
CLOPEN GRAPHS

STEFAN GESCHKE

Abstract. A graph G on a topological space X as its set of vertices is clopen
if the edge relation of G is a clopen subset of X2 without the diagonal.

We study clopen graphs on Polish spaces in terms of their finite induced
subgraphs and obtain information about their cochromatic numbers. In this
context we investigate modular profinite graphs, a class of graphs obtained
from finite graphs by taking inverse limits. This continues the investigation of
continuous colorings on Polish spaces and their homogeneity numbers started
in [11] and [9].

We show that clopen graphs on compact spaces have no infinite induced
subgraphs that are 4-saturated. In particular, there are countably infinite
graphs such as Rado’s random graph that do not embed into any clopen graph
on a compact space. Using similar methods, we show that the quasi-orders of
clopen graphs on compact zero-dimensional metric spaces with topological or
combinatorial embeddability are Tukey equivalent to ωω with eventual dom-
ination. In particular, the dominating number d is the least size of a family
of clopen graphs on compact metric spaces such that every clopen graph on
a compact zero-dimensional metric space embeds into a member of the fam-
ily. We also show that there are ℵ0-saturated clopen graphs on ωω , while no
ℵ1-saturated graph embeds into a clopen graph on a Polish space. There is,
however, an ℵ1-saturated Fσ-graph on 2ω .
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1. Introduction and outline of the article

Some rather pathological uncountable graphs can be constructed using the Ax-
iom of Choice. There is, for example, a graph on the real line R with the property
that for each uncountable set A ⊆ R, there are two vertices in A that form an edge
and there are two vertices in A that do not form an edge in the graph. This graph
shows that the infinite Ramsey theorem fails if “infinite” is replaced by “uncount-
able”.

These pathologies vanish once we assume that the uncountable graphs under
consideration are sufficiently definable. By theorems of Galvin and Mycielski, every
graph G on an uncountable Polish space whose edge relation has the Baire property
has a set H of size 2ℵ0 of vertices such that either any two distinct vertices in H
form an edge in G or no two vertices in H form an edge in G (see [14]).

Naturally, most uncountable graphs that occur in Mathematics are definable in
some way. And the study of Borel and analytic graphs on Polish spaces has been
very successful. A landmark result that has found several interesting applications
and generalizations is the G0-dichotomy of Kechris, Solecki, and Todorcevic [15]
about Borel chromatic numbers of analytic graphs.

In this article, we carry out an in depth study of definable graphs on Polish
spaces of the least possible complexity: clopen graphs. In the guise of continuous
colorings, clopen graphs on Polish spaces occurred in [11] in the context of planar
convex geometry and were then further studied in [9]. However, the main objective
in these two articles was to get information about a certain cardinal invariant of
continuous colorings, the so called homogeneity number, which corresponds to the
cochromatic number of graphs.

In Sections 3 and 4 we generalize results from [9] and study the class of modular
profinite graphs, graphs that can be represented in a natural way as limits of inverse
systems of finite graphs. Even the class of modular profinite graphs of countable
weight is rich in the sense that its embeddability relation is as complicated as set-
theoretic inclusion on the power set of ω. There is a universal modular profinite
graph of countable weight. The main reason we study modular profinite graphs
is that they give canonical examples of clopen graphs on compact metric spaces
with a prescribed family of finite induced subgraphs. This is used in the proof
of the fact that the cochromatic number of a clopen graph on a Polish space is
in many cases determined by the family of finite induced subgraphs of the graph
under consideration. If the family of finite induced subgraphs is contained in the



CLOPEN GRAPHS 3

closure of a finite family of finite graphs under certain natural operations, then the
cochromatic number of the clopen graph is either countable or the smallest possible
uncountable cochromatic number. This is shown in Section 5.

We then turn to the structural properties of the class of clopen graphs on compact
metric spaces. In Section 6 we show that there is a clopen graph on ωω such that
every clopen graph on a compact zero-dimensional metric space embeds into it. It
follows that there is a family of size d of clopen graphs on the Cantor space such
that every clopen graph on a compact zero-dimensional metric space embeds into
a member of the family. Here d denotes the dominating number, the least size of a
family of compact sets that covers ωω.

Section 7 deals with saturation of induced subgraphs of clopen graphs on compact
metric spaces and on Polish spaces. In the case of compact metric spaces there are
no infinite 4-saturated induced subgraphs and in the case of Polish spaces there are
no uncountable ℵ1-saturated induced subgraphs. There are, however, ℵ0-saturated
clopen graphs on ωω. Also, there is an ℵ1-saturated Fσ-graph on 2ω.

The methods developed in Section 7 are then used in Section 8 to show that
there is no universal clopen graph on a compact metric space. In fact, the smallest
size of a family of clopen graphs on compact metric spaces such that every clopen
graph on a zero-dimensional compact metric space embeds into a member of the
family at least d. Together with the results from Section 6 this shows that the
least size of such a family is exactly d. This contrasts nicely with the fact that
there are universal graphs on 2ω at all Σ- and Π-levels of the Borel and projective
hierarchies. Answering a question in a previous version of this article, Arnold Miller
has shown that the least size of a family of clopen graphs on ωω such that every
clopen graph on ωω embeds into a member of the family is ℵ1 [21].

Finally, in Section 9, the result about the non-saturation of infinite induced
subgraphs of clopen graphs on compact metric spaces is generalized to infinite
induced subgraphs on clopen graphs of spaces that are just compact. In particular,
there are countable graphs that do not embed into a clopen graph on a compact
space.

2. Continuous colorings and clopen graphs

Definition 2.1. An n-coloring with k colors on a set X is a function c : [X]n → k.
We are only interested in 2-colorings and among those we are mostly interested in
colorings with 2 colors. Hence we call 2-colorings with 2 colors just colorings.

If X is a topological space and k ∈ ω, then a coloring c : [X]2 → k is continuous
if for all {x, y} ∈ [X]2 there are disjoint open sets U, V ⊆ X with x ∈ U and y ∈ V
such that for all a ∈ U and all b ∈ V , c(x, y) = c(a, b). This is just continuity with
respect to the natural topology on [X]2.
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If c is a coloring on X and d is a coloring on Y , we write c ≤ d if there is a
topological embedding e : X → Y , i.e., a homeomorphism onto its image, that
preserves colors in the sense that for all distinct x0, x1 ∈ X we have

c(x0, x1) = d(e(x0), e(x1)).

A graph G is a set V (G) of vertices together with a set E(G) ⊆ [V (G)]2 of edges.
G is a graph on X if V (G) = X. A graph G on a topological space is open, closed,
clopen, Borel, or analytic if the edge-relation

{(x, y) : {x, y} ∈ E(G)}

of G has the respective property as a subset of X2 \ {(x, x) : x ∈ X}.
In the case of graphs, we distinguish two different notions of embeddings:
A graph F embeds into a graph G combinatorially iff there is an injective map

from the vertices of F to the vertices of G that preserves both edge and non-edges.
This is the usual notion embeddability between graphs. If the vertex sets of F
and G carry a topology, we say that F embeds into G topologically if there is an
embedding of F into G that is a homeomorphism onto its range.

A coloring c on a set X corresponds to the graph Gc = (X, c−1(1)) and a
graph G = (V (G), E(G)) corresponds to the coloring cG : [V (G)]2 → 2 that is the
characteristic function of the set E(G) of edges.

Note that a coloring on a topological space X is continuous iff the corresponding
graph is clopen. For two continuous colorings c and d we have c ≤ d iff the graph
corresponding to c topologically embeds into the graph corresponding to d.

We are primarily interested in continuous colorings on Polish spaces and mostly
in uncountable features of these colorings. Removing countably many points from
an uncountable Polish space we obtain a perfect Polish space, i.e., a Polish space
without isolated points. Every perfect Polish space is a continuous 1-1 image of the
Baire space ωω (see [14]). Given a continuous coloring c on a perfect Polish space
X, we can pull back c along a continuous injection from ωω onto X, obtaining
a continuous coloring on ωω that, for our purposes, carries practically the same
information as c itself. This is one of the reasons we can often restrict our attention
to continuous colorings on ωω. A different reason why it is usually enough to
consider continuous colorings on zero-dimensional spaces will be pointed out in
Lemma 3.4.

Just as in the finite case, uncountable graphs can be studied using cardinal
invariants. Popular cardinal invariants of graphs are the clique number and the
chromatic number.
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Definition 2.2. Let G = (V,E) be a graph. A set C ⊆ V is a clique if any two
distinct vertices in C form an edge of G. C ⊆ V is independent if no two vertices in
C form an edge in G. The clique number of G is the supremum of all sizes of cliques
in G. The chromatic number of G is the least size of a family F of independent sets
such that

⋃
F = V .

Clopen graphs on Polish spaces are the simplest uncountable graphs in the sense
of descriptive complexity. So simple, in fact, that both clique number and chromatic
number are degenerate:

If a clopen graph on a Polish space has an uncountable clique, then it has a
perfect clique and hence a clique number 2ℵ0 . If the chromatic number of a clopen
graph on a Polish space is uncountable, then the graph has a perfect independent
set and hence its chromatic number is 2ℵ0 .

Both of these facts follow from the definable instance of Todorcevic’s Open Col-
oring Axiom, which can be proved in ZFC (see [5]):

Theorem 2.3. Let G = (X,E) be an open graph on a Polish space X. Then either
the chromatic number of G is countable or G has a perfect clique.

One cardinal invariant of clopen graphs that has a more interesting behaviour in
the uncountable is the cochromatic number, which translates into the homogeneity
number of the associated continuous coloring.

Definition 2.4. Let G be a graph. A set H ⊆ V (G) is homogeneous if either any
two distinct vertices of H form an edge or any two distinct vertices of H form a
non-edge. The cochromatic number of G is the least size of a family of homogeneous
sets that covers V (G).

If k ∈ ω and c : [X]2 → k is a coloring, then H ⊆ X is c-homogeneous if c is
constant on [H]2. The homogeneity number hm(c) is the least size of a family of
c-homogeneous sets that covers X.

Homogeneity numbers of continuous colorings on Polish spaces came up in [11]
in the context of planar convexity and were further studied in [9] and [7]. In [8] it
was shown that the colorings that appear in the context of planar convexity are of a
particularly simple form. Namely, the corresponding graphs have no induced paths
of length 4. This result was the motivation for a part of the research presented in
this article.

3. Modular maps and modular profinite graphs

Usually a map between the vertex sets of two graphs is called a homomorphism if
it preserves edges. This definition favours edges over non-edges. We are, however,
interested in graphs as an alternative description of 2-colorings with two colors. In
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the case of colorings neither of the two colors should be emphasized. Insisting on
preservation of both edges and non-edges leaves us with graph embeddings only,
which is too restrictive.

For our purposes a more suitable notion of structure preserving map is that of
a modular map, which we define in Definition 3.3. We first introduce modules as
they appear in Gallai’s modular decomposition of finite graphs [6].

Definition 3.1. Let G = (V,E) be a graph. A set M ⊆ V is a module if for all
v ∈ V \M and all u0, u1 ∈M we have {u0, v} ∈ E iff {u1, v} ∈ E. A module M is
trivial iff |M | ≤ 1 or M = V .

Remark 3.2. The following facts about modules are well-known and easily verified.

(1) The modules of a graph G are the same as the modules of the complement
of G.

(2) Every connected component of a graph is a module.
(3) If M and N are both modules of G and M ∩ N 6= ∅, then M ∪ N is a

module.
(4) If M and N are disjoint modules of G, then either all vertices in M are

connected to all vertices in N or no vertex in M is connected to any vertex
in N .

Definition 3.3. A partition P of the vertex set V (G) of a graph G into modules of
G is a modular partition of G. By Remark 3.2 (4), a modular partition P carries a
natural graph structure by connecting two distinct modules M,N ∈ P by an edge
if every vertex in M is connected to every vertex in N . This graph is the quotient
G/P .

Given two graphs G and H, a map f : V (G) → V (H) is modular if for all
u, v ∈ V (G) with f(u) 6= f(v) we have {u, v} ∈ E(G) iff {f(u), f(v)} ∈ E(H). In
case of a modular map, we will often write f : G→ H instead of f : V (G)→ V (H).

Clopen graphs on compact spaces have a natural modular partition into the
connected components of the underlying space. The following is essentially Lemma
2.12 in [9].

Lemma 3.4. G = (X,E) be a clopen graph on a compact space X. Let Comp(X)

denote the set of connected components of X in the topological sense. Then Comp(X)

is a modular partition of G, each component C ∈ Comp(X) is homogeneous, the
space Comp(X) with the quotient topology is compact and zero-dimensional, and
the quotient graph G/Comp(X) is clopen.

We now introduce inverse systems, in the particular case of graphs. Our notation
for inverse systems follows [3].
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Definition 3.5. Let (I,≤) be a directed set. A family (Gi)i∈I of graphs together
with a family (πji )i,j∈I,i≤j maps is an inverse system of graphs with modular bonding
maps if the following hold:

(1) For all i, j ∈ I with i ≤ j, πji : Gj → Gi is modular.
(2) For all i ∈ I, πii is the identity map on Gi.
(3) For all i, j, k ∈ I, if i ≤ j ≤ k, then πki = πji ◦ πkj .

We do not require the bonding maps πji to be onto.
A graph G together with a family (πi)i∈I of maps is the limit of an inverse system

((Gi)i∈I , (π
j
i )i,j∈I,i≤j) of graphs with modular bonding maps if the following hold:

(4) For all i ∈ I, πi : G→ Gi is modular.
(5) For all i, j ∈ I with i ≤ j, πi = πji ◦ πj .
(6) Whenever F is a graph and (ρi)i∈I is a family of modular maps such that

(4) and (5) hold for F and the ρi instead of G and the πi, then there is a
unique modular map ρ : F → G such that for all i ∈ I, ρi = πi ◦ ρ.

A graph G is modular profinite if it is the limit of an inverse system of finite
graphs with modular bonding maps.

Observe that our modular profinite graphs are only vaguely related to the profi-
nite graphs in the sense of Serre that occur for example as Cayley graphs of profinite
groups.

Every modular profinite graph is the limit of an inverse system of finite sets and
hence carries a compact, zero-dimensional topology. Namely, if G is the limit of
an inverse system ((Gi)i∈I , (π

j
i )i,j∈I,i≤j) of finite graphs and this is witnessed by

a family (πi)i∈I of modular maps, a subset A of V (G) is clopen iff for some i ∈ I
there is a set B ⊆ V (Gi) such that A = π−1i [B]. We refer to this topology as the
limit topology.

It is well-known that every compact, zero-dimensional space is the limit of an
inverse system of finite sets, and hence there are arbitrarily large, modular profi-
nite graphs, for example all discrete and all complete graphs on compact, zero-
dimensional spaces.

Definition 3.6. Let G be a graph. Two vertices v and w of G are separated by a
modular partition P of G if v and w are members of distinct classes of the partition
P .

Lemma 3.7. Let G be a graph on a topological space V (G). Then G is a modular
profinite graph iff V (G) is compact and for all distinct vertices v and w there is
a finite, modular partition of G consisting of clopen sets that separates v and w.
In particular, the space of vertices of a modular profinite graph is zero-dimensional
and the graph is clopen.
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Proof. Suppose V (G) is compact and any two vertices of G are separated by a finite
modular partition into clopen sets.

If P and Q are modular partitions of G, we write P ≤ Q if Q refines P , i.e., if
every A ∈ Q is fully included in some B ∈ P . Given any two modular partitions P
and Q of G into finitely many clopen sets, it is easily checked that

P ∨Q = {A ∩B : A ∈ P, B ∈ Q, and A ∩B 6= ∅}

is again a modular partition of G into finitely many clopen sets. P ∨ Q is the
smallest common refinement of P and Q. It follows that the set I of finite modular
partitions of G into clopen sets ordered by ≤ is a directed set.

If P and Q are modular partitions of G and P ≤ Q, then the natural map
πQP : G/Q → G/P is modular. It is easily checked that G together with the
quotient maps πP : G → G/P , P ∈ I, is the inverse limit of the system consisting
of the finite graphs G/P , P ∈ I, with the bonding maps πQP , P,Q ∈ I, P ≤ Q.

On the other hand, if I is a directed set ordered by ≤ and (Gi)i∈I is a family of
graphs that forms an inverse system with the modular bonding maps πji : Gi → Gj ,
i ≤ j, and limit G together with modular maps πi : G → Gi, then for any two
distinct vertices v, w ∈ V (G) there is i ∈ I with πi(v) 6= πi(w). Now

P = {π−1i (u) : u ∈ V (Gi)}

is a finite modular partition of G into clopen sets that separates v and w.
As a limit of an inverse system of finite spaces, V (G) is compact and zero-

dimensional. Given two distinct vertices v, w ∈ V (G) and a finite modular partition
P of G into clopen sets separating them, let A,B ∈ P be such that v ∈ A and
w ∈ B. By the modularity of P , for all a ∈ A and all b ∈ B, {a, b} ∈ E(G) iff
{v, w} ∈ E(G). This shows that G is clopen. �

We now describe the general form of a modular profinite graph of countable
weight. Recall that a topological space is of countable weight if its topology has a
countable basis.

Definition 3.8. Let X ⊆ ωω be a closed set. Let

T = T (X) = {t ∈ ω<ω : ∃x ∈ X(t ⊆ x)}.

For every t ∈ T let succT (t) be the set of immediate successors of t in T . For
x, y ∈ ωω let x∧ y be the longest common initial segment of x and y. For x 6= y let
∆(x, y) be the length of x ∧ y, i.e., ∆(x, y) = min{n ∈ ω : x(n) 6= y(n)}.

A coloring c : [X]2 → k, k ∈ ω, is a node coloring if there is a function c :

T (X)→ k such that for all {x, y} ∈ [X]2, c(x, y) = c(x ∧ y). In other words, c is a
node coloring if c(x, y) only depends on x ∧ y.
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A coloring c : [X]2 → k is an almost node coloring if c(x, y) only depends on
{x � ∆(x, y) + 1, y � ∆(x, y) + 1}. That is, c is an almost node coloring if there is
a family (ct)t∈T (X) such that for all t ∈ T (X), ct : [succT (X)(t)]

2 → k and for all
{x, y} ∈ [X]2,

c(x, y) = cx∧y(x � ∆(x, y) + 1, y � ∆(x, y) + 1).

Observe that a closed set X ⊆ ω<ω is compact iff for all t ∈ T (X), succT (X)(t)

is finite, i.e., if T (X) is finitely branching.

Theorem 3.9. A clopen graph G whose vertex space V (G) has countable weight is
modular profinite iff the corresponding coloring cG is isomorphic to an almost node
coloring c on a compact subspace of ωω.

Proof. First let X ⊆ ωω be compact and let c be an almost node coloring on X.
For each n ∈ ω let

Tn = {t ∈ T (X) : dom(t) = n}

and
Pn = {{x ∈ X : t ⊆ x} : t ∈ Tn}.

It is clear that each Pn is a finite partition of X into clopen sets and that the
partitions Pn separate the points of X. We show that they are modular.

Let n ∈ ω and t ∈ Tn. If x, y ∈ X are such that t ⊆ x and t 6⊆ y, then c(x, y)

only depends on x � ∆(x, y) + 1 and y � ∆(x, y) + 1. But x � ∆(x, y) + 1 ⊆ t. It
follows that c(x, y) is already determined by t and y � ∆(x, y) + 1 and in particular
independent of the choice of x within the set {z ∈ X : t ⊆ z}. This shows that
Pn is a modular partition of the graph Gc. Hence Gc and therefore G are modular
profinite.

Now suppose thatG is modular profinite. Since V (G) is compact, zero-dimensional
and of countable weight, there are only countably many clopen subsets of V (G).
It follows that there are only countably many finite modular partitions of G into
clopen sets. These partitions form a directed set with respect to the ordering ≤.
Since the directed set is countable, there is a sequence (Pn)n∈ω of such partitions
that is increasing with respect to ≤ such that for every finite modular partition Q
of G into clopen sets there is n ∈ ω such that Q ≤ Pn. Now the partitions Pn,
n ∈ ω, separate the vertices of G.

For each n ∈ ω let Gn = G/Pn. For n ∈ ω let πn : G → G/Pn be the
quotient map. Since each Gn is finite and we can identify V (Gn) with the natural
number |V (Gn)|. With this identification, the space Y =

∏
n∈ω Gn is a compact

subspace of ωω. Let π : V (G) → Y be defined by π(v) = (πn(v))n∈ω. This map
is a homeomorphism onto its image since the Pn separate the vertices of G. Let
X = π[V (G)]. On X we define a coloring c as follows:
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Given two distinct vertices v and w of G let c(π(v), π(w)) = 1 if {v, w} ∈ E(G)

and c(π(v), π(w)) = 0, otherwise. Now given two distinct points x and y of X, let
v = π−1(x) and w = π−1(y). ∆(x, y) is the minimal n ∈ ω with πn(v) 6= πn(w)

Since πn : G → Gn is modular, {v, w} ∈ E(G) iff {πn(v), πn(w)} ∈ E(Gn). It
follows that the color c(x, y) is already determined by x � ∆(x, y) + 1 and y �

∆(x, y) + 1. This shows that c is an almost node coloring on a compact subspace
on ωω. �

It is worth pointing out that not every continuous coloring on a compact metric
space is isomorphic to an almost node coloring. Namely, for {x, y} ∈ [2ω]2 let

c(x, y) =

0, if x(∆(x, y) + 1) 6= y(∆(x, y) + 1) and

1, if x(∆(x, y) + 1) = y(∆(x, y) + 1).

A graph is prime if it has no nontrivial modules.

Lemma 3.10. Let c be the coloring defined above. Then the corresponding graph
Gc is prime. In particular, Gc has no nontrivial finite modular partition and is
therefore not modular profinite.

Proof. Let M ⊆ 2ω be a module of Gc. Let x0, x1 ∈ M and y ∈ 2ω. We say that
x0, x1, y are in critical configuration if

∆(x0, y) = ∆(x1, y) = ∆(x0, x1)− 1.

Claim 3.11. If x0, x1, y are in critical configuration, then y ∈M .

Let n = ∆(x0, x1). Without loss of generality we may assume that x0(n) = y(n)

and x1(n) 6= y(n). Now c(x0, y) 6= c(x1, y) and hence x0 and y form an edge in Gc
iff x1 and y do not. Since M is a module, it follows that y ∈M . This proves Claim
3.11.

Claim 3.12. Let n ∈ ω, f : n → 2, and suppose there are two distinct vertices
x0, x1 ∈M such that f ⊆ x0, x1. Then there are y0, y1 ∈M such that y0 ∧ y1 = f .

Suppose the pair {x0, x1} ∈ [M2] is chosen so that f ⊆ x0, x1 and ∆(x0, x1) is
minimal. We show that ∆(x0, x1) = n.

If not, let m = ∆(x0, x1) − 1. Since ∆(x0, x1) > n, m ≥ n. Let y ∈ 2ω be such
that ∆(x0, y) = ∆(x1, y) = m. Now x0(n) = y(n) iff x1(x) 6= y(n). It follows that
x0 and y form an edge in Gc iff x1 and y do not. Since M is a module, this implies
y ∈M .

But now f ⊆ x0, y and ∆(x0, y) ≥ n, contradicting the minimality of ∆(x0, x1).
Hence ∆(x0, x1) = n. This proves Claim 3.12.

Now suppose that M has two distinct elements x0, x1 with ∆(x0, x1) > 0. Let
f = {(0, x0(0))}. By Claim 3.12, there are distinct y0, y1 ∈M such that y0∧y1 = f .
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Let y ∈ 2ω be such that y(0) 6= f(0). The three vertices y0, y1, y are of critical
configuration, and hence, by Claim 3.11, y ∈M . In other words,

{y ∈ 2ω : y(0) 6= f(0)} ⊆M.

In particular, there are distinct z0, z1 ∈ M such that ∆(z0, z1) = 1 and z0(0) =

z1(0) 6= f(0). For all z ∈ 2ω with z(0) = f(0), z0, z1, z are of critical configuration,
and hence z ∈M . This implies that M = 2ω.

It follows that if M 6= 2ω, then M contains at most two distinct elements and
moreover, ifM 6= 2ω andM contains two distinct elements x0, x1, then ∆(x0, x1) =

0.
Now suppose thatM = {x0, x1} and ∆(x0, x1) = 0. We distinguish two cases. If

x0(1) 6= x1(1), let y ∈ 2ω be such that y(0) = x0(0), y(1) = x1(1), and y(2) 6= x0(2).
In this case ∆(x0, y) = 1, c(x0, y) = 0, ∆(x1, y) = 0, and c(x1, y) = 1. Since M is a
module, y ∈M , contradicting the assumption thatM = {x0, x1}. If x0(1) = x1(1),
let y ∈ 2ω be such that y(0) = x0(0), y(1) 6= x1(1), and y(2) = x0(2). In this case
∆(x0, y) = 1, c(x0, y) = 1, ∆(x1, y) = 0, and c(x1, y) = 0. Again, since M is a
module, y ∈M , a contradiction.

It follows that Gc does not have any modules of size 2, showing that Gc is a
prime graph. �

Let us observe another interesting property of the coloring c defined above. The
graph Gc embeds an infinite path, something that no modular profinite graph does.

Example 3.13. For each n ∈ ω let vn ∈ 2ω be the sequence of 1’s of length n

followed by ω-many 0’s. Then for all n,m ∈ ω with n < m, c(vn, vm) = 1 iff
m = n+ 1. In other words, {vn : n ∈ ω} is the set of vertices of an infinite induced
path in Gc.

Lemma 3.14. If G is a modular profinite graph, then G does not contain an infinite
induced path.

Proof. It is well-known that P4, the path on 4 vertices, is prime. A simple induction
shows that every path of length at least 4 and also every infinite path is prime.

If G is modular profinite, then the finite modular partitions separate the vertices
of G. If P is an induced path in G of length at least 4, then there is some finite
modular partitionQ ofG that separates at least two distinct vertices of P . But since
P is prime, either it is completely contained in a single module of the partition Q,
which does not happen since Q separates two distinct vertices of P , or each M ∈ Q
contains at most one vertex of P . Since Q is finite, it follows that P is finite. �
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4. The finite induced subgraphs of a clopen graph

Sushanskĭı [22] showed that there is a universal profinite group of countable
weight. The analog is true for modular profinite graphs.

The continuous coloring corresponding to this universal modular profinite graph
figured prominently in [9] and is called cmax in that article. We put the construc-
tion of cmax and the corresponding graph into a more general framework. Clopen
graphs, and hence continuous colorings, are studied in terms of their finite induced
subgraphs.

Definition 4.1. For any graph G let age(G) denote the class of finite graphs
isomorphic to an induced subgraph of G. If c : [X]2 → 2 is a coloring, let age(c) =

age(X, c−1(1)). If X is a topological space and c a coloring on X, let the hereditary
age of c be the class

hage(c) =
⋂
{age(c � O) : O is an nonempty open subset of X}.

The crucial observation in the proof of the existence of universal modular profi-
nite graph of countable weight is the following criterion for the embeddability of an
almost node coloring into a continuous coloring.

Lemma 4.2. Let c be an almost node coloring on a compact subspace X of ωω.
For each t ∈ T (X) fix a coloring ct : [succT (X)(t)]

2 → 2 witnessing the fact that c
is an almost node coloring as in Definition 5.1, i.e., such that for all {x, y} ∈ [X]2

we have
c(x, y) = cx∧y(x � (∆(x, y) + 1), y � (∆(x, y) + 1)).

If d is a continuous coloring on a Polish space Y with Gct ∈ hage(d) for all t ∈
T (X), then d ≤ c.

Proof. Fix a complete metric that induces the topology of the Polish space Y . We
construct a scheme (Ut)t∈T (X) of nonempty open subsets of Y along with a family
(yt)t∈T (X) of points of Y such that for all t ∈ T (X) the following hold:

(1) yt ∈ Ut
(2) If t ∈ ωn, then diam(Ut) < 2−n.
(3) For all t0 ∈ succT (X)(t), cl(Ut0) ⊆ Ut.
(4) For all t0, t1 ∈ succT (X)(t) with t0 6= t1, cl(Ut0) ∩ cl(Ut1) = ∅.
(5) For all t0, t1 ∈ succT (X)(t) with t0 6= t1, all u0 ∈ Ut0 , and all u1 ∈ Ut1 ,

ct(t0, t1) = d(u0, u1).

We start the recursive construction of (Ut)t∈T (X) and (yt)t∈T (X) by choosing a
nonempty open set U∅ ⊆ Y of diameter < 1 and a point y∅ ∈ U∅. Suppose yt
and Ut have been chosen for some t ∈ T (X). Let (ti)i<k be a 1-1-enumeration of
succT (X)(t).
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SinceGct ⊆ hage(d), there are points yti , i < k, in Ut such that the map assigning
each ti to the corresponding yti is an isomorphism between the graph Gct and the
induced subgraph of Gd on the vertices yti , i < k.

Since G is clopen, there are open neighborhoods Uti , i < k, of the points yti such
that for all i, j < k with i 6= j, all ui ∈ Uti , and all uj ∈ Utj , c(ui, uj) = c(yti , ytj ).
Choosing the Uti small enough, we can satisfy (2)–(4) for the given t. This finishes
the recursive construction.

For each x ∈ X the sequence (yx�n)n∈ω is Cauchy by (1) and (2) and therefore
has a limit in Y . Let e(x) = limn→∞ yx�n. The limit limn→∞ yx�n is the unique
element of

⋂
n∈ω Ux�n =

⋂
n∈ω cl(Ux�n). Condition (5) implies that e : X → Y

witnesses c ≤ cG. �

This Lemma allows us to characterize embeddability between certain kinds of
clopen graphs on Polish spaces.

Definition 4.3. A graph G on a topological space V (G) is self-similar if age(G) =

hage(G).

Corollary 4.4. If G is a modular profinite graph of countable weight and F is a
self-similar clopen graph on a Polish space, then G embeds into F topologically iff
age(G) ⊆ age(F ). In particular, G embeds into F combinatorially iff G embeds into
F topologically.

Let us have a look the properties of classes of finite graphs of the form hage(c).

Definition 4.5. Let G andH be graphs and let v be a vertex of G. Let F = G⊗vH
be the graph obtained by replacing the vertex v with a copy of H that is disjoint
from G and connecting a vertex u in the copy of H with a vertex w ∈ V (G) \ {v}
by an edge iff {u, v} ∈ E(G). Following [19], we call this operation substitution of
H for v in G.

If f : G → H is modular, then {f−1(v) : v ∈ V (H)} is a modular partition of
G. G is isomorphic to the graph obtained by substituting every vertex v ∈ V (H)

by the induced subgraph of G on the set f−1(v).

Lemma 4.6. Let X be a topological space and let c be a continuous coloring on X.
Then hage(c) is closed under substitution.

Proof. Let F ∈ hage(c). We may assume that V (F ) ⊆ X and for all distinct
w0, w1 ∈ V (F ), {w0, w1} ∈ E(F ) iff c(w0, w1) = 1. Let v ∈ V (F ) and H ∈ hage(c).
For all w ∈ V (F ) fix pairwise disjoint open neighborhoods Uw such that for all
distinct w0, w1 ∈ V (F ), all u0 ∈ Uw0

, and all u1 ∈ Uw1
, c(u0, u1) = c(w0, w1).

Since H ∈ hage(c), the graph Gc�Uv
contains an induced copy of H. For simplicity
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assume thatH is actually an induced subgraph ofGc�Uv
. Now the induced subgraph

of Gc on the vertex set (V (F ) \ {v}) ∪ V (H) is isomorphic to F ⊗v H. �

Definition 4.7. For a class C of finite graphs let cl(C) denote the closure of C under
isomorphic copies, induced subgraphs, and substitution. A class C of finite graphs
is generated by a set G of finite graphs if C = cl(G).

It turns out that all classes of the form cl(G), G a nonempty set of finite graphs,
are the hereditary age of some continuous coloring.

Definition 4.8. Let G = (Gn)n∈ω be a sequence of (nonempty) finite graphs. We
identify each Gn with a graph whose set of vertices is a natural number. We define
a coloring cG on the space X =

∏
n∈ω V (Gn) as follows:

Given two distinct points x, y ∈ X and n = ∆(x, y), let

cG(x, y) =

0, if {x(n), y(n)} 6∈ E(Gn) and

1, if {x(n), y(n)} ∈ E(Gn).

Lemma 4.9. For any sequence G of finite graphs the coloring cG is an almost node
coloring.

Lemma 4.10. Let G be a nonempty class of finite graphs. Let G = (Gn)n∈ω be
a sequence of finite graphs in G such that for all G ∈ G there are infinitely many
n ∈ ω with Gn ∼= G. Then age(cG) = hage(cG) = cl(G).

Proof. Clearly, G ⊆ hage(cG). By Lemma 4.6, hage(cG) is closed under substitution
and hence cl(G) ⊆ hage(cG) ⊆ age(cG).

On the other hand, if F is a finite induced subgraph of the graph corresponding
to cG, then there is some n ∈ ω such that the finite sequences v � n, v ∈ V (F ),
are pairwise distinct. It is clear that F is isomorphic to an induced subgraph of a
graph that is obtained by iterated substitution of the graphs Gm, m ≤ n. Hence
F ∈ cl(G). It follows that age(cG) ⊆ cl(G). �

Observe that by Corollary 4.4 for any two sequences F = (Fn)n∈ω and G =

(Gn)n∈ω of graphs from G with each isomorphism type occurring infinitely often,
cF ≤ cG ≤ cF . In other words, for each nonempty class G there is an almost
node coloring cG such that hage(cG) = age(cG) = cl(G) and cG is unique up to
bi-embeddability.

Corollary 4.11. There is a universal almost node coloring cmax on a compact
subspace of ωω, i.e., if X ⊆ ωω is compact and c is an almost node coloring on X,
then c ≤ cmax.

In the language of graphs, there is a universal, modular profinite graph Gmax of
countable weight, i.e., every modular profinite graph of countable weight is isomor-
phic to an induced subgraph of Gmax.
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Proof. Let C be the class of all finite graphs. By Lemma 4.10, there is an almost
node coloring cmax on a compact subspace of ωω such that hage(cmax) = C. Now
by Lemma 4.2, cmax is a universal almost node coloring on a compact subset of
ωω. �

The coloring cmin was introduced in [11] and it was shown that is ≤-minimal
among all continuous colorings on Polish spaces that have an uncountable homo-
geneity number. We reprove this result using the theory developed so far.

Definition 4.12. For {x, y} ∈ [ωω]2 let cparity(x, y) = ∆(x, y) mod 2. Let cmin =

cparity � 2ω.

It was shown in [9] that actually cparity ≤ cmin. This implies that hm(cmin) =

hm(cparity).
In our context, cmin can be described as follows:
Let G be the class of graphs that consists of the complete graph on two vertices,

the edge, and the discrete graph on two vertices, the non-edge. Then cmin = cG .
Since no open set is cmin-homogeneous and the closure of a cmin-homogeneous

set is again homogeneous, the cmin-homogeneous sets are nowhere dense. Now by
the Baire category theorem, hm(cmin) > ℵ0.

On the other hand, if c is a continuous coloring on a Polish space X with
hm(c) > ℵ0, we can iteratively remove open c-homogeneous sets from X, obtaining
a nonempty Polish space Y ⊆ X with the property that no open subset of Y is
c-homogeneous. Hence G ⊆ hage(c � Y ). Now by Lemma 4.2, cmin ≤ c. This shows

Corollary 4.13. For every continuous coloring c on a Polish space, hm(c) > ℵ0
iff cmin ≤ c.

Because of the significance of hm(cmin) as the smallest uncountable homogeneity
number of a continuous coloring on a Polish space, we write just hm for hm(cmin).

By Lemma 4.10, age(cmin) = hage(cmin) = cl(G). It is wellknown that cl(G) is
the class of finite P4-free graphs, i.e., the class of finite graphs that do not contain
an induced path of length 4 (see [1]). That age(cmin) is exactly the class of finite
P4-free graphs was already pointed out in [8] and this fact is one of the motivations
for the theory presented here.

The following theorem was proved in [9], but was not stated explicitly in that
paper. An explicit statement and survey of the proof can be found in [8]. The
theorem clarifies why we are interested in almost node colorings.

Theorem 4.14. For every continuous coloring c : [X]2 → 2 on a Polish space
X, X is the union of hm-many sets Y ⊆ X such that c � Y is isomorphic to an
almost node-coloring on a compact subset of ωω. If hm(c) is uncountable, then
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hm(c) = hm(d) for some almost node-coloring d on a compact subset of ωω such
that d ≤ c.

Corollary 4.15. Let c be a continuous coloring on a Polish space. Let G be a class
of finite graphs such that age(c) ⊆ cl(G). Then hm(c) ≤ hm(cG).

Proof. By Theorem 4.14, there is an almost node-coloring d on a compact subset of
ωω such that d ≤ c and hm(d) = hm(c). Since d ≤ c, age(d) ⊆ age(c). By Lemma
4.10, hage(cG) = cl(G). Hence age(d) ⊆ hage(cG). By Lemma 4.2, d ≤ cG and thus
in particular, hm(c) = hm(d) ≤ hm(cG). �

The following was shown in [9]:

Corollary 4.16. For every continous coloring c on a Polish space, hm(c) ≤ hm(cmax).

Proof. By Lemma 4.15, hm(c) ≤ hm(cage(c)). Since cmax is a universal almost
node-coloring on a compact subset of ωω, cage(c) ≤ cmax. It follows that hm(c) ≤
hm(cmax). �

We finish this section by pointing out that the embeddability ordering on mod-
ular profinite graphs of countable weight is complicated. Recall from Corollary 4.4
that for self-similar, modular profinite graphs F and G of countable weight, then
F embeds into G iff age(G) ⊆ age(F ).

Since there are only countably many isomorphism types of finite graphs, this ob-
servation shows that embeddability between self-similar, modular profinite graphs
is not more complicated than the subset relation between subsets of ω. The next
result shows that the embeddabilty relation between self-similar, modular profinite
graphs is also not less complicated than subset relation between subsets of ω.

Definition 4.17. For A ⊆ ω \ 5 let

C(A) = cl({Cn : n ∈ A}),

where Cn is the cycle of length n. Let G(A) = GC(A).

Lemma 4.18. For A,B ⊆ ω \ 5, G(A) embeds into G(B) iff A ⊆ B.

Proof. It follows from Corollary 4.4 that G(A) embeds into G(B) if A ⊆ B. On
the other hand, if G(A) embeds into G(B), then

C(A) = age(G(A)) ⊆ C(B) = age(G(B)).

Claim 4.19. Suppose n ∈ A\B. Then G(B) has no induced cycle of length n and
therefore G(A) does not embed into G(B).

It is clear that the lemma follows from the claim. To show the claim, observe
that every cycle of length at least 5 is prime, i.e., has no non-trivial modules. If G
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is a finite induced subgraph of G(B), then it is isomorphic to an induced subgraph
of a graph that is obtained by iterated substitution from cycles of length different
from n. It follows that every prime subgraph of G is a subgraph of a cycle of length
different from n, i.e., it is itself a cycle of length different from n or a path. This
shows that G is not isomorphic to Cn, finishing the proof of the claim. �

Lemma 4.18 shows for example that there is an uncountable family of pairwise
non-embeddable, self-similar, modular profinite graphs of countable weight.

5. Colorings of finite depth

Definition 5.1. Let X ⊆ ωω be a closed set. Given n ∈ ω, a continuous coloring c :

[X]2 → k is of depth n if for all {x, y} ∈ [X]2, c(x, y) only depends on x � ∆(x, y)+n

and y � ∆(x, y)+n. A graph G = (X,E) is of depth n if the corresponding coloring
is.

A coloring c : [X]2 → k is an almost node coloring iff it is of depth 1 and a node
coloring iff it is of depth 0.

Lemma 5.2. Let X ⊆ [ωω]2 be a closed set and let c : [X]2 → 2 be a node coloring.
If hm(c) is uncountable, then hm(c) = hm.

Proof. Every node coloring is continuous. Hence, if hm(c) is uncountable, then, by
Corollary 4.13, hm ≤ hm(c).

Let c : T (X) → 2 witness the fact that c is a node coloring. We define a
graph G = (T (X), E) as follows: for any two distinct elements s and t of T (X) let
{s, t} ∈ E if one of the two is an immediate successor of the other in T (X) and
moreover, c(s) = c(t).

By the definition of E, c is constant on every connected component of G.

Claim 5.3. Let C ⊆ T (X) be a connected component of G. Then C has a smallest
element with respect to ⊆.

Since ⊆ is well-founded on T (X), it is enough to show that any two elements of
C have a common lower bound in C. Let s, t ∈ C be distinct. Let

P = {r ∈ T (X) : s ∧ t ⊆ r and (r ⊆ s or r ⊆ t)}.

Since T (X) is a tree and two elements of T (X) form an edge of G only if one is an
immediate successor of the other in the tree-order, every path connecting s and t
has to contain all the vertices in P . It follows that P ⊆ C and thus s∧ t ∈ C. This
proves the claim.

Let Tc be the subset of T (X) consisting of the minimal elements of connected
components of G. Tc is isomorphic to a subtree of ω<ω. The map c � Tc induces a
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node coloring d on the space [Tc] of infinite branches of Tc. Every branch b of Tc
generates a branch of T (X) and thus corresponds to an element x(b) of X.

If x ∈ X is not of the form x(b), then there are some n0 ∈ ω and a connected
component C of G such that for all n ≥ n0, x � n ∈ C. We say that x is eventually
in C. Given a connected component C of G, the set

{x ∈ X : ∃n0∀n ≥ n0(x � n ∈ C)}

of all x ∈ X that are eventually in C is a closed c-homogeneous subset of X.
If H ⊆ [Tc] is d-homogeneous, then {x(b) : b ∈ H} is a c-homogeneous subset of

X. Since G has at most countably many connected components and each x ∈ X is
either of the form x(b) for some b ∈ [Tc] or eventually in some connected component
of G, hm(c) ≤ hm(d) + ℵ0.

If t is an immediate successor of s in Tc, then c(s) = 1 − c(t). It follows that
([Tc], d) is isomorphic to a closed subspace of ωω equipped with the coloring cparity
as defined in Definition 4.12. Hence hm(c) ≤ hm(cparity). In [9] it was shown that
cparity ≤ cmin and thus hm(cparity) = hm. It follows that hm(c) ≤ hm �

Lemma 5.4. For all n > 1 and all {x, y} ∈ [ωω]2 let cn(x, y) = ∆(x, y) mod n.
Then hm(cn) = hm.

Proof. It is easily checked that for all n,m ∈ ω with n < m there is an embedding
e : ωω → ωω such that for all {x, y} ∈ [ωω], cn(x, y) = cm(e(x), e(y)). It follows
that hm(cn) ≤ hm(cm). In particular, for all n ∈ ω with n > 1, hm ≤ hm(cn).

To finish the proof of the lemma, it is enough to show that for all n > 0,
hm(c2n) ≤ hm. We have cparity = c2 and thus hm(c2) = hm(cparity) = hm. Now sup-
pose we have already shown that hm(c2n) ≤ hm. If H ⊆ ωω is cparity-homogeneous
of color 0, then

f : H → ωω; (x0, x1, x2, . . . ) 7→ (x0, x2, x4, . . . )

is 1-1. If G ⊆ ωω is c2n -homogeneous, then f−1(G) is c2n+1-homogeneous. It follows
that H can be covered by hm(c2n) and hence by hm-many c2n+1-homogeneous sets.

Similarly, every cparity-homogeneous set of color 1 can be covered by hm-many
c2n+1-homogeneous sets. Since ωω is the union of hm-many cparity-homogeneous
sets, ωω can be covered by hm · hm = hm sets that are c2n+1-homogeneous. It
follows that for all n > 0, hm(c2n) ≤ hm. This finishes the proof of the lemma. �

Definition 5.5. A set X ⊆ ωω is n-ary if for every t ∈ T (X) we have

|succT (X)(t)| ≤ n.

Theorem 5.6. Let X ⊆ ωω be n-ary for some n ∈ ω. If c : [X]2 → 2 is a coloring
of depth n and hm(c) is uncountable, then hm(c) = hm.
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Proof. Again it follows from Lemma 4.13 that hm(c) is at least hm, provided hm(c) is
uncountable. By Lemma 5.4, X is the union of not more than hm c2n-homogeneous
sets. If H ⊆ X is c2n-homogeneous, then c � H is an almost node coloring. The set
H is n-ary. In [10] it was shown that every n-ary subset of ωω is the union of not
more than hm binary sets.

If B ⊆ H is binary, the restricted coloring c � B is actually a node coloring.
Hence, by Lemma 5.2, for every binary c2n-homogeneous set B ⊆ X, hm(c � B) ≤
hm. Since X is the union of not more than hm such sets, hm(c) ≤ hm. �

We now combine Theorem 5.6 with the results of Section 4.

Corollary 5.7. Let c be a continuous coloring on a Polish space. If there is a finite
set G of finite graphs such that age(c) ⊆ cl(G), then hm(c) ≤ hm.

Proof. By Corollary 4.15 we have hm(c) ≤ hm(cG). Since G is finite, cG is of finite
width. Also cG is an almost node-coloring and hence of depth 1. Now by Theorem
5.6, hm(c) ≤ hm(cG) ≤ hm. �

6. A universal coloring

We continue to study the embeddability relation between continuous colorings
on compact metric spaces. In Section 8 we will show that the class of continuous
colorings on a compact metric space does not have a largest element with respect to
combinatorial or topological embeddability. However, there is a continuous coloring
on ωω such that all continuous colorings on a compact, zero-dimensional, metric
space embed into it topologically.

Theorem 6.1. There is a continuous coloring cuniversal : [ωω]2 → 2 such that for
every continuous coloring c on a compact, zero-dimensional space X of countable
weight there is a topological embedding e : X → ωω such that for all {x, y} ∈ [X]2,
c(x, y) = cuniversal(e(x), e(y)). In other words, c ≤ cuniversal.

Before giving the proof of this theorem, let us derive a corollary from it. Recall
that d is the least size of a family of compact sets that covers ωω. It is well-known
that d is also the least size of a family C of compact sets such that for every compact
set K ⊆ ωω, there is C ∈ C such that C ⊆ K. It is consistent that d is strictly
smaller than 2ℵ0 .

Corollary 6.2. There is a family D of size d of continuous colorings on 2ω such
that for every continuous coloring c on a separable, zero-dimensional, compact space
X there is d ∈ D such that c ≤ d.
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Proof. Let cuniversal be as in Theorem 6.1. Let C be a family of size d of compact
subsets of ωω such that every compact subset of ωω is contained in some member
of C. Let D = {cuniversal � C : C ∈ C}.

If c is a continuous coloring on a compact, zero-dimensional space X of countable
weight, then c ≤ cuniversal. Let e : X → ωω be a topological embedding witnessing
this. By the continuity of e, e[X] is compact and hence there is C ∈ C such that
e[X] ⊆ C. Now clearly, c ≤ cuniversal � C and cuniversal � C ∈ D. �

We now turn to the proof of Theorem 6.1, which requires a couple of lemmas.
One crucial ingredient of the proof, Lemma 6.6, was essentially shown in [9]. But
since the lemma is not explicitly stated in that paper, we provide a proof. We use
this opportunity to extract some additional information from the argument.

Let us first define a property of continuous colorings that is weaker than being
of depth n for some n ∈ ω.

Definition 6.3. A continuous coloring c : [X]2 → 2 on a closed subset of ωω is
uniformly continuous if there is a function f : ω → ω such that for all {x, y} ∈ [X]2

the color c(x, y) only depends on x � f(∆(x, y)) and y � f(∆(x, y)).

Lemma 6.4. Let X be a compact subspace of ωω and let c : [X]2 → 2 be a
continuous coloring. Then c is uniformly continuous.

Proof. Let T = T (X) be the tree of finite initial segments of elements of X. Since
X is compact, T is finitely branching. Let n ∈ ω and let s, t ∈ ωn+1 ∩ T be such
that s ∧ t ∈ ωn. Let [s] and [t] denote the basic open subsets of ωω determined by
s and t, respectively.

Since c is continuous, for all (x, y) ∈ ([s]× [t])∩ (X ×X) there is mx,y ∈ ω such
that c(x, y) only depends on x � mx,y and y � mx,y. Since X is compact, so is
([s]× [t]) ∩ (X ×X). It follows that there are k ∈ ω and

(x0, y0), . . . , (xk−1, yk−1) ∈ ([s]× [t]) ∩ (X ×X)

such that for all (x, y) ∈ ([s]× [t])∩(X×X) there is j < k such that xj � mxj ,yj ⊆ x
and yj � mxj ,yj ⊆ y. Let ms,t ∈ ω be such that n < ms,t and for all j < k,
mxj ,yj ≤ ms,t. Now for all (x, y) ∈ ([s] × [t]) ∩ (X × X), c(x, y) only depends on
x � ms,t and y � ms,t.

Since for each n ∈ ω, ωn ∩ T is finite, we can define

f(n) = max{ms,t : s, t ∈ T ∩ ωn+1 and s ∧ t ∈ ωn}

and obtain a function such that for all {x, y} ∈ [X]2, c(x, y) only depends on
x � f(∆(x, y)) and y � f(∆(x, y)). The function f witnesses the uniform continuity
of c. �
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Lemma 6.5. Let c : [X]2 → 2 be a uniformly continuous coloring on a closed subset
of ωω. Then there are a closed set Y ⊆ ωω and a homeomorphism h : X → Y such
that the coloring d : [Y ]2 → 2 defined by d(x, y) = c(h−1[{x, y}]) is of depth 2.

Proof. Let f : ω → ω witness the uniform continuity of c. We can choose f strictly
increasing and such that f(0) ≥ 1. For n ∈ ω let g(n) := fn(0).

Identifying ω<ω and ω, we define the required embedding h : X → ωω by letting
h(x) := (x � g(0), x � g(1), . . . ). Let Y := e[X]. The coloring c induces a continuous
pair-coloring d on Y such that for all {x, y} ∈ [X]2, d(h(x), h(y)) = c(x, y). By
the choice of f , for {u, v} ∈ [Y ]2, d(u, v) only depends on u � (∆(u, v) + 2) and
v � (∆(u, v) + 2). This can be seen as follows:

If n = ∆(u, v) and x, y ∈ X are such that h(x) = u and h(y) = v, then ∆(x, y) <

g(n) and c(x, y) only depends on x � f(∆(x, y)) and y � f(∆(x, y)). Since f is
strictly increasing, f(∆(x, y)) < f(g(n)) = g(n + 1). It follows that c(x, y) only
depends on x � g(n + 1) and y � g(n + 1). But u(n + 1) = x � g(n + 1) and
v(n+ 1) = y � g(n+ 1). Hence d(u, v) only depends on u � n+ 2 and v � n+ 2. �

Lemma 6.6. Let X be a compact, zero-dimensional space of countable weight and
let c : [X]2 → 2 be continuous. Then there are a compact set Y ⊆ ωω and a
homeomorphism h : X → Y such that the coloring d : [Y ]2 → 2 defined by d(x, y) =

c(h−1[{x, y}]) is of depth 2.

Proof. Every compact, zero-dimensional space X of countable weight is homeomor-
phic to a subspace of 2ω (see [3, Theorem 6.2.16]). Hence we may assume that X is
a compact subspace of ωω. By Lemma 6.4, c is uniformly continuous. By Lemma
6.5, there are a closed set Y ⊆ ωω and a homeomorphism h : X → Y such that the
coloring d : [Y ]2 → 2 defined by d(x, y) = c(h−1[{x, y}]) is of depth 2. Since Y is
homeomorphic to X, Y is compact. �

The next lemma is the combinatorial core of the proof of Theorem 6.1. The
lemma establishes the existence of something like a two-dimensional analog of the
random graph.

Lemma 6.7. There is a graph G2
random = (ω2, E2

random) such that for all n ∈ ω and
all finite disjoint sets A,B ⊆ (ω \ {n})× ω there is m ∈ ω such that for all s ∈ A,
{s, (n,m)} ∈ E2

random and for all s ∈ B, {s, (n,m)} 6∈ E2
random.

Proof. Let P be the collection of all graphs G = (V (G), E(G)) such that V (G) is a
finite subset of ω2. Given G,F ∈ P, we say that G extends F (G ≥ F ) if F is an
induced subgraph of G. For all n ∈ ω and all finite disjoint sets A,B ⊆ (ω\{n})×ω
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let

Dn
A,B = {G ∈ P : A ∪B ⊆ V (G) ∧ ∃m ∈ ω∀s ∈ V (G)

((s ∈ A⇒ {s, (n,m)} ∈ E(G)) ∧ (s ∈ B ⇒ {s, (n,m)} 6∈ E(G)))}.

It is easily checked that for all n ∈ ω and all finite disjoint sets A,B ⊆ (ω\{n})×ω,
every G ∈ P has an extension F in Dn

A,B . Moreover, if a graph G is an element of
Dn
A,B , then so is every extension of G in P.
By recursion using some suitable book-keeping we choose a sequence

G0 ≤ G1 ≤ . . .

of graphs in P such that for all finite disjoint sets A,B ⊆ ω2 and every n ∈ ω, there
is k ∈ ω such that Gk ∈ Dn

A,B . Let G2
random be the direct limit of the graphs Gk,

k ∈ ω, i.e., let

G2
random =

(⋃
n∈ω

V (Gn),
⋃
n∈ω

E(Gn)

)
.

It is not difficult to verify that this graph has the desired properties. �

We are now ready to construct the coloring that witnesses Theorem 6.1.

Definition 6.8. Let {x, y} ∈ [ωω]2 and n = ∆(x, y). Let s, t ∈ ω2 be such that
x � (n+ 2) = (x � n)_s and y � (n+ 2) = (y � n)_t. Now put

cuniversal(x, y) =

0, {s, t} 6∈ E2
random

1, {s, t} ∈ E2
random.

Clearly, cuniversal is a coloring of depth 2. Whenever s, t ∈ ω<ω are such that
∆(s, t) is defined and ∆(s, t)+1 ∈ dom(s)∩dom(t), let cuniversal(s, t) be the unique
color in 2 of the form cuniversal(x, y) where s ⊆ x and t ⊆ y.

Lemma 6.9. For every continuous coloring c : [X]2 → 2 of depth 2 on a closed
subset of ωω, c ≤ cuniversal. In other words, cuniversal is universal for continuous
colorings of depth 2 on closed subsets of ωω.

Proof. Let X and c be as in the statement of the lemma and let T = T (X). Since c
is of depth 2, there is a map c from a subset of [T ]2 to 2 such that for all {x, y} ∈ [X]2

and all n ≥ 2,
c(x � (∆(x, y) + n), y � (∆(x, y) + n))

is defined and equal to c(x, y).
We define a level preserving, monotone injection i : T → ω<ω that induces a

topological embedding from X into ωω witnessing c ≤ cuniversal. Here by monotone
we mean that if s ⊆ t, then i(s) ⊆ i(t).
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Since i is supposed to be level preserving, it has to map the empty sequence to
the empty sequence. For i � (X ∩ω1) we choose any 1-1 map into ω1. Now suppose
that for some n > 1, i(s) has been defined for all s ∈ T ∩ω<n. Let ` = |T ∩ωn| ≤ ℵ0
and let (sk)k<` be an enumeration of T ∩ ωn.

Suppose for some k0 < `, i(sk) has been chosen for all k < k0. Let

A = {sk : k < k0 ∧∆(sk, sk0) < n− 1 ∧ c(sk, sk0) = 1}

and
B = {sk : k < k0 ∧∆(sk, sk0) < n− 1 ∧ c(sk, sk0) = 0}.

Let t = i(sk0 � (n − 1)). Observe that since i is level preserving, 1-1, and
monotone, for all s ∈ A ∪ B, ∆(i(s), t) < n − 1. By the definition of cuniversal
and by the properties of G2

random, there is some m ∈ ω such that for all s ∈ A,
cuniversal(i(sk), t_m) = 1 and for all s ∈ B, cuniversal(i(sk), t_m) = 0. Let i(sk0) =

t_m.
It is clear that i is level preserving, monotone, and 1-1. Moreover, by the

recursive construction, whenever s, t ∈ T are such that c(s, t) is defined, then
cuniversal(i(s), i(t)) is defined and equal to c(s, t).

We now define e : X → ωω by letting e(x) =
⋃
{i(x � n) : n ∈ ω}. Since i is

level preserving, 1-1, and monotone, e is well defined and a homeomorphism onto
its image. Let {x, y} ∈ [X]2 and n = ∆(x, y) + 2. Then

c(x, y) = c(x � n, y � n) = cuniversal(i(x � n), i(y � n)) = cuniversal(e(x), e(y)).

This shows that e witnesses c ≤ cuniversal. �

Proof of Theorem 6.1. Let X be a compact, zero-dimensional space of countable
weight and let c : [X]2 → 2 be continuous. By Lemma 6.6, we may assume that X
is a compact subset of ωω and c is of depth 2. By Lemma 6.9, c ≤ cuniversal. �

7. Subgraphs of clopen graphs and saturation

In Lemma 3.14 we observed that the infinite path does not embed into any
modular profinite graph. At this point it is not clear whether there is any countable
graph that does not embed into a clopen graph on a compact metric space. It turns
out that sufficiently saturated infinite graphs do not embed into any clopen graph
on a compact metric space.

Definition 7.1. Let G = (V,E) be a graph, A ⊆ V . A type over A is a function
f : A→ 2. A vertex v ∈ V \A realizes a type f over A if for all a ∈ A, a and v are
connected by an edge in G iff f(a) = 1.

Similarly, if c : [X]2 → 2 is a coloring and A ⊆ X, then a point x ∈ X realizes a
type f over A if x 6∈ A and for all a ∈ A, c(a, x) = f(a).
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For a cardinal κ, a graph G = (V,E), respectively a coloring c : [V ]2 → 2, is
κ-saturated if it is nonempty and every type over every subset A of V of size < κ

is realized. A graph of size κ is saturated if it is κ-saturated.

In the graph corresponding to the coloring cmin defined in Definition 4.12, every
vertex has neighbors and non-neighbors. This shows that this graph is 2-saturated.

Lemma 7.2. The graph G in Lemma 3.10 is 3-saturated.

Proof. Let x, y ∈ 2ω be distinct and let n = ∆(x, y). Let z ∈ 2ω extend y � (n+ 1).
Now the value of z(n + 1) determines whether or not x and z form an edge in G
and the value of z(n+ 2) determines whether or not y and z form an edge in G. It
follows that every type over {x, y} is realized in G. �

It turns out that there are uncountable modular profinite graphs of countable
weight that are 3-saturated. The graph corresponding to cmin is actually almost
3-saturated: only if x, y ∈ 2ω have ∆(x, y) = 0, then there are types over {x, y}
that are not realized.

Lemma 7.3. There is a modular profinite graph of countable weight that is 3-
saturated

Proof. By results of Glebskii, Kogan, Liogonki, and Talanov [12] and Fagin [4], for
every n ∈ ω there are finite graphs that are n-saturated, and in fact, in a precise
sense, almost all finite graphs are n-saturated. So, let m ∈ ω be such that there is
a 3-saturated graph on the set m of vertices. Let c : [m]2 → 2 be the corresponding
coloring. Let d : [mω]2 → 2 be defined by as follows: for distinct x, y ∈ mω let
n = ∆(x, y) and d(x, y) = c(x(n), y(n)).

Clearly, the graph Gd corresponding to d is modular profinite and of countable
weight. Whenever x, y ∈ mω are distinct and f is a type over {x, y}, then f is
realized by some z ∈ mω with ∆(x, y) = ∆(x, z) = ∆(y, z). The vertex z can to be
chosen so that z � ∆(x, y) = x � ∆(x, y) and z(∆(x, y)) realizes the obvious type
over {x(∆(x, y)), y(∆(x, y))} with respect to the coloring c. �

In the following we will be specifically interested in 4-saturated graphs. Note
that every 4-saturated graph has more than 3 elements.

Lemma 7.4. Every 4-saturated graph is prime.

Proof. Let G = (V,E) be 4-saturated and let A ⊆ V be a module of G containing
at least two distinct vertices x and y. Suppose that there is a vertex z ∈ V outside
A. Since every type over a 3-element set is realized in G, there are a, b ∈ V such
that a is connected to x and z but not to y and b is connected to y but not to x
and z. Since A is a module and a and b are each connected to only one of x and
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y, a, b ∈ A. But now z is connected to a and not to b. It follows that z ∈ A, a
contradiction. This finishes the proof of the lemma. �

For a set A ⊆ ωω and n ∈ ω let A � n denote the set {a � n : a ∈ A}.

Lemma 7.5. Let c : [F ]2 → 2 be a coloring of depth 2 on a closed subset of ωω.
Let A ⊆ F be of size at least 3 and suppose that every type over every 3-element
subset of A is realised in F . Let m = min{∆(x, y) : {x, y} ∈ [A]2}. Then for any
two distinct points a, b,∈ A, ∆(a, b) ≤ m+ 2. In particular, |A � (m+ 3)| = |A|.

Proof. Note that m = min{k ∈ ω : |A � (k + 1)| > 1}. Let a, b ∈ A be distinct and
assume that ∆(a, b) > m. Then there is z ∈ A such that ∆(a, z) = ∆(b, z) = m. If
c(a, z) 6= c(b, z), then, since c is of depth 2, a � (m+ 2) 6= b � (m+ 2).

Now assume that i = c(a, z) = c(b, z). Since every type over {a, b, z} is realized
in F , there is x ∈ F such that c(x, z) = 1− i and c(a, x) 6= c(b, x). Since c(x, z) is
different from c(a, z) and since ∆(a, z) = m, x � (m + 2) 6= a � (m + 2). In other
words, ∆(a, x) ≤ m + 1. Since c(a, x) 6= c(b, x), a � (m + 3) 6= b � (m + 3). This
implies that ∆(a, b) ≤ m+ 2. �

We are now ready to show that infinite 4-saturated graphs such as the random
graph, the unique countably infinite saturated graph, do not embed into any clopen
graph on a compact metric space.

Theorem 7.6. No infinite 4-saturated graph embeds into a clopen graph on a com-
pact metric space.

Proof. Let G = (X,E) be a clopen graph on a compact metric space. Let A ⊆ X

be such that the induced subgraph on A is 4-saturated. We will show that A is
finite.

Recall the modular partition Comp(X) of G into the (topologically) connected
components of X in Lemma 3.4. Since the induced subgraph on A is prime by
Lemma 7.4, either A is contained in a single connected component of X or no two
vertices of A are in the same connected component of X. Since A is 4-saturated,
it has both edges and non-edges. Hence, again by Lemma 3.4, no connected com-
ponent of X contains more than two vertices from A. It follows that A embeds
into the quotient G/Comp(X). The underlying space Comp(X) of G/Comp(X)

compact and zero-dimensional.
Since X of countable weight, so is Comp(X). Hence Comp(X) embeds into

2ω. By Lemma 6.6, G/Comp(X) is isomorphic to a clopen graph of depth 2 on a
compact subset of ωω. Hence we can assume that X is a compact subset of ωω and
G is of depth 2.
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Now let F be the closure of A in ωω. Let

m = min{∆(x, y) : {x, y} ∈ [A]2}.

By Lemma 7.5, |A � (m + 3)| = |A|. But since F is compact, for all n ∈ ω,
{a � n : a ∈ F} is finite. It follows that A � (n+ 3) and hence also A are finite. �

From Lemma 7.5 it follows immediately that no clopen graph of depth 2 on
a closed subset of ωω has an uncountable induced subgraph that is 4-saturated.
By Lemma 6.5, every uniformly continuous coloring on a closed subset of ωω is
isomorphic to a coloring of depth 2. It follows that no graph G on a closed subset of
ωω with cG uniformly continuous has an uncountable 4-saturated induced subgraph.

However, there are clopen graphs on ωω that are even ℵ0-saturated. This to-
gether with the previous remark shows that there are clopen graphs on ωω that do
not embed into any clopen graph whose corresponding coloring is uniformly contin-
uous. This is stated below in Corollary 7.8. In particular, cuniversal is not universal
for continuous colorings on ωω.

Let us call a graph G on a topological space X locally κ-saturated if for every
open set O ⊆ X and every x ∈ O there is an open set U such that x ∈ U ⊆ O and
the induced subgraph of G on U is κ-saturated.

Lemma 7.7. a) There is a clopen graph on ωω that is ℵ0-saturated and has chro-
matic and cochromatic number ℵ0.

b) There is a clopen graph on ωω that is locally ℵ0-saturated. The cochromatic
number of this graph is hm(cmax).

Proof. a) Let S be the collection of all finite sets S ⊆ ω<ω with all s ∈ S of the
same length > 0. Let F be the collection of all functions f with values in 2 and
dom(f) ∈ S. Let (fn)n∈ω\{0} be an enumeration of F such that for all n ∈ ω \ {0}
and all s ∈ dom(fn), s(0) ≤ n. For each n ∈ ω \ {0} let mn denote the common
length of all s ∈ dom(fn).

We now define the set E of edges of the clopen graph G as follows: E contains no
edge {x, y} with x(0) = y(0). For {x, y} ∈ [ωω]2 with x(0) 6= y(0) assume without
loss of generality that x(0) < y(0) and let {x, y} ∈ E iff for n = y(0) we have
x � mn ∈ dom(fn) and fn(x � mn) = 1.

It is immediate from the definition of E that G = (ωω, E) is clopen. Now,
whenever S is a finite subset of ωω and f : S → 2 is a type over S, then there is
some m such that |S � m| = |S|. Moreover, there is n ∈ ω \ {0} such that mn = m,
dom(fn) = S, and for all x ∈ S, fn(x � m) = f(x). Any y ∈ ωω with y(0) = n

realizes the type f over S. This shows that G is ℵ0-saturated.
The sets Bn = {x ∈ ωω : x(0) = n}, n ∈ ω, are independent and cover all of ωω.

Therefore the chromatic number of G is countable. Since G is ℵ0-saturated, G is
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does not have a finite cochromatic number. It follows that both the chromatic and
the cochromatic number of G are ℵ0.

b) Let G be the clopen graph constructed in the proof of a). Recall that G has no
edge {x, y} with ∆(x, y) > 0. We will add more edges to G, obtaining an enlarged
set E∗ of edges. The graph (ωω, E∗) will then witness b).

For each s ∈ ω<ω, the basic open subset [s] of ωω of all functions extending s is
homeomorphic to ωω by the homeomorphism hs : [s] → ωω that maps x ∈ [s] to
the function hs(x) : ω → ω defined by hs(x)(n) = x(n + |s|). For {x, y} ∈ [ωω]2

let {x, y} ∈ E∗ iff for the longest common initial segment s of x and y we have
{hs(x), hs(y)} ∈ E.

It is easily checked that G∗ = (ωω, E∗) is clopen and locally ℵ0-saturated.
Since every finite graph embeds into every open subset of G∗ by the local ℵ0-
saturation, the cochromatic number of G∗ is the maximal possible cochromatic
number hm(cmax). �

Corollary 7.8. No clopen graph G on a closed subset of ωω with cG uniformly
continuous is universal for all clopen graphs on closed subsets of ωω.

While there are ℵ0-saturated clopen graphs on ωω, there is no ℵ1-saturated
clopen graph on any Polish space. This was shown in a previous version of this
article. Then Arnold Miller observed that there is not even an ℵ1-saturated ∆0

2

graph on a Polish space. His argument gives slightly more.

Theorem 7.9. No ℵ1-saturated graph embeds into a ∆0
2 graph on a Polish space.

Proof. Let G be a ∆0
2 graph on a Polish space X and suppose F is an ℵ1-saturated

induced subgraph of G. Let Y ⊆ X be the set of vertices of F . Since F is ℵ1-
saturated, Y is an uncountable subset of X.

Let Z the set of points x ∈ X such that every open neighborhood of x has an
uncountable intersection with Y . Z is a closed subset of X. Since X is Polish
and Y is uncountable, Z is nonempty and has no isolated points. Also Y ∩ Z is
dense in Z. Choose a sequence (an)n∈ω in Y without repetition such that both
{a2n : n ∈ ω} and {a2n+1 : n ∈ ω} are dense in Z. Since the induced subgraph on
Y is ℵ1-saturated, there is a ∈ Y such that a form an edge with each a2n, n ∈ ω,
and no edge with any a2n+1, n ∈ ω.

But since G is ∆0
2, both G and its complement are Gδ. It follows that the set A

of neighbors of a in G and also the set B of non-neighbors of a in G are Gδ subsets
of X. Hence A ∩ Z and B ∩ Z are Gδ subsets of Z. Since {a2n : n ∈ ω} ⊆ A and
{a2n+1 : n ∈ ω} ⊆ B, both A and B are dense Gδ subsets of Z. But dense Gδ
subsets of a complete metric space are comeager. This contradicts the fact that A
and B are disjoint. �
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Theorem 7.9 is optimal. As Clinton Conley pointed out, there is an ℵ1-saturated
Fσ graph on 2ω. The graph itself is rather well-known since it is an example of
an Fσ graph that has an uncountable clique but no perfect clique. Graphs of this
kind are mentioned in [17], [20], and in [18]. Wiesław Kubiś has shown that every
Gδ-graph with an uncountable clique has a perfect clique [16].

Definition 7.10. Fix a homeomorphism h : 2ω → (2ω)ω. For each n ∈ ω let
πn : (2ω)ω → 2ω be the projection to the n-th coordinate and fn = πn ◦ h. Let
{x, y} ∈ E if there is n ∈ ω such that fn(x) = y or fn(y) = x.

Since graphs of continuous functions are closed subsets of the plane, the graph
G = (2ω, E) is Fσ.

Lemma 7.11. G is ℵ1-saturated.

Proof. Let A ⊆ 2ω be a countable set and let f : A → 2 be a type over A. After
enlarging A if necessary, we may assume that there are infinitely many a ∈ A

such that f(a) = 1. Fix a 1-1-enumeration (an)1≤n<ω of f−1(1). There are only
countably many b ∈ 2ω that are of the form fm(a) for some m ∈ ω and a ∈ A.
It follows that there is some a0 ∈ 2ω \ A such that for all m ∈ ω and all a ∈ A,
h−1((an)n∈ω) is different from all fm(a). Let b = h−1((an)n∈ω). Now for each
n ∈ ω, an = fn(b). It follows that for all n ∈ ω, {an, b} ∈ E. On the other hand,
for no a ∈ A and no n ∈ ω we have fn(a) = b. It follows that for a ∈ A we have
{a, b} ∈ E iff a ∈ {an : n ∈ ω}. This shows that b realizes the type f over A. �

Corollary 7.12. Every graph of size ℵ1 embeds into an Fσ-graph on 2ω.

Note that if a graph is κ-saturated then its complement is also κ-saturated.
Hence there is an ℵ1-saturated Gδ-graph. Under CH the ℵ1-saturated graph G

from Lemma 7.11 and its complement are combinatorially isomorphic, but they
are not topologically isomorphic since one has a perfect clique and the other one
does not. In fact, neither of the two graphs can be embedded into the other by
a continous map since such an embedding preserves perfect cliques and perfect
independent sets.

8. Nonexistence of universal clopen graphs on compact metric spaces

Let us first observe that there are universal graphs on 2ω and on ωω of higher
complexity than clopen. This was pointed out by Ben Miller.

Theorem 8.1. X be either the Cantor space 2ω or the Baire space ωω. Let α ∈
ω1 \ {0} and n ∈ ω \ {0}. Let Γ be one of the following classes of subsets of
X2 \ {(x, x) : x ∈ X}: Σ0

α, Π0
α, Σ1

n, and Π1
n. Then there is a graph G on X in the
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class Γ such that every graph on X in the class Γ embeds into G by a topological
embedding.

Proof. Since X is homeomorphic to X × X, we may use X × X as the space of
vertices of G. Let C ⊆ X × (X ×X) be a set in the class Γ that is universal in the
sense that for each set A ⊆ X ×X in Γ there is x ∈ X such that

A = Cx = {y ∈ X ×X : (x, y) ∈ C}

(see [13] for the existence of universal sets of class Γ). We define the set E of edges
of G as follows:

For all (x0, y0), (x1, y1) ∈ 2ω × 2ω with (x0, y0) 6= (x1, y1) let

{(x0, y0), (x1, y1)} ∈ E

iff (x0, (y0, y1)), (x0, (y1, y0)), (x1, (y0, y1)), and (x1, (y1, y0)) are all elements of C.
Since Γ is closed under finite intersections and under permutation of coordinates,
G = (X ×X,E) is a graph of class Γ.

If H is a graph of class Γ on X, let x ∈ X be such that Cx \ {(x, x) : x ∈ X} is
the edge relation of H. Now H is isomorphic to the induced subgraph of G on the
set {x} ×X. �

Some minimal care was necessary in the proof of Theorem 8.1 to capture the case
of open graphs. A slightly more straight forward argument works for closed graphs
and up. Observe that our construction of universal graphs does not immediately
show that there are, for example, Borel graphs that do not embed into Borel graphs
of lower complexity, topologically or just combinatorially. In fact, under CH every
graph on a Polish space, independent of its definability, combinatorially embeds
into a single ℵ1-saturated Fσ-graph on 2ω.

Our next goal is to show that there is no universal clopen graph on a compact
metric space. In fact, we can compute precisely how many clopen graphs on a
compact metric space are needed so that every clopen graph on a compact zero-
dimensional metric space embeds into one of them.

Theorem 8.2. For every family G of size less than d of clopen graphs on compact
metric spaces, there is a clopen graph on 2ω that does not embed into any member
of G.

Corollary 8.3. The least size of a family G of clopen graphs on compact, zero-
dimensional, metric spaces such that every clopen graph on a compact, zero-dimen-
sional, metric space embeds into a member of G is d.
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Proof. By Corollary 6.2, there is a family F of clopen graphs on 2ω such that every
clopen graph on a compact, zero-dimensional, metric space embeds into a member
of F .

By Theorem 8.2, there is no family F of size < d such that every clopen graph
on a compact, zero-dimensional, metric space embeds into a member of F . �

Lemma 7.5 plays a crucial role in the proof of Theorem 8.2. We first assign a
graph Gf to every non-decreasing function f : ω → ω \ 3.

Definition 8.4. Let f : ω → ω \ 3 be non-decreasing. We define a graph Gf of
depth 2 on a compact subset Vf of ωω as follows.

First let
Ff = {x ∈ ωω : ∀n ∈ ω(x(n) < f(n))}

and
Tf = T (Ff ) = {x � n : x ∈ Ff ∧ n ∈ ω}.

Fix t ∈ Tf and let n = |t| and

At = {s ∈ Tf : |s| = n+ 2 ∧ t ⊆ s}.

Let (gt,i)i<kt be an enumeration of all types over At. For each i < kt and all m ∈ ω
let

xt,i(m) =


t(m), if m < n,

f(n) + i, if m = n, and

0, if m > n.

Now let Xf = {xt,i : t ∈ Tf ∧ i < kt} and Vf = Ff ∪Xf . We define the set Ef of
edges in the graph Gf as follows:

All edges in Gf go between the sets Ff and Xf . Let y ∈ Ff and x ∈ Xf . Then
{x, y} ∈ Ef iff for n = ∆(x, y) and t = x � n there is some i < kt such that x = xt,i

and gi(y � (n+ 2)) = 1.

Note that all vertices in Xf are isolated points of Vf . Every accumulation point
of Xf is in Ff . Ff is compact. It follows that Vf is a closed subset of ωω. Clearly,
the tree of finite initial segments of Vf is finitely branching. Hence Vf is compact.
From the definition of Ef it follows that Gf is of depth 2.

The reason for the particular definition of Gf is the following: Let A ⊆ Ff

and t ∈ Tf be such that the map a 7→ a � (|t| + 2) is a bijection between A and
At. If g is a type over A, then there is a unique i < kt such that for all a ∈ A

gi(a � (n+ 2)) = g(a). The vertex xt,i now realizes the type g over the set A.
This argument proves the next lemma:

Lemma 8.5. Let A ⊆ Ff be such that for some n ∈ ω and all distinct a, b ∈ A,
either ∆(a, b) = n or ∆(a, b) = n+ 1. Then every type over A is realized in Gf .
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For two functions f, g : ω → ω we write f ≤∗ g if for all but finitely many n ∈ ω,
f(n) ≤ g(n).

Lemma 8.6. For each g : ω → ω there is a function f : ω → ω such that whenever
Gf embeds into a clopen graph G of depth 2 on a compact subset V of ωω, then for
all but finitely many n ∈ ω, |V � n| > g(n).

Proof. We may assume that g is non-decreasing. Choose a non-decreasing function
f : ω → ω\4 such that for all k ∈ ω for all but finitely many n ∈ ω, f(n) > g(k+2n).
This is possible since every countable set of functions from ω to ω is bounded with
respect to ≤∗.

Let e be an embedding of Gf into a clopen graph G of depth 2 on a compact
subset V of ωω. Let a, b ∈ Ff be distinct and ` = ∆(e(a), e(b)) + 2. Let t be
the longest common initial segment of a and b and let ta = a � (|t| + 1) and
tb = b � (|t|+ 1).

Claim 8.7. Suppose x, y ∈ Ff are distinct, extend t, and do not extend ta or tb.
Then

∆(e(x), e(y)) ≤ `+ 2(∆(x, y)− |t|).

We show the claim by induction on n = ∆(x, y), starting with the minimal
possible value, namely n = |t|. Let x, y ∈ Ff be such that t ⊆ x, y, ∆(x, y) = n,
and both x and y do not extend ta or tb. Then for all c, d ∈ {a, b, x, y}, ∆(c, d) = n.
Hence, by Lemma 8.5, all types over the set {a, b, x, y} are realized in Gf . Hence
all types over e[{a, b, x, y}] are realized in G. By Lemma 7.5,

|e[{a, b, x, y}] � (∆(e(a), e(b)) + 3)| = 4.

It follows that

∆(e(x), e(y)) ≤ ∆(e(a), e(b)) + 2 = ` = `+ 2(∆(x, y)− |t|).

Now let n ≥ |t| and suppose for all x, y ∈ Ff with ∆(x, y) = n that extend t,
but not ta or tb, we have ∆(e(x), e(y)) ≤ `+ 2(∆(x, y)− |t|). Let x, y ∈ Ff be such
that they extend t, but not ta or tb, and satisfy ∆(x, y) = n + 1. Choose z ∈ Ff
extending t, but not ta or tb, such that ∆(x, z) = n. By the inductive hypothesis,
∆(x, z) ≤ `+ 2(∆(x, y)−|t|). By Lemma 8.5, all types over {x, y, z} are realized in
Gf . It follows that all types over e[{x, y, z}] are realized in G. Hence, by Lemma
7.5,

∆(e(x), e(y)) ≤ ∆(e(x), e(z)) + 2

≤ `+ 2(∆(x, z)− |t|) + 2 = `+ 2(∆(x, y)− |t|).

This finishes the proof of the claim.
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Now let n0 = |t| and k = `+ 1. From the claim it follows that for every n > n0,

|V � (`+ 2(n− |t|) + 1)| ≥ |{x � (n+ 1) : x ∈ Ff ∧ t ⊆ x}| ≥ f(n).

Since f is nondecreasing, for all n > n0, |V � (k + 2n)| ≥ f(n). By the choice of
f , for all but finitely many n ∈ ω we have f(n) > g(k + 2 + 2n). It follows that
for all but finitely many n ∈ ω, |V � (k + 2n)| > g(k + 2 + 2n). Since the functions
n 7→ |V � (k + 2n)| and g are non-decreasing, this implies that for all but finitely
many n ∈ ω, |V � (k + 2n + 1)| > g(k + 2n + 1) and |V � (k + 2n)| > g(k + 2n).
Hence for almost all n ∈ ω, |V � (n)| > g(n). �

We are now ready to prove Theorem 8.2.

Proof of Theorem 8.2. Let G be a family of clopen graphs on compact metric spaces
and suppose that |G| < d. For each G ∈ G let G/Comp(V (G)) be the quotient of
G by the modular partition consisting of the (topologically) connected components
of the space V (G) of vertices of G. The space of connected components of V (G)

is compact, metric, and zero-dimensional. By Lemma 6.6, G/Comp(V (G)) is iso-
morphic to a graph CG of depth 2 on a compact subset of ωω. Let fG : ω → ω be
such that for all n ∈ ω,

fG(n) ≥ |V (CG) � n|.

Since |G| < d, there is a function g : ω → ω such that for all G ∈ G there
are infinitely many n ∈ ω with g(n) > fG(n). By Lemma 8.6 there is a function
f : ω → ω such that whenever Gf embeds into a clopen graph G of depth 2 on a
compact subset V of ωω, then for all but finitely many n ∈ ω, |V � n| > g(n). The
theorem follows immediately from the following claim.

Claim 8.8. Gf does not embed into any G ∈ G.

Let G ∈ G and assume that there is an embedding e of Gf into G. For any two
distinct members x and y of Ff there is z ∈ Xf such that x and z form an edge in
Gf but y and z do not. Since Comp(V (G)) is a modular partition of G and each
connected component of G is homogeneous, it follows that any two distinct vertices
of Gf are mapped by e into distinct connected components of G. Hence Gf embeds
into G/Comp(V (G)).

The graph embedding of Gf into G/Comp(V (G)) induces an embedding of Gf
into CG. By the properties of f , for almost all n ∈ ω

|V (CG) � n| > g(n).

However, by the choice of g, there are infinitely many n ∈ ω such that g(n) > fG(n).
But by the choice of fG, for almost all n ∈ ω,

fG(n) ≥ |V (CG) � n| > g(n),
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a contradiction. This finishes the proof of the claim and hence of the theorem. �

We finish this section with a discussion of the quasi-orders of clopen graphs on
2ω ordered by combinatorial, respectively topological embeddability.

Definition 8.9. Let (P,≤P ) and (Q,≤Q) be directed sets. A map ϕ : P → Q is
Tukey if for all q ∈ Q there is p ∈ P such that for all x ∈ P , ϕ(x) ≤Q q implies
x ≤P p. In other words, a map is Tukey if preimages of bounded sets are bounded.

If there is a Tukey map from P to Q we say that P is Tukey-reducible to Q and
write P ≤T Q. If P is Tukey reducible to Q and Q is Tukey reducible to P , then
P and Q are Tukey-equivalent and we write P ≡T Q.

The bounding number b(P ) of a directed set (P,≤P ) is the least size of an un-
bounded subset of P . The dominating number d(P ) of P is the least size of a subset
C of P such that for all p ∈ P there is c ∈ C such that p ≤P c. The usual bounding
number b and dominating number d are just the bounding and dominating number
of (ωω,≤∗).

Note that if P ≤T Q, then b(P ) ≥ b(Q) and d(P ) ≤ d(Q).
Let C denote the class of clopen graphs on closed subspaces of 2ω. Recall that

every clopen graph on a compact zero-dimensional metric space is topologically
isomorphic to a member of C. Let ≤c denote combinatorial embeddability and let
≤t denote topological embeddability between members of C. Then the identity map
on C shows that (C,≤c) ≤T (C,≤t).

Lemma 8.10. (ωω,≤∗) ≤T (C,≤c)

Proof. We define a Tukey map ϕ from (ωω,≤∗) to (C,≤c). For g : ω → ω let
f : ω → ω be the function given by Lemma 8.6. Let ϕ(g) be an isomorphic copy of
Gf that lives on a closed subset of 2ω. Given a graph G ∈ C, choose an isomorphic
copy of G that lives on a compact subset X of ωω and is of depth 2. For each n ∈ ω,
let f(n) = |X � n|.

Now, if for some g : ω → ω, ϕ(g) ≤c G, then the choice of ϕ(g), for all but
finitely many n ∈ ω, f(n) = |X � n| > g(n). It follows that g ≤∗ f , showing that ϕ
is a Tukey map. �

Lemma 8.11. (C,≤t) ≤T (ωω,≤∗).

Proof. In the following proof all embeddings of graphs are topological.
Each G ∈ G embeds into the graph Guniversal corresponding to the universal

coloring of depth 2. For f : ω → ω let

H(f) = Guniversal � {x ∈ ωω : ∀n ∈ ω(x(n) < f(n))}.

For each G ∈ G choose a strictly increasing function fG : ω → ω such that G
already embeds into H(fG). We show that ψ : C → ωω;G 7→ fG is a Tukey map.
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Let f ∈ ωω. Suppose that for some F ∈ C, ψ(F ) ≤∗ f . Since ψ(F ) ≤∗ f
and ψ(F ) is strictly increasing, there is k ∈ ω such that for all n ∈ ω we have
ψ(F )(n) ≤ f(n + k). For each n ∈ ω let g(n) = f(n + k). Then H(ψ(F )) embeds
into H(g).

Since for distinct x, y ∈ ωω, cuniversal only depends on the values of x and y

at ∆(x, y) and ∆(x, y) + 1, whenever for some graph G, e : G → Guniversal is an
embedding, then for all s ∈ ωω the map es : G → Guniversal; v 7→ s_e(v) is an
embedding as well.

This shows that the graph H(g) embeds into H(f). Hence F embeds into H(f).
This shows that ψ is indeed a Tukey map. �

Since Tukey reducibility is transitive, from Lemma 8.10, Lemma 8.11, and the
remark before Lemma 8.10 we get the following corollary:

Corollary 8.12. The quasi-orders (ωω,≤∗), (C,≤t), and (C,≤c) are Tukey equiv-
alent. In particular,

d(C,≤t) = d(C,≤c) = d

and
b(C,≤t) = b(C,≤c) = b.

9. Clopen graphs on large compact spaces

It is natural to ask whether every countable graph embeds into a clopen graph
on some large compact space such as βω, the Stone-Čech compactification of the
countably infinite discrete space. This is however not the case. In general, there is
no such thing as a compactification of graphs.

Theorem 9.1. No infinite, 4-saturated graph embeds into a clopen graph on a
compact space.

It turns out that the proof of Theorem 7.6 generalizes to arbitrary compact
spaces, but we have to give up the very convenient use of concepts like depth that
are related to the tree representation of closed subsets of ωω.

We will instead use the fact that every compact zero-dimensional space X is
homeomorphic to a closed subspace of the generalized Cantor cube 2κ where κ is
the weight of X.

Proof of Theorem 9.1. Exactly as in the proof of Theorem 7.6 we see that if a 4-
saturated graph embeds into any clopen graph on a compact space, then it embeds
into a clopen graph on a compact zero-dimensional space.

So let G = (X,E) be a clopen graph on the compact zero-dimensional space X
and let A be a subset of X of size at least 3 such that every type over a 3-element
subset of A is realized in G. We show that A is finite.
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Since X is compact and zero-dimensional, it is homeomorphic to a closed sub-
space of 2κ, where κ is the weight of X. Hence we may assume that X is actually
a closed subset of 2κ.

Let c : [X]2 → 2 denote the continuous coloring associated with G. For S ⊆
T ⊆ κ we say that T determines S if for all x, y ∈ X with x � S 6= y � S and all
x′, y′ ∈ X with x � T = x′ � T and y � T = y′ � T we have c(x, y) = c(x′, y′). In
other words, T determines S if for all x, y ∈ X with x � S 6= y � S the color c(x, y)

is already determined by the restrictions of x and y to T .

Claim 9.2. If S ⊆ κ is finite, then there is a finite set T ⊆ κ such that S ⊆ T and
T determines S.

For a finite set F ⊆ κ and a function f : F → 2 let [f ] denote the set of all
x ∈ 2κ with f ⊆ x. Let a, b : S → 2 be distinct. By the continuity of c, for all
x ∈ [a] ∩X and y ∈ [b] ∩X there are disjoint open sets Ux,y ⊆ 2κ and Vx,y ⊆ 2κ

such that for all x′ ∈ Ux,y ∩X and all y′ ∈ Vx,y ∩X, c(x, y) = c(x′, y′). The sets
Ux,y and Vx,y can be chosen of the form Ux,y = [fx,y] and Vx,y = [gx,y] for some
functions fx,y, gx,y : Fx,y → 2 with Fx,y ⊆ κ finite.

The family
{Ux,y × Vx,y : x ∈ [a] ∩X ∧ y ∈ [b] ∩X}

is an open cover of the compact set ([a] × [b]) ∩ (X × X) and hence has a finite
subcover. Let x1, . . . , xn and y1, . . . , yn be such that

([a]× [b]) ∩ (X ×X) ⊆
n⋃
i=1

([fxi,yi ]× [gxi,yi ]) .

Let F =
⋃n
i=1 Fxi,yi . Now for all x, y ∈ X with x � S = a and y � S = b, c(x, y) is

determined by the restrictions of x and y to F .
Since S is finite, 2S is finite. For all {a, b} ∈ [2S ]2 choose a finite set Fa,b ⊆ κ

such that for all x, y ∈ X with x � S = a and y � S = b, c(x, y) is determined by
the restrictions of x and y to Fa,b. Let

T = S ∪
⋃
{Fa,b : {a, b} ∈ [2S ]2}.

T is a finite superset of S that determines S. This finishes the proof of the claim.
Now S0 ⊆ κ be finite and such that A � S0 = {a � S0 : a ∈ A} has at least two

elements. By the claim, there are finite set S1, S2 ⊆ κ such that S0 ⊆ S1 ⊆ S2, S1

determines S0, and S2 determines S1.

Claim 9.3. For all distinct a, b ∈ A, a � S2 6= b � S2.

Let a, b ∈ A be distinct. If a � S0 6= b � S0, then certainly a � S2 6= b � S2. Hence
we can assume that a � S0 = b � S0. Since A � S0 has at least two elements, there
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is z ∈ A such that a � S0 = b � S0 6= z � S0. If c(a, z) 6= c(b, z), then, since S1

determines S0, a � S1 6= b � S1 and thus a � S2 6= b � S2.
Hence we can assume that c(a, z) = c(b, z). Since every type over {a, b, z} is

realized in G, there is x ∈ X such that c(a, x) 6= c(b, x) and c(x, z) 6= c(a, z). Since
c(x, z) 6= c(a, z) and a � S0 6= z � S0, x � S1 6= a � S1. Since c(a, x) 6= c(b, x) and
since S2 determines S1, a � S2 6= b � S2, showing the claim.

From the claim it follows immediately that |A � S2| = |A|. But A � S2 ⊆ 2S2

and 2S2 is finite. Hence A is finite. This finishes the proof of Theorem 9.1. �
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