̇K1

such that K0 is open in the topology that [X ]2 inherits from the product
topology on X2. Then either there is an uncountable Y ⊆ S such that

[Y ]2 ⊆ K0, or S =
⋃

i∈ω Yi where [Yi]2 ⊆ K1 for every i ∈ ω.

From this principle, which implies that the size of the continuum is at
least ℵ2, Velic̆ković [Vel0*] deduced that no c.c.c. forcing adding a new
real has the Sacks property.
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Principle ()) for κ: Let I be a p-ideal on [κ]≤ℵ0 where I ⊆ ([κ]≤ℵ0) is

a p-ideal if for every countable set C ⊆ I there is X ∈ I such that every
member of C is almost included in X . Then either there is an uncountable
Y ⊆ κ such that [Y ]ω ⊆ I, or κ =

⋃

i∈ω Yi where [Yi]ω∩I = ∅ for every

i ∈ ω.

The second author showed in [Qui02] that this principle also im-
plies that no c.c.c. forcing has the Sacks property. Since ()) restricted
to κ = ℵ1 is consistent with CH [AbrTod97], this also shows that CH

is not strong enough to decide the existence of c.c.c. forcings with the
Sacks property.

The case of the Laver property is different: CH already implies the
existence of a c.c.c. forcing with the Laver property. In [She01] it is

stated that Mathias forcing defined relatively to a Ramsey ultrafilter is
an example (see [Mat77] for the definition of Mathias forcing relative
to a Ramsey ultrafilter). A model where such forcings do not exist was

found by Shelah [She01]. He showed that the countable support iteration
of Mathias forcing of length ω2 yields such a model.

To conclude this section, we list some questions in this area.

1. Which combinatorical principles imply or deny the existence of a
c.c.c. forcing preserving p-points?

2. Are there forcing notions not preserving p-points, but not adding

splitting reals?
3. Which combinatorial principles imply or deny the existence of a c.c.c.

forcing not adding splitting reals?

The motivation for the second question is to look for less “brutal”
methods to destroy ultrafilters than adding a splitting real. The other
questions are variants of von Neumann’s problem. As mentioned before,

both Cohen and Random real forcing add a splitting real and therefore
destroy every ultrafilter in the ground model.

6 Products of Sacks forcing

If one wants to add many Sacks reals to a model of set theory, for exam-

ple to increase 2ℵ0 , then there are essentially two possibilities: The first
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possibility is to use some kind of side-by-side product of many copies of

S to add many Sacks reals over ground model at once (in a parallel way).
The second possibility is to iterate Sacks forcing, i.e., to add one Sacks
real after the other. We will describe the second possibility in the next

section. Forcing with side-by-side products has two advantages over the
iteration: First, it is technically easier to deal with and second, it is pos-

sible to construct models with an arbitrarily large size of the continuum.
The iteration, at least the countable support iteration, which is discussed
in the next section, only gives models where the size of the continuum

is at most ℵ2. However, the countable support iteration of Sacks forcing
usually yields stronger consistency results than forcing with side-by-side
products.

Definition 61 The countable support (side-by-side) product P of a fam-

ily (Qi)i∈I of forcing notions is the set of all p ∈
∏

i∈I Qi with countable

support supt(p) := {i ∈ I : p(i) )= 1Qi
}. P is ordered componentwise,

i.e., for p, q ∈ P , p ≤ q iff for all i ∈ I , p(i) ≤ q(i).

Of course one can define products with finite supports or with un-

countable supports. However, countable supports are what is appropriate
for forcing notions satisfying Axiom A. Something that all reasonable

products P of a family (Qi)i∈I (like the finite support product and the
countable support product) have in common, is the following: For every
i ∈ I the embedding ei : Qi → P that maps every q ∈ Qi to the sequence

which has q as its i-th coordinate and is 1 everywhere else is a complete
embedding. In particular, if G is P generic over the ground model V ,
then for every i ∈ I , e−1[G] is Qi-generic over V . In other words, if P
is the countable support product of κ copies of Sacks forcing, then P
adds κ Sacks reals. An easy density argument shows that the Sacks reals

added by different factors of P are indeed different.

Under CH, countable support products of copies of Sacks forcing do

not collapse cardinals [Bau85]. The proof of this fact consists of two
parts: First one shows that ℵ1 is not collapsed by a countable support

product of copies of Sacks forcing. Then one uses CH to show that in
countable support products of forcing notions of size at most ℵ1 all an-
tichains are of size at most ℵ1. This can be done using a simple ∆-system

argument. It follows that no cardinal above ℵ1 is collapsed (see [Kun80,
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Lemma 6.9]). We only show that countable support products of copies

of Sacks forcing do not collapse ℵ1. In the proof presented here we get
the 2-localization property more or less for free. The following lemma is
essentially taken from [NewRos93].

Lemma 62 Countable support products of copies of Sacks forcing have

the 2-localization property. In particular, they have the Sacks property

and do not collapse ℵ1.

The proof of this lemma follows closely the proof of Lemma 27. But

we have to deal with countably supported κ-sequences of conditions in S
this time. For this we need a lot of notation. Fix a cardinal κ and let P be
the countable support product of κ copies of S. (The elements of P are

functions from κ to S or equivalently, κ-sequences of elements of S.) In
order to show that P has the 2-localization property, we have to extend

the notions “fusion” and “fusion sequence” to P . For this it is convenient
to pass from our original definition of fusion sequences in S to a more
flexible one.

Now a sequence (pn)n∈ω in S is a fusion sequence iff there is a non-

decreasing unbounded function f : ω → ω such that for all n ∈ ω,
pn+1 ≤f(n) pn. It is easily checked that a sequence (pn)n∈ω which is a fu-
sion sequence according to the new definition has a subsequence which

is a fusion sequence according to the old definition. If (pn)n∈ω is a fusion
sequence in according to the new definition, its fusion

⋂

n∈ω pn is again
a condition in S, as before.

Definition 63 For a finite set F ⊆ κ and η : F → ω let the relation

≤F,η on P be defined as follows: For all p, q ∈ P let p ≤F,η q if p ≤ q
and for all α ∈ F , p(α) ≤η(α) q(α). For p, F , and η as before and σ ∈
∏

α∈F 2η(α) let p ∗σ be such that for all α ∈ F , (p ∗σ)(α) = p(α) ∗σ(α)
and for all α ∈ κ \ F , (p ∗ σ)(α) = p(α).

A sequence (pn)n∈ω of conditions in P is a fusion sequence if there

is an increasing sequence (Fn)n∈ω of finite subsets of κ and a sequence

(ηn)n∈ω such that for all n ∈ ω, ηn : Fn → ω, for all i ∈ Fn we have

ηn(i) ≤ ηn+1(i), pn+1 ≤Fn,ηn pn, and for all α ∈ supt(pn) there is
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m ∈ ω such that α ∈ Fm and ηm(α) ≥ n. If (pn)n∈ω is a fusion sequence

in P , then for each α ∈ κ, (pn(α))n∈ω is a fusion sequence in S or

constant with value 1S. This shows that

pω :=

(

⋂

n∈ω

pn(α)

)

α∈κ

is a condition in P , the fusion of the sequence (pn)n∈ω.

For the proof of Lemma 62 it is enough to show

Lemma 64 For every p ∈ P and every name ż for an element of ωω

there are a condition q ≤ p and a binary tree T ⊆ ω<ω such that q forces

ż to be a branch of T .

PROOF: Let p and ż be as above. Our goal is to construct q ≤ p such

that
Tq(ż) = {s ∈ ω<ω : ∃r ≤ q(r " š ⊆ ż)}

is binary. We may assume that no condition below p decides all of ż.

Let F be a finite subset of κ and let η : F → ω be a function. A condi-
tion r ∈ P is (F, η)-faithful iff for all σ, τ ∈

∏

α∈F 2η(α) and all r′ ≤Fη r
the following holds: If żr′∗σ and żr′∗τ are incomparable elements of ω<ω

(with respect to ⊆), then already żr∗σ and żr∗τ are incomparable.

Claim 65 Suppose r ∈ P is (F, η)-faithful.

a) Let j ∈ κ \ F and define F ′ := F ∪ {j} and η′ := η ∪ {(j, 0)}.

Then r is (F ′, η′)-faithful.

b) Let β ∈ F , and let η′ be such that for all α ∈ F\{β}, η′(α) = η(α)
and η′(β) = η(β) + 1. Then there is a condition r′ ≤F,η r such that r′ is

(F, η′)-faithful.

Part a) of this claim follows immediately from the definitions. For
the proof of b) fix an enumeration {σ1, . . . , σm} of

∏

i∈F 2η(i). We de-

fine a ≤F,η-descending sequence (rk)k≤m below r. For k ∈ {1, . . . , m}
and l ∈ 2 let σl

k be such that for all α ∈ F \ {β}, σl
k(α) = σk(α)

and σl
k(β) = σk(β)& l. Let r0 := r. Suppose we have constructed rk

for some k < m and we want to build rk+1. Let rk+1 ≤F,η′ rk be such
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that żrk+1∗σ0
k+1

and żrk+1∗σ1
k+1

are incomparable if such a condition exists.

Otherwise, let rk+1 := rk. Finally, let r′ := rm. It follows from the con-
struction that r′ is (F, η′)-faithful. This shows part b) of the claim.

Using a) and b) of Claim 65 together with some bookkeeping, we
construct a sequence (pm, Fm, ηm, jm)m∈ω such that

1. (pm)m∈ω is a fusion sequence in P witnessed by (Fm, ηm)m∈ω where
F0 = η0 = ∅,

2. for all m ∈ ω, pm is (Fm, ηm)-faithful and pm ≤ p,
3. for all m ∈ ω and all i ∈ Fm, ηm+1(i) ≤ ηm(i) + 1,
4. for all m ∈ ω, jm is the unique element of Fm+1 such that either

jm ∈ Fm and ηm+1(jm) = ηm(jm)+1 or jm )∈ Fm and ηm+1(jm) = 1,
and

5. for all m ∈ ω and all σ ∈
∏

i∈Fm
2ηm(i), pm ∗σ decides at least ż ! m.

Let q be the fusion of the pm, m ∈ ω, and let T := Tq(ż). Note

that for all m ∈ ω, q ≤Fm,ηm pm. For each m ∈ ω let Tm+1 be the tree
generated by

{

żpm∗σ : σ ∈
∏

i∈Fm

2ηm(i)

}

,

and let T0 be the “tree” generated by żp0 .
Now each Tm is a subtree of T . We show that T =

⋃

m∈ω Tm.

Let t ∈ T and m := dom(t). Let r ≤ q be a condition which forces
that t is an initial segment of ż. The set {q ∗ σ : σ ∈

∏

i∈Fm
2ηm(i)} is

a maximal antichain below q. It follows that there is σ ∈
∏

i∈Fm
2ηm(i)

such that r is compatible with q ∗σ. Since q ∗σ ≤ pm ∗σ, r is compatible

with pm ∗ σ. This implies t ⊆ żpm∗σ and thus t ∈ Tm.

It remains to prove that T is binary. We first show that for every m ∈
ω and t ∈ Tm, if there is s ∈ T such that s and t are incomparable, then
there is s′ ∈ Tm such that s′ ⊆ s and already s′ and t are incomparable.

Let s, t, and m be as before. Let r ≤ q be a condition which forces s to
be an initial segment of ż. Then there is σ ∈

∏

i∈Fm
2ηm(i) such that r is

compatible with pm ∗ σ. Let τ ∈
∏

i∈Fm
2ηm(i) be such that t ⊆ żpm∗τ .

Clearly, σ )= τ . Let m′ ≤ m minimal such that

σ′ := (σ(α) ! ηm′(α))α∈Fm′
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and

τ ′ := (τ(α) ! ηm′(α))α∈Fm′

are different. Now s′ := żpm′∗σ′ and żpm′∗τ ′ are incomparable by the
(Fm′ , ηm′)-faithfulness of pm′ . Clearly, s′ ∈ Tm, and s′ and t are incom-

parable.

Now suppose that T is not binary. Then there is t ∈ T such that t
has three distinct immediate successors t0, t1, and t2 in T . Let m ∈ ω
be minimal such that Tm contains at least two of the tj , j < 3. By what

we proved just before, Tm in fact contains all the tj . For every j < 3 let
σj ∈

∏

i∈Fm
2ηm(i) be such that tj ⊆ żpm∗σj

. For every n ≤ m and every
j < 3 let σn

j := (σj(α) ! ηn(α))α∈Fn . Now let n ≤ m be minimal such

that the set {σn
j : j < 3} has at least two elements. Then {σn

j : j < 3}
has exactly 2 elements and n < m by the construction of Fn and ηn.
Without loss of generality we may assume that σn

0 and σn
1 are different.

Since m is minimal such that Tm contains at least two of the tj and since
n < m, żpn∗σn

0
and żpn∗σn

1
are comparable. However, this contradicts the

(Fn, ηn)-faithfulness of pn. /0

Corollary 66 Let V be a model of set theory satisfying CH and suppose

that κ is a cardinal V . Then there is a generic extension V [G] of V such

that V [G] |= 2ℵ0 ≥ κ, V [G] has the same cardinals as V , and V [G]
has the 2-localization property over V . In particular, it is consistent with

an arbitrarily large size of the continuum that all cardinals in Cichoń’s

diagram are ℵ1.

PROOF: In V let P be the countable support product of κ copies of
Sacks forcing. By CH, P has no antichains of size ℵ2 and therefore does
not collapse any cardinal above ℵ1, as we mentioned before. By Lemma

62, P does not collapse ℵ1. Let G be P -generic over V . Then V [G] and
V have the same cardinals and V [G] has the Sacks property over V by

Lemma 62. Now it follows from Corollary 32 that all the cardinals in
Cichoń’s diagram are ℵ1. It remains to evaluate the size of the continuum
in V [G]. As mentioned before, it is easily checked that the Sacks reals

added by the different factors of P are pairwise different. It follows that
2ℵ0 is at least κ in V [G]. /0

In order to determine the exact value of 2ℵ0 in V [G] in this proof, one

has to analyze the construction of names for subsets of ω. For simplic-
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ity, let us assume that V satisfies the Generalized Continuum Hypothesis

(GCH) and suppose that κ is of uncountable cofinality in V . Now it can
be shown that in V there is a set N of size κ such that every subset of ω
in V [G] has a name in N . This implies that in V [G], 2ℵ0 is exactly κ.

Countable support products of Sacks forcing have been used by Baum-
gartner [Bau85] to show the consistency of the total failure of Martin’s
Axiom: The topological version of Martin’s Axiom can be stated as fol-

lows: No compact space without uncountable disjoint families of open
sets is the union of < 2ℵ0 nowhere dense sets. The Baire Category The-

orem implies that no compact space is the union of countably many
nowhere dense sets. Martin’s Axiom fails totally if every compact space
without uncountable disjoint families of open sets is the union of ℵ1

nowhere dense sets, but 2ℵ0 > ℵ1. Baumgartner’s article includes a nice
introduction to countable support products of Sacks forcing.

7 Iteration of Sacks forcing

Side-by-side products of partial orders adding reals, such as the count-

able support products of Sacks forcing introduced in Section 6, have one
major disadvantage when it comes to strong independence results: The
reals added by the different factors of the product are independent over

the ground model. That is, if P is the countable support product of κ
copies of Sacks forcing, G is P -generic over the the ground model V ,

and for each α < κ, xα denotes the Sacks real added by the α-th factor
of P , then for every set A ∈ V with A ⊆ κ we have

(2ω)V [(xα)α∈A] ∩ (2ω)V [(xα)α∈κ\A] = (2ω)V .

Recall that officially we only defined V [X ] if X is a set of ordinals. But
it should be clear how to code (xα)α∈A and (xα)α∈κ\A by sets of ordinals.

In Section 6 we showed that forcing with countable support products
of copies of Sacks forcing over models of CH produces models of set

theory in which many cardinal characteristics of the continuum, such as
the cardinals in Cichoń’s diagram, are small (i.e., equal to ℵ1), while the
size of the continuum is big. However, there is one class of cardinal char-

acteristics of the continuum whose members are still big in such models.
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Let X be a set and f : X → X . A point (x, y) ∈ X2 is covered by f
iff f(x) = y or f(y) = x. A family F of functions from X to X covers
A ⊆ X2 iff every point in A is covered by some member of F .

One might ask how many continuous functions are needed to cover

R2. As it turns out, the number of continuous functions needed to cover
(2ω)2 is the the same as for R2 [GesGolKoj0*]. In the present context it
is more convenient to consider 2ω instead of R.

Let V be a model of GCH and suppose that κ > ℵ1 is a cardinal of
uncountable cofinality in V . Let P be the countable support product of κ
copies of Sacks forcing and let G be P -generic over V . For α < κ let xα

denote the Sacks real added by the α-th factor of P , as above. Suppose
that in V [G], F is a family of size < κ of continuous functions from 2ω

to 2ω. Since every continuous function from 2ω to 2ω is in fact a closed
subset of (2ω)2, it can be coded (for example, using Borel codes) by a
subset of ω. Now it can be shown that there is a set A ∈ V such that

A is of size < κ in V and F ⊆ V [(xα)α∈A]. Let β, γ ∈ κ \ A. Since
xγ )∈ V [(xα)α∈A∪{β}] and xβ )∈ V [(xα)α∈A∪{γ}], no function from F
covers (xβ , xγ). It follows that in V [G], F does not cover (2ω)2. Since
F was an arbitrary family of size < κ of continuous functions on 2ω, we
have shown that in V [G], (2ω)2 cannot be covered by less than κ contin-

uous functions.

So, if we want to show that it is consistent that (2ω)2 can be covered
by less than 2ℵ0 continuous functions, then we have to look for a different

construction of models of set theory. We have to iterate Sacks forcing.
The fundamental paper about iterated Sacks forcing is [BauLav79].

Definition 71 Let P be a partial order and let Q̇ be a P -name for a

partial order. Then P ∗ Q̇ is the partial order consisting of all pairs (p, q̇)
such that p ∈ P and q̇ is a P -name for an element of Q̇. P ∗ Q̇ is ordered

as follows: For (p0, q̇0), (p1, q̇1) ∈ P ∗ Q̇ let (p0, q̇0) ≤ (p1, q̇1) iff p0 ≤ p1
and p0 " q̇0 ≤ q̇1.

There is an obvious embedding e : P → P ∗ Q̇: Let 1̇Q be a P -name

for the largest element of Q̇. For every p ∈ P let e(p) := (p, 1̇Q). It
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is easily checked that e is a complete embedding. In particular, if G is

P ∗ Q̇-generic over the ground model V , then G0 := e−1[G] is P -generic
over V . In V [G] let G1 := {q̇G0

: ∃p ∈ P ((p, q̇) ∈ G)}. Then G1 is Q̇G0
-

generic over V [G0]. On the other hand, if G0 is P -generic over V and G1

is Q̇G0
-generic over V [G0], then {(p, q̇) ∈ P ∗ Q̇ : p ∈ G0 ∧ q̇G0

∈ G1}
is P ∗ Q̇-generic over V .

This shows that forcing with P ∗ Q̇ is the same as first adding a P -
generic filter G0 and then adding a Q̇G0

-generic filter over it. The point
of iterated forcing is that we can add generics over each other using a

single forcing notion in the ground model. The iteration becomes really
relevant only when we want to add infinitely many generics over each

other.

Definition 72 Let δ be an ordinal. A countable support iteration of length

δ is an object of the form ((Pα)α≤δ, (Q̇α)α<δ) with the following proper-

ties:

1. (Pα)α≤δ is a sequence of forcing notions and P0 is the trivial forcing

notion containing just one element,

2. (Q̇α)α<δ is a sequence such that for each α < δ, Q̇α is a Pα-name

for a forcing notion (more precisely, a name for a set together with a

name for an ordering on that set),

3. for all α < δ, Pα+1 = Pα ∗ Q̇α, and

4. if β ≤ δ is a limit ordinal, then Pβ consist of all functions q with

domain β such that

(a) for all α < β, q(α) is a Pα-name for a condition in Q̇α and

q ! α ∈ Pα and

(b) the support supt(q) := {α < β : 1Pα )" q(α) = 1Q̇α
} of q is

countable (where 1Q̇α
is aPα-name for the largest element of Q̇α)

and Pβ is ordered as follows: for p, q ∈ Pβ we have p ≤ q iff for all

α < β, p ! α "Pα p(α) ≤ q(α).

This definition deserves several remarks. First, it should be clear how
one has to change the definition in order to obtain the definition of fi-

nite support iteration: Just replace “countably many” in 4b by “finitely

many”. While finite supports are suitable for iterating c.c.c. forcings
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since finite support iterations of c.c.c. forcings are again c.c.c., count-

able supports are appropriate for Axiom A forcings since with countable
supports it is possible to extend the fusion technology used to deal with
Axiom A forcings to the iteration.

A countable support iteration ((Pα)α≤δ, (Q̇α)α<δ) is already deter-
mined by the Q̇α. Therefore, slightly abusing notation, we will frequently

call Pδ the countable support iteration of the Q̇α, α < δ. For all α, β ≤ δ
with α < β there is a natural embedding eαβ : Pα → Pβ mapping every
p ∈ Pα to p′ where p′ ! α = p and for all γ ∈ [α, β), p′(γ) = 1Q̇γ

. The

eαβ are complete embeddings. Via eαδ we may consider Pα as a subset
of Pδ.

Let G be a Pδ-generic filter over the ground model V . Then for every
α < δ, Gα := G∩Pα is Pα-generic over V . Thus, we have an increasing

chain

V ⊆ V [G1] ⊆ · · · ⊆ V [Gα] ⊆ · · · ⊆ V [G]

of models of set theory. For every α < δ, V [G] is a generic exten-
sion of V [Gα], obtained by adding a Q-generic filter over V [Gα], where

Q ∈ V [Gα] is the so-called quotient of Pδ over Gα. Q can be constructed
in a natural way from ((Pα)α≤δ, (Q̇α)α<δ) and Gα and is a countable
support iteration of length δ − α. (See [Gol93, Section 4] for more on

quotient forcing.)

The countable support iteration of Sacks forcing of length δ is the

forcing notion Sδ where ((Sα)α≤δ, (Q̇α)α<δ) is a countable support iter-
ation such that for every α < δ, Q̇α is an Sα-name for Sacks forcing.
The Sacks model is a model of set theory of the form V [G] where G
is Sω2

-generic over V and V is a model of CH. The formulation “the
Sacks model” is slightly misleading, since the model is not uniquely de-

termined. However, Sω2
-generic extensions of models of CH are suffi-

ciently similar to each other to be considered the same most of the time.

If the ground model satisfies CH, then Sω2
has no antichains of length

ℵ2 (see [BauLav79] or, for a more general result about proper forcing,
[She98, Chapter III, Theorem 4.1]) and therefore does not collapse any

cardinal ≥ ℵ2. Since countable support iterations of Sacks forcing have



On Sacks Forcing and the Sacks Property 41

the 2-localization property, as we will show in a moment, they do not

collapse ℵ1. It follows that forcing with Sω2
over models of CH does not

collapse cardinals. Since Sω2
has the 2-localization property, it follows

from Corollary 32 that all the cardinals in Cichoń’s diagram are ℵ1 in the

Sacks model.

If G is Sδ-generic over the ground model V and α ≤ δ, then the

quotient Q of Sδ over G ∩ Sα is (equivalent to) the countable support it-
eration of Sacks forcing of length δ−α in V [Gα]. Moreover, V [Gα+1] =
V [Gα][xα] where xα is the Sacks real added by the last factor of the
iteration Sα+1. Using this notation we see that for all β ≤ δ, V [Gβ] =
V [(xα)α<β]. As in the case of countable support products, an easy density

argument shows that the xα are pairwise different. Analyzing Sω2
-names

for subsets of ω one can see that the size of the continuum does not ex-
ceed ℵ2 in the Sacks model. It follows that the size of the continuum is

exactly ℵ2 in the Sacks model.

We already mentioned that countable support iterations of Sacks forc-
ing cannot be used to construct models of set theory where 2ℵ0 > ℵ2.
This is because countable support iterations of nontrivial forcing notions

of some length with cofinality ℵ1 collapse the size of the continuum to
ℵ1. (See [Gol93, Section 0] for more details.) Thus, if δ is an ordinal with
cofinality > ℵ1 and G is Sδ-generic over the ground model V , then for

cofinally many α < δ, V [Gα] is a model of CH. It follows that 2ℵ0 cannot
be bigger than ℵ2 in V [G].

The Sacks model is generally known as the model of set theory in
which all reasonable cardinal characteristics of the continuum (that can

consistently be smaller than 2ℵ0) are ℵ1. Recently this has been turned
into a provable statement by Zapletal [Zap0*]. For a large class of com-
binatorial cardinal characteristics of the continuum he showed that if

there is a forcing extension of the ground model V in which the car-
dinal characteristic in question is smaller than 2ℵ0 , then this cardinal is

ℵ1 in V [G] where G is S(2ℵ0 )+-generic over V . V [G] actually is “the”
Sacks model. Even if V is not a model of CH, forcing with Sω1

, an initial
part of S(2ℵ0 )+ , collapses the 2ℵ0 to ℵ1. Now the (2ℵ0)+ of V is ℵ2. The

remaining part of the iteration is just forcing with Sω2
over a model of
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CH.

The proof of the following theorem illustrates the main techniques for

proving statements about the Sacks model. The theorem together with
Lemma 74 summarizes a sizeable portion of what is known about this
model of set theory.

Theorem 73 In the Sacks model, (2ω)2 can be covered by ℵ1 continuous

functions from 2ω to 2ω, while 2ℵ0 = ℵ2.

This theorem was explicitly shown in [HarSte02]. However, implic-
itly it already follows from Miller’s [Mil83] about mapping sets of re-
als onto the reals and from the work of Groszek [Gro81] showing that

the constructible degrees of reals in a Sω2
-generic extension of L are

wellordered of ordertype ω2. Constructible degrees of reals are defined

as follows: For x, y ∈ 2ω let x ≤ y iff x ∈ L[y]. L[y] can be constructed
without forcing. (See [Jec78, Section 15].) A constructible degree is an
equivalence class with respect to the relation ≤ ∩ ≥. The order ≤ in-

duces an order on the constructible degrees, the order of constructible

degrees. Stronger versions of Theorem 73 can be found in [CiePaw0*],
[GesKojKubSch02], and [Ste99].

There are more consistency results about the structure of constructible

degrees of reals in models of set theory. Let us mention two examples.

Groszek [Gro94] showed that it is consistent to have a reversed copy
of ω1 as an initial segment of the order of constructible degrees. Kanovei

and Zapletal [KanZap98] showed that there is a generic extension L[G]
of L in which there are a strictly increasing sequence (an)n∈ω of con-
structible degrees and a constructible degree b such that the following

holds: For two constructible degrees c, d let 〈c, d〉 denote the constructible
degree which is the least upper bound of c and d. Then the sequence

(〈an, b〉)n∈ω is strictly increasing and if x ∈ L[G] is not an element of
any intermediate model of the form L[a0, . . . , an, b], then L[G] = L[x].

We go back to the proof of Theorem 73 . Since the number of ground
model reals is ℵ1 in the Sacks model, the theorem follows immediately

from the next lemma, which gives some additional information.
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Lemma 74 a) Let δ be an ordinal and suppose that G be Sδ-generic

over the ground model V . For α < δ let Gα := G∩Sα. Then in V [G] the

following holds: Let x ∈ 2ω and let α ≤ δ be the first ordinal such that

x ∈ V [Gα]. Then for all y ∈ 2ω ∩ V [Gα] there is a continuous function

f : 2ω → 2ω coded in V such that f(x) = y. In particular, (2ω)2 is

covered by the continuous functions coded in the ground model.

b) For every ordinal δ, Sδ has the 2-localization property and there-

fore has the Sacks property.

PROOF: Our proof of a) will be more or less the same as the proof of a
similar statement in [GesGolKoj0*], which talks about slightly different
forcing notions. In order to find the required continuous functions in the

ground model, we first observe that for 2ω an extension theorem similar
to the Tietze-Uryson Theorem holds.

Claim 75 Whenever A is a closed subset of 2ω and f : A → 2ω is

continuous, then f can be extended to a continuous function f : 2ω →
2ω.

This can be seen as follows: First of all, it suffices to extend every

continuous g : A → 2 to a continuous function g : 2ω → 2 since f is
built from countably many such functions. If g : A → 2 is continuous,
then g−1(0) and g−1(1) are disjoint closed subsets of 2ω. Since the topol-

ogy on 2ω is generated by clopen sets and since g−1(0) and g−1(1) are
in fact compact, there is a clopen set B ⊆ 2ω such that g−1(1) ⊆ B and
g−1(0) ⊆ 2ω \ B. Let g : 2ω → 2 be the characteristic function of B.

Since B is clopen, g is continuous. By the choice of B, g extends g. This
finishes the proof of Claim 75.

This extension property shows that it actually suffices to show that

for x and y as in a) there are a closed set A ⊆ 2ω and a continuous
function f : A → 2ω such that f (and therefore A) is coded in V and

f(x) = y. Since we intend to work in V , we have to choose suitable
names for x and y first. It is worth mentioning that no new reals are
added at limit stages of forcing iterations of uncountable cofinality. That

is, if α is minimal with x ∈ V [Gα], then α is of countable cofinality. (See
for example [BarJud95, Lemma 1.5.7].)
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Claim 76 Let ẋ be an Sα-name such that there is no β < α with ẋGα ∈
V [Gβ]. Then there is an Sα-name ż such that ẋGα = żGα and for all β <
α and all Sα-generic filters H over V , żH )∈ V [Hβ] where Hβ := H∩Sβ.

We first show that there is p ∈ Sα such that for no Sα-generic filter H
over V with p ∈ H there is β < α such that x ∈ V [Hβ]. Note that every
Sβ-name, β < α, corresponds canonically to some Sα-name for the same
object. We may therefore identify every Sβ-name with the corresponding

Sα-name. Now consider the sets

D0 := {p ∈ Sα : For no Sα-generic filter H over V

with p ∈ H there is β < α such that ẋH ∈ V [Hβ]}

and

D1 := {p ∈ Sα : There are β < α

and an Sβ-name ż such that p " ẋ = ż}.

D0∪D1 is dense in Sα: Suppose that p ∈ Sα is not in D0. Then there are
an Sα-generic filter H , β < α, and an Sβ-name ż such that p ∈ H and
ẋH = żHβ

. Since ẋH = żHβ
there is some q ∈ H which forces ẋ = ż.

Since H is a filter, we may assume q ≤ p. Clearly, q ∈ D1. This shows
the density of D0∪D1. By the genericity of G, there is p ∈ G∩(D0∪D1).
If p ∈ D1, then α is not minimal with x ∈ V [Gα]. This shows p ∈ D1.
Therefore p is as required.

Using the Maximality Principle it is now easy to construct an Sα-
name ż for an element of 2ω such that p " ż = ẋ and for no Sα-generic
filter H over V there is β < α such that żH ∈ V [Hβ]. (Choose an Sα-

name ẏ for an element of 2ω which is not added before stage α. Let ż be
such that p " ż = ẋ and q " ż = ẏ for all q ∈ Sα that are incompatible

with p.) This finishes the proof of Claim 76.

Using Claim 76 we can find an Sα-name ẋ for an element of 2ω such

that x = ẋGα and for all Sα-generic filters H and all β < α, ẋH )∈ V [Hβ].
In other words, ẋ is a name for a real not added before stage α of the it-

eration.

For every p ∈ Sα we will construct q ≤ p such that for A := supt(p)
the following condition (∗)q,A,ẋ holds:



On Sacks Forcing and the Sacks Property 45

(∗)q,A,ẋ Let Tq(ẋ) be the tree of q-possibilities for ẋ. Then in V we have a

homeomorphism h : [Tq(ẋ)] → (2ω)A such that if H is Sα-generic
over V with q ∈ H , then h maps ẋH to a sequence (zγ)γ∈A ∈ (2ω)S

such that for all γ ∈ A, zγ is the image of the γ’th generic real under

the natural homeomorphism from [q(γ)H ] to 2ω.

So in a weak sense we can reconstruct the restriction of the sequence

of generic reals to supt(q) from ẋH using a ground model function. We
will see soon that we can really reconstruct the sequence of generic reals

below α from ẋH .

It is not difficult to see

Claim 77 If (∗)q,A,ẋ holds for some q ∈ Sα and a countable set A ⊆ α,

then (∗)r,A,ẋ holds for every r ≤ q.

Now let β ≤ α be such that β is minimal with y ∈ V [Gβ]. Ap-
plying Claim 76 we find an Sβ-name ẏ for an element of 2ω such that

ẏGβ
= y and for no Sβ-generic filter H over V there is γ < β such that

ẏH ∈ V [Hγ]. Note that we may assume that β > 0 since otherwise y ∈ V
and thus there is a constant function in V mapping x to y.

Let p ∈ Sα and suppose we find q ∈ Sβ such that q ≤ p ! β
and (∗)q,supt(q),ẋ holds. Suppose we can then find r ∈ Sα such that

r ≤ q& p ! [β,α) and (∗)r,supt(r),ẋ holds. Let h : [Tr(ẋ)] → (2ω)supt(r) be
the homeomorphism (in the ground model) guaranteed by (∗)r,supt(r),ẋ.

Let g : [Tr(ẏ)] → (2ω)supt(q) be the homeomorphism guaranteed by
(∗)r,supt(q),ẏ, which holds by Claim 77.

Finally let π : (2ω)supt(r) → (2ω)supt(q) be the natural projection and
put f := g−1 ◦ π ◦ h. f is only defined on a closed subset of 2ω, but by

Claim 75 we can extend it to a continuous function f : 2ω → 2ω. Clearly
r " f(ẋ) = ẏ. This finishes the proof of Lemma 74 provided we know

Lemma 78 Let α be an ordinal and ẋ an Sα-name for an element of

2ω which is not added in a proper initial stage of the iteration. Then for

every p ∈ Sα there is q ≤ p such that (∗)q,supt(q),ẋ holds.

PROOF: The proof of this lemma is closely related to the proof of
the 2-localization property of countable support products of Sacks forc-

ing in Section 6. We have to define the notion of a fusion sequence for
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iterations of Sacks forcing. Let F be a finite subset of α and η : F → ω.

For p, q ∈ Sα let p ≤F,η q iff for all γ ∈ F , p ! γ " p(γ) ≤η(γ) q(γ).
A sequence (pn)n∈ω is a fusion sequence if there are an increasing se-
quence (Fn)n∈ω of finite subsets of α and a sequence (ηn)n∈ω such that

for all n ∈ ω, ηn : Fn → ω, for all i ∈ Fn we have ηn(i) ≤ ηn+1(i),
pn+1 ≤Fn,ηn pn, and for all γ ∈ supt(pn) there is m ∈ ω such that

γ ∈ Fm and ηm(γ) ≥ n. The fusion pω of a fusion sequence (pn)n∈ω in
Sα is defined as follows: Let γ < α and suppose we have already defined
pω ! γ. Let pω(γ) be an Sγ-name for a condition in S such that pω ! γ
forces pω(γ) to be the intersection of the pn(γ), n ∈ ω.

We also use a notion of faithfulness. For F and η as above, p ∈ Sα,

and σ ∈
∏

γ∈F 2η(γ) let p ∗ σ ∈ Sα be such that for all γ ∈ F ,

p ∗ σ ! γ " p ∗ σ(γ) = p(γ) ∗ σ(γ)

and for γ ∈ α \F , p ∗σ(γ) = p(γ). A condition p ∈ Sα is (F, η)-faithful

if for all σ, τ ∈
∏

γ∈F 2η(γ) with σ )= τ , ẋp∗σ and ẋp∗τ , the longest initial

segments of ẋ decided by p ∗ σ, respectively by p ∗ τ , are incomparable
(with respect to ⊆). (Compare this to the corresponding definitions in
Section 6.)

The following claim is the iteration version of Claim 65.

Claim 79 Let F and η be as before and suppose that q ∈ Sα is (F, η)-
faithful.

a) Let β ∈ α \F and let F ′ := F ∪ {β} and η′ := η∪ {(β, 0)}. Then

there is r ≤F,η q such that r is (F ′, η′)-faithful.

b) Let β ∈ F and let η′ := η ! F \ {β}∪ {(β, η(β)+ 1)}. Then there

is r ≤F,η q such that r is (F, η′)-faithful.

a) follows immediately from the definitions. For b) let δ := maxF
and let {σ0, . . . , σm} be an enumeration of

∏

γ∈F 2η(γ). We define a ≤F,η-

decreasing sequence (qj)j≤m in Sα along with names qσ,0 and qσ,1, σ ∈
∏

γ∈F 2η(γ), for conditions.

Let j ∈ {1, . . .m} and assume that qj−1 has been constructed already.
Since ẋ is not added in a proper initial stage of the iteration, there are qσj ,0

and qσj ,1 such that for all i ∈ 2

qj−1 ∗ σj ! δ " qσj ,i ≤ (q(δ) ∗ (σj(δ)
& i))& q ! (δ,α)
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and

qj−1 ∗ σj ! δ " xqσj,0
and xqσj,1

are incomparable.

Let qj ≤F,η qj−1 be such that qj ∗ σ ! δ decides xqσj,0
and xqσj,1

. This
finishes the inductive construction of the qj .

Now let r ≤F,η qm be such that r ! δ = qm ! δ and for all σ ∈
∏

γ∈F 2η(γ) and all coordinatewise extensions τ ∈
∏

γ∈F 2η
′(γ) of σ,

r ∗ τ ! δ " r ∗ τ ! [δ,α) = qσ,τ(η(β)).

It is easy to check that r works for Claim 79.

To conclude the proof of Lemma 78, let p ∈ Sα. Using some book-
keeping and parts a) and b) of Claim 79 we construct a sequence (pn)n∈ω
and a sequence (Fn, ηn)n∈ω witnessing that (pn)n∈ω is a fusion sequence
such that p = p0 and for all n ∈ ω, pn is (Fn, ηn)-faithful.

Let q be the fusion of the sequence (pn)n∈ω. We have to check that

(∗)q,supt(q),ẋ holds. Let a ∈ [Tq(ẋ)] and n ∈ ω. Now q ≤Fn,ηn pn and pn is
(Fn, ηn)-faithful. It follows that there is exactly one σa,n ∈

∏

γ∈Fn
2ηn(γ)

such that ẋq∗σa,n ⊆ a. Let h(a) := (
⋃

n∈ω σa,n(γ))γ∈supt(q). Since for all
γ ∈ supt(q) and all m ∈ ω there is some n ∈ ω such that γ ∈ Fn and
ηn(γ) ≥ m, h(a) ∈ (2ω)supt(q). It is easily checked that h : [Tq(ẋ)] →
(2ω)supt(q) is a homeomorphism witnessing (∗)q,supt(q),ẋ. /0

Now we turn the proof of part b) of Lemma 74. Let G be Sδ-generic
over the ground model V . By Claim 76, for x ∈ ωω there is α ≤ δ and an

Sα-name for an element of ωω such that x = ẋGα and for all Sα-generic
filters H over V there is no β < α such that ẋH ∈ V [Hβ].

Using the proof of Lemma 78 for the name ẋ for an element of ωω

instead of 2ω, for every p ∈ Sα we obtain a condition q ≤ p such that

(∗)q,supt(q),ẋ is satisfied. This is because the proof of Lemma 78 does not
depend on the fact that ẋ is a name for an element of 2ω. It works for
names for elements of ωω as well. From the construction of q it follows

that Tq(ẋ) is binary. Clearly, q forces ẋ to be a branch through Tq(ẋ).
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By the genericity of Gα, there is q ∈ Gα such that Tq(ẋ) is binary. This

shows the 2-localization property of Sδ. /0

Lemma 74 shows how S can collapse cardinals: Let G be Sω2
generic

over the ground model V . Suppose that V satisfies CH. Then in V [G]
the size of the continuum is ℵ2. Let H be S-generic over V [G]. Then
V [G][H ] is obtained by forcing with an iteration of Sacks forcing of

length ω2 + 1 over V . For γ < (ω2)V + 1 let xγ denote the generic
real added at stage γ. Here (ω2)V denotes the ordinal that is ω2 in V .

By Lemma 74, for every γ < (ω2)V there is a continuous function
fγ : 2ω → 2ω such that fγ ∈ V and fγ(x(ω2)V ) = xγ . Since there are
only ℵ1 continuous function from 2ω to 2ω in V , this implies (ω2)V ≤ ℵ1

in V [G][H ]. This shows that adding a Sacks real over the Sacks model
collapses ℵ2.

At the end of this section let us mention another description of Sδ,
which is related more closely to the representation of Sacks forcing as

the partial order of uncountable Borel subsets of R.

Definition 710 Let δ be an ordinal. A set B ⊆ Rδ is countable-perfect
iff

1. for every ordinal β < δ and every sequence s ∈ B ! β := {u ! β :
u ∈ B} the set {r ∈ R : s& r ∈ B ! β + 1} is uncountable and

2. for every increasing sequence (βn)n∈ω of ordinals below δ and every

increasing sequence (with respect to inclusion) (sn)n∈ω such that for

all n ∈ ω, sn ∈ B ! βn it is the case that
⋃

n∈ω sn ∈ B !
⋃

n∈ω βn.

It can be shown that the partial order consisting of all countable-
perfect Borel subsets of Rδ is forcing equivalent to Sδ (see [Zap0*, 3.1]).

This way of representing iterations of Sacks forcing was used by Kanovei
[Kan99] to iterate Sacks forcing along non-wellfounded linear orders. He
showed that whenever I is a linearly ordered index set, it is possible to

add a sequence (ai)i∈I of reals to the ground model V such that for each
j ∈ I , aj is a Sacks real over V [(ai)i<j].

Using the representation of Sδ in terms of countable-perfect Borel
sets, we can give the formulation of a set theoretic axiom that axiomatizes

the properties of the Sacks model very well.
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Definition 711 Consider the following game between player I and player

II lasting ω1 rounds. At round β ∈ ω1 player I plays an ordinal αβ < ω1,

a countable-perfect Borel set Bβ ⊆ Rαβ , and a Borel function fβ :
Bβ → R. Then player II responds by a countable-perfect Borel set

Cβ ⊆ Bβ. Player I wins iff
⋃

β<ω1
fβ[Cβ] = R. The Covering Property

Axiom (CPA) is the statement “CH fails and player II has no winning

strategy in the above game”.

CPA was invented by Ciesielski and Pawlikowski [CiePaw0*]. They

showed that CPA holds in the Sacks model and implies many statements
that were previously known to be true in the Sacks model. In fact, many
of these statements already follow from weaker versions of CPA which

are also defined in [CiePaw0*] and which seem to be much easier to ap-
ply. In particular, these weaker version of CPA avoid some of the techni-

calities and notational inconveniences usually associated with countable
support iterations.

Recently, Zapletal [Zap0*] proved that if V satisfies CPA, then for a
large class of cardinal characteristics of the reals the following holds: If
there is a generic extension V [G] of V where the cardinal characteris-

tic in question is < 2ℵ0 , then this cardinal characteristic is < 2ℵ0 in V .
This shows that CPA indeed axiomatizes the Sacks model very well. The

formulation of CPA is sufficiently general to be easily adapted for other
models of set theory as well. (See [CiePaw0*] and [Zap0*] for this.)
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