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Abstract

We present a proof of a Ramsey-type theorem for infinite metric spaces due to
Matoušek. Then we show that for every K > 1 every uncountable Polish space
has a perfect subset that K-bi-Lipschitz embeds into the real line. Finally we study
decompositions of infinite separable metric spaces into subsets that, for some K > 1,
K-bi-Lipschitz embed into the real line.
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1 Introduction

For K > 1 we say that an embedding between metric spaces is a K-embedding
if the embedding and its inverse are both Lipschitz of constant K. Bourgain,
Figiel and Milman [2] showed that for every constant K > 1 every finite
metric space of size n has a subspace of size Ω(log n) that K-embeds into `2.
In particular, for every m there is n such that every metric space of size n has
a subspace of size m that K-embeds into `2. (See [1] for more recent results in
this direction.) This theorem clearly reminds one of the finite Ramsey Theorem
(see [7]) since it says that a large metric space has a large subspace on which
the metric is in some sense canonical. The finite Ramsey Theorem says that
for every coloring c : [X]2 → {0, 1} of the two-element subsets of an n-element
set X, X has a subset H of size Ω(log n) such that H is homogeneous, i.e.,
such that c is constant on the set [H]2 of two-element subsets of H.

1 The research for this paper was supported by G.I.F. Research Grant No. I-802-
195.6/2003.
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The infinite Ramsey Theorem says that for every coloring c : [X]2 → {0, 1} of
the two-element subsets of an infinite set X there is an infinite homogeneous
set H ⊆ X. The theorem of Bourgain, Figiel and Milman mentioned above
has an infinite analog as well. An even stronger Ramsey-type theorem for
infinite metric spaces has been stated, without a proof, by Matoušek [12]: For
every K > 1, every infinite metric space has an infinite subset that K-embeds
either into the real line or into an infinite uniform space, i.e., a metric space in
which any two distinct points have the same distance. A finite version of this
result was proved by Karloff, Rabani and Ravid [9] in the context of motion
planning.

It is well known that the infinite Ramsey Theorem fails at larger cardinals.
There is a coloring c : [R]2 → {0, 1} such that no uncountable subset of
R is homogeneous with respect to c [7, Section 6.4, Theorem 1]. However,
once some regularity condition is imposed on the coloring c : [X]2 → {0, 1},
there are large homogeneous sets. Galvin showed that if X is a Polish space
without isolated points and c : [X]2 → {0, 1} is a coloring such that the
sets {(x, y) ∈ X : {x, y} ∈ c−1(i)}, i ∈ {0, 1}, have the Baire property in
X2, then X has a perfect subset that is homogeneous with respect to c (see
[10, Theorem 19.7]). We prove a metric analog of this Theorem: If X is an
uncountable Polish space and K > 1, then X has a perfect subset that K-
embeds into the real line. Note that no regularity assumptions are necessary
in this case, simply because the metric on X is continuous by default. To
simplify the notation we call a set that K-embeds into the real line K-linear.
Having established the existence of large K-linear sets, we proceed further
and show that consistently every separable metric space can be covered by a
small number of K-linear sets. This development is similar to the situation
in continuous Ramsey theory [5], but technically simpler. We finally come up
with a strictly increasing sequence (Kn)n∈ω of real numbers > 1 such that for
all n ∈ ω it is consistent that less Kn+1-linear subsets of R2 are needed to
cover the whole plane than Kn-linear subsets.

1.1 Outline of the paper

Section 2 is devoted to a detailed proof of Matoušek’s theorem for infinite
metric spaces, the metric analog of Galvin’s theorem for uncountable Polish
spaces and some compactness results that will be used in Section 3. Section
3 mainly deals with consistency results related to decompositions of Polish
spaces into K-linear sets. Here some knowledge of set theory and in particular
forcing is assumed. [8] and [11] are excellent sources concerning this subject.
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2 Results in ZFC

2.1 Embedding sequences into R

Definition 1 a) Let f : X → Y be an injection between metric spaces (X, dX)
and (Y, dY ). For a real constant K ≥ 1, f is a K-embedding if for all x, y ∈ X
with x 6= y we have

1

K
≤ dY (f(x), f(y))

dX(x, y)
≤ K.

b) A metric space (X, d) is K-linear if it K-embeds into R.

Note that for K-embeddings f : X → Y and g : Y → Z, g ◦ f : X → Z is a
K2-embedding. Obviously, 1-embeddings are just isometric embeddings.

In this subsection we show that sequences in metric spaces are can be K-
embedded into R if they either diverge or converge sufficiently fast. We inter-
polate the embeddings into R by embeddings into ultrametric spaces.

Definition 2 A metric space (X, dX) is ultrametric if for all x, y, z ∈ X we
have dX(x, z) ≤ max(dX(x, y), dX(y, z)).

Definition 3 A sequence (xn)n∈ω is anti-Cauchy with respect to a metric d if
for every k ∈ ω there is n0 ∈ ω such that for all n,m ∈ ω with n0 ≤ n < m
we have k ≤ d(xn, xm).

Lemma 4 Let K > 1. Suppose (xn)n∈ω is a sequence that is anti-Cauchy with
respect to some metric d. Then X = {xn : n ∈ ω} has an infinite subset that
is K-linear.

The proof of this lemma is based on

Lemma 5 Let K > 1 and ε = 1− 1
K

. Suppose (xn)n∈ω is a sequence without
repetitions such that, with respect to some metric d, the following holds:

For every n ∈ ω and all i, j < n,

d(xi, xj) ≤ ε · d(xi, xn).

We define an ultrametric by letting

du(xi, xj) = d(x0, xmax(i,j))

for all i, j ∈ ω with i 6= j.
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Then the identity map on {xn : n ∈ ω} is a K-embedding with respect to d
and du. Moreover, ({xn : n ∈ ω}, du) is K-linear.

PROOF. We first show that du is indeed an ultrametric. Observe that the
sequence (d(x0, xn))n∈ω is increasing and hence du(xi, xk) ≤ du(xj, x`) if i < k,
j < ` and k ≤ `. Now let i, j, k ∈ ω be pairwise distinct. If max(i, j, k) = j,
then du(xi, xk) ≤ du(xj, xk). If max(i, j, k) ∈ {i, k}, then du(xi, xk) = du(xi, xj)
or du(xi, xk) = du(xj, xk). In any case we have

du(xi, xk) ≤ max(du(xi, xj), du(xj, xk)).

In order to show that the identity map is a K-embedding with respect to d
and du let i, j ∈ ω be such that i < j. Then

du(xi, xj)

d(xi, xj)
=
d(x0, xj)

d(xi, xj)
≤ d(x0, xi) + d(xi, xj)

d(xi, xj)
= 1 +

d(x0, xi)

d(xi, xj)
≤ 1 + ε ≤ K.

On the other hand,

du(xi, xj)

d(xi, xj)
=
d(x0, xj)

d(xi, xj)
≥ d(xi, xj)− d(x0, xi)

d(xi, xj)
= 1− d(x0, xi)

d(xi, xj)
≥ 1− ε ≥ 1

K
.

Finally, consider the embedding

e : {xn : n ∈ ω} → R;xn 7→ d(x0, xn).

For i, j ∈ ω with i < j we have

|e(xi)− e(xj)|
du(xi, xj)

=
d(x0, xj)− d(x0, xi)

d(x0, xj)
≤ 1

and

|e(xi)− e(xj)|
du(xi, xj)

=
d(x0, xj)− d(x0, xi)

d(x0, xj)
≥ 1− d(x0, xi)

d(x0, xj)
≥ 1− ε ≥ 1

K
.

This shows that e is a K-embedding with respect to du and the usual metric
on R. 2

Proof of Lemma 4 If (xn)n∈ω is anti-Cauchy, then it can easily be thinned
out to a sequence as in Lemma 5 for the constant

√
K. Lemma 4 now follows

by the remark after Definition 1. 2

Observe that a metric space X contains an anti-Cauchy sequence if and only
if its set of distances is unbounded. Therefore Lemma 4 implies
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Corollary 6 Let K > 1. Then every metric space X with an unbounded set
of distances has an infinite subset that is K-linear.

For Cauchy sequences we have the following analog of Lemma 4:

Lemma 7 Let K > 1. Suppose (xn)n∈ω is a sequence without repetitions that
is Cauchy with respect to some metric d. Then {xn : n ∈ ω} has an infinite
subset that is K-linear.

The proof of Lemma 7 uses

Lemma 8 Let K > 1 and ε = 1− 1
K

. Suppose (xn)n∈ω is a sequence without
repetitions such that, with respect to some metric d, the following holds:

For every n ∈ ω and all i, j, k > n,

d(xi, xj) ≤ ε · d(xn, xk).

We define an ultrametric by letting

du(xi, xj) = inf
k>i

d(xi, xk)

for all i, j ∈ ω with i < j.

Then the identity map on {xn : n ∈ ω} is a K-embedding with respect to d
and du. Moreover, ({xn : n ∈ ω}, du) is K-linear.

PROOF. We show that du is an ultrametric. First observe that du(xi, xj) only
depends on the smaller one of the indices. Moreover, the sequence (du(xi, xi+1))i∈ω
is decreasing since for all j > i+1 and all k > i we have d(xi+1, xj) ≤ ε·d(xi, xk)
and hence

du(xi+1, xi+2) = inf
j>i+1

d(xi+1, xj) ≤ inf
k>i

ε · d(xi, xk) = ε · du(xi, xi+1).

If i, j, k ∈ ω are pairwise distinct, then either j = min(i, j, k) or min(i, j, k) ∈
{i, k}. In the first case du(xi, xk) ≤ du(xi, xj). In the second case du(xi, xk) =
du(xi, xj) or du(xi, xk) = du(xj, xk). In any case we have

du(xi, xk) ≤ max(du(xi, xj), du(xj, xk)).

Now let i, j ∈ ω with i < j. Then

du(xi, xj)

d(xi, xj)
=

infk>i d(xi, xk)

d(xi, xj)
≤ 1.
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On the other hand,

du(xi, xj)

d(xi, xj)
=

infk>i d(xi, xk)

d(xi, xj)
≥ d(xi, xj)− supk>i d(xj, xk)

d(xi, xj)
≥ 1− ε =

1

K
.

It follows that the identity map is a K-embedding with respect to d and du.

Finally consider the embedding

e : {xn : n ∈ ω} → R;xn 7→ du(xn, xn+1).

For all i, j ∈ ω with i < j we have

|xi − xj|
du(xi, xj)

=
du(xi, xi+1)− du(xj, xj+1)

du(xi, xi+1)
≤ 1

and

|xi − xj|
du(xi, xj)

=
du(xi, xi+1)− du(xj, xj+1)

du(xi, xi+1)

= 1− infk>j d(xj, xk)

inf`>i d(xi, x`)
≥ 1− sup

k>j,`>i

d(xj, xk)

d(xi, x`)
≥ 1− ε =

1

K
.

It follows that e is a K-embedding with respect to du and the usual metric on
R. 2

Proof of Lemma 8 Since (xn)n∈ω has no repetitions, we may assume, after
removing a point from the sequence, that (xn)n∈ω does not converge to any of
the xn. For each n ∈ ω the sequence (d(xn, xi))i∈ω is Cauchy in R since (xn)n∈ω
is Cauchy with respect to d. Let dn = limi→∞ d(xn, xi). Note that dn > 0.

Let ε = 1− 1√
K

. By recursion on m ∈ ω we choose a strictly increasing sequence

(nm)m∈ω in ω such that for all m ∈ ω and all i, j, k ≥ nm+1 we have

d(xi, xj) ≤
ε

2
· dnm

and
1

2
· dnm ≤ d(xnm , xk).

Now if i, j, k,m ∈ ω are such that i, j, k > m, then

d(xni , xnj) ≤
ε

2
· dnm ≤ ε · d(xnm , xnk).

In other words, the sequence (xnm)m∈ω satisfies the requirements in Lemma
8 for the constant

√
K. Lemma 7 now easily follows by the remark after

Definition 1. 2
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If X is an infinite subset of Rn, then either it is unbounded and therefore
contains an anti-Cauchy sequence or its closure is compact and therefore X
contains a Cauchy sequence. From Lemma 4 and Lemma 7 we now easily
obtain

Corollary 9 Let K > 1. Then every infinite set X ⊆ Rn has an infinite
subset Y that is K-linear.

2.2 Metric spaces with a set of non-zero distances that is bounded from above
and from below

We use the infinite Ramsey Theorem to show that every infinite metric space
that neither has distinct points of very small nor of very large distance has an
infinite subsets where any two distinct points have nearly the same distance.

Theorem 10 (Ramsey, see Theorem 5 in [7, Section 1]) Let X be an
infinite set and let c be a map from the set [X]2 of two-element subsets of
X into a finite set of colors. Then X has an infinite subset H such that c is
constant on [H]2.

Note that an easy induction suffices to get Theorem 10 from its version for
two colors mentioned in the introduction.

Definition 11 A metric space X is uniform if there is a constant D such that
any two distinct points in X have distance D. X is K-uniform if it K-embeds
into a uniform metric space.

Clearly, a uniform metric space is ultrametric.

Observe that if the non-zero distances in a metric space X only vary by a
factor of at most K, then X is K-uniform. Just choose any D > 0 that occurs
as a distance in X and replace the metric on X by the uniform metric with
distance D.

On the other hand, if X is K-uniform, then the non-zero distances in X only
vary by a factor of at most K2.

Lemma 12 Let K > 1. Let (X, d) be an infinite metric space and assume
that there are ε > 0 and N ∈ ω such that for all x, y ∈ X with x 6= y we have
ε ≤ d(x, y) < N .

Then X has an infinite subset Y that is K-uniform.
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PROOF. For every n ∈ ω let cn = ε · Kn. Let M ∈ ω be maximal with
cM < N . For all x, y ∈ X with x 6= y let c(x, y) be the unique i ∈ {0, . . . ,M}
such that d(x, y) ∈ [ci, ci+1). By the infinite Ramsey Theorem, there is an
infinite set Y ⊆ X such that for some i ∈ {0, . . . ,M} for all x, y ∈ Y with
x 6= y we have c(x, y) = i. Now for all a, b, x, y ∈ Y with a 6= b and x 6= y we
have

ci ≤ d(a, b) < ci+1 = K · ci ≤ K · d(x, y).

By the remark after Definition 11, this shows that Y is K-uniform. 2

It it worth pointing out that the infinite Ramsey Theorem can be easily derived
from Lemma 12. If c : [X]2 → {0, 1} is a coloring, we define a metric on X
by letting d(x, y) = 1 if x 6= y and c(x, y) = 1, and d(x, y) = 2 if x 6= y and
c(x, y) = 0. By Lemma 12, X has an infinite subset H on which d is uniform.
If the distances are 1, all two-element subsets of H have color 1, if all distances
are 2, all two-element subsets of H have color 0.

2.3 A Ramsey-type theorem for infinite metric spaces

Theorem 13 (Matoušek [12]) Let X be an infinite metric space and K >
1. Then there is an infinite set Y ⊆ X that is either K-linear or K-uniform.

PROOF. Let d denote the metric on X. By Corollary 6 we may assume that
the set of distances in X is bounded (from above). Fix n > 0. For all x, y ∈ X
with x 6= y let

cn(x, y) =

0 if d(x, y) < 1
n
,

1 if d(x, y) ≥ 1
n

By recursion on n we construct a decreasing sequence (Hn)n∈ω of infinite
subsets of X as follows:

Let H0 = X. Assume we have constructed Hn. By the infinite Ramsey The-
orem, Hn has an infinite subset Hn+1 such that for some i ∈ {0, 1} for all
x, y ∈ Hn+1 with x 6= y we have cn+1(x, y) = i. We say that i is the color of
Hn+1.

Observe that if for some n > 0 the set Hn is of color 1, then for every m > n
the set Hm is of color 1. If Hn is of color 0, then for every m > n, Hm is of
color 0 or 1.

We are left with two cases.

(1) For every n > 0 the color of Hn is 0.
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(2) There is m > 0 such that for all n ≥ m the color of Hn is 1.

In Case (1) we choose a sequence (xn)n∈ω without repetitions such that for
every n ∈ ω, xn ∈ Hn. It is easily checked that the sequence is Cauchy. It
now follows from Lemma 7 that {xn : n ∈ ω} has an infinite subset Y that is
K-linear.

In Case (2) it follows from Lemma 12 that Hm has an infinite subset Y that
is K-uniform. 2

Since the K-embeddings in R in the proof of Theorem 13 all factor through low
distortion embeddings into ultrametric spaces, we actually have the following
slightly more explicit theorem:

Theorem 14 Let K > 1. Then every infinite metric space X has an infinite
subset Y that K-embeds into an ultrametric space that is either K-linear or
uniform.

2.4 A Ramsey-type theorem for complete metric spaces.

We now prove a metric analog of Galvin’s theorem about Borel colorings of the
two-element subsets of a complete metric space (see [10, Section 19.B]). Recall
that a set in a metric space is perfect if it is closed and has no isolated points.
We tacitly assume that perfect sets are non-empty. Every perfect subset of a
complete metric space is of size at least |R|.

Again we interpolate between a large subset Y of a given metric space X
and the real line using an ultrametric space. In this section we construct
ultrametrics using some sort of infinite version of hierachically well-separated
trees (see [1, Section 3.1]).

Definition 15 We will work on the space 2ω of all functions from ω to the
set 2 = {0, 1}. We approximate the elements of 2ω using finite sequences of
0’s and 1’s, i.e., elements of the set 2<ω =

⋃∞
n=0 2n. 2<ω is a tree with respect

to the order “s is an initial segment of t”. The points of 2ω correspond to the
infinite branches of the tree 2<ω via the map f 7→ {f � n : n ∈ ω}.

For s ∈ 2<ω and i ∈ 2 let s_i denote the sequence obtained by extending s by
the single digit i. For f, g ∈ 2ω let lci(f, g) denote the longest common initial
segment of f and g. We have lci(f, g) ∈ 2<ω if and only if f and g are distinct.

Lemma 16 Let K > 1 and ε = 1− 1
K

. Let ∆ : 2<ω → [0,∞) be such that for
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all s ∈ 2<ω we have

∆(s_0),∆(s_1) ≤ ε

2
·∆(s).

We define a metric on 2ω by letting du(f, g) = ∆(lci(f, g)).

Then du is an ultrametric and (2ω, du) is K-linear.

PROOF. In order to verify that du is an ultrametric, let f , g and h be
pairwise distinct elements of 2ω. Let s = lci(f, g). If s is an initial segment of
h, then s is also an initial segment of lci(f, h) and hence du(f, h) ≤ ∆(s) =
du(f, g). If s is not an initial segment of h, then lci(f, h) = lci(g, h) and hence
du(f, h) = ∆(lci(g, h)) = du(g, h). In both cases we have

du(f, h) ≤ max(du(f, g), du(g, h)),

showing that du indeed is an ultrametric.

We define an embedding of 2ω into R by letting

e(f) =
∞∑
n=0

(−1)f(n) · ∆(f � n)

2

for every f ∈ 2ω. The series e(f) converges for every f since (∆(f � n))n∈ω
decreases sufficiently fast. More precisely, for every m ∈ ω,

∣∣∣∣∣e(f)−
m∑
n=0

(−1)f(n) · ∆(f � n)

2

∣∣∣∣∣ =

∣∣∣∣∣∣
∞∑

n=m+1

(−1)f(n) · ∆(f � n)

2

∣∣∣∣∣∣
≤ ε

2
·∆(f � m) ·

∞∑
n=1

1

2n
=
ε

2
·∆(f � m).

It follows that if f, g ∈ 2ω are distinct and s = lci(f, g) then

1

K
≤ 1− ε ≤ (1− ε) · du(f, g)

du(f, g)

=
(1− ε) ·∆(s)

du(f, g)
≤ |e(f)− e(g)|

du(f, g)
≤ (1 + ε) ·∆(s)

du(f, g)

=
(1 + ε) · du(f, g)

du(f, g)
≤ 1 + ε ≤ K.

Therefore e is a K-embedding. 2

Using Lemma 16 it is now easy to prove
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Theorem 17 Let K > 1. Let (X, d) be a complete metric space without iso-
lated points. Then X has a perfect subset Y that K-embeds into an ultrametric
space that is K-linear.

PROOF. The proof of this theorem is a straight forward construction of a
Cantor space using a tree of open sets.

Let ε = 1 − 1
K

. We choose a family (xs)s∈2<ω of points in X and a family
(Os)s∈2<ω of open subsets of X such that the following conditions are satisfied:

(1) For all s ∈ 2<ω, xs ∈ Os.
(2) If t ∈ 2<ω is a proper extension of s ∈ 2<ω, then cl(Ot) ⊆ Os.
(3) For all s ∈ 2<ω the diameters of Us_0 and Us_1 are at most ε

4
·∆(s) where

∆(s) = d(xs_0, xs_1).

Since ε < 1, (3) implies

(4) If s, t ∈ 2<ω are distinct sequences of the same length, then cl(Us) and cl(Ut)
are disjoint.

The families (xs)s∈2<ω and (Os)s∈2<ω can be chosen by recursion on the length
of s since X has no isolated points and therefore every non-empty open subset
of X is infinite.

By (1)–(3), for every f : ω → 2 the sequence (xf�n)n∈ω is Cauchy. Since X is
complete, xf = limn→∞ xf�n exists. By (4), if f 6= g, then xf 6= xg. If follows
that e : 2ω → X; f 7→ xf is 1-1. It is easily checked that Y = e[2ω] is a perfect
set. In fact, Y is a homeomorphic copy of the Cantor set.

Note that by (1)–(3), ∆ satisfies the requirements of Lemma 16. Let du be the
ultrametric on 2ω defined from ∆. By Lemma 16, (2ω, du) is K-linear.

It remains to show that e is a K-embedding with respect to du and d.

Let f, g ∈ 2ω be distinct. Let s = lci(f, g). Then du(f, g) = ∆(s). We may
assume that s_0 is an initial segment of f and s_1 of g.

By (2), xf ∈ Us_0 and xg ∈ Us_1. Now by (3) we have

1

K
≤ (1− ε) · d(xs_0, xs_1)

d(xs_0, xs_1)
≤ d(xf , xg)

du(xf , xg)
≤ (1 + ε) · d(xs_0, xs_1)

d(xs_0, xs_1)
≤ K.

This shows that e indeed is a K-embedding. 2
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2.5 Compactness

We collect some properties of K-embeddability that are related to compact-
ness. The results of this subsection will be used in Section 3 in order to analyze
the infinite combinatorics of K-embeddability. A metric space X is homoge-
neous if for any two points x, y ∈ X there is an isometry of X mapping x to
y.

Theorem 18 Let M be a separable metric space and let X be a homogeneous
metric space in which every bounded set is contained in a compact set. If
K > 1, then M K-embeds into X iff every finite subset of M K-embeds into
X.

PROOF. If M K-embeds into X, then so does every finite subset of M .

Now suppose that every finite subset of M K-embeds into X. Using the sepa-
rability of M fix a dense subset {an : n ∈ ω} of M and set Fn = {a0, . . . , an}.
For every n let en be a K-embedding of Fn into X. By the homogeneity of X
we may assume that all en map a0 to the same point x0.

Note that for every n ∈ ω, the sequence (en(ak))n≥k is bounded and there-
fore has a convergent subsequence. Inductively we can find an infinite subse-
quence (eni)i∈ω of the sequence (en)n∈ω such that for all n ∈ ω the sequence
(eni(an))i∈ω∧ni≥n converges. For each n ∈ ω let

xn = lim
i→∞

eni(an).

It is easily checked that an 7→ xn defines a K-embedding of {an : n ∈ ω} into
X. This embedding has a unique continuous extension to all of M that is also
a K-embedding. 2

Corollary 19 Let K > 1. If n > m, then there is a finite set F ⊆ Rn that is
not K-embeddable into Rm.

PROOF. Since Rn is not homeomorphic to a subset of Rm, Rn does not K-
embed into Rm. Now the existence of a finite set F that is not K-embeddable
into Rm follows from Theorem 18. 2

An argument similar to that in the proof of Theorem 18 yields the following:

Lemma 20 Let M be a finite metric space and let X be a homogeneous metric
space such that every bounded set is contained in a compact set. If M K-embeds
into X for some K, then there is is a least such K.
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PROOF. Let (Kn)n∈ω be a decreasing sequence of real numbers > 1 such
that for all n, M Kn-embeds into X. Let K = limn→∞Kn. For every n ∈ ω
fix a Kn-embedding en : M → R. By the homogeneity of X we may assume
that there is a point in M that is mapped to the same point in X by every
en. Now we can thin out the sequence of embeddings en so that we obtain
a subsequence (eni)i∈ω with the property that for each x ∈ M the sequence
(eni(x))i∈ω converges. For each x ∈ M let e(x) = limi→∞ eni(x). It is easily
checked that e : M → R is a K-embedding. 2

Corollary 21 Let M be a separable metric space and let X be a homogenous
metric space such that every bounded subset of X is contained in a compact
set. If for some K the space M K-embeds into X, then there is a least such
K.

PROOF. For each finite set F ⊆ M let KF denote the least K such that F
K-embeds into X. Let

K = sup{KF : F ⊆M is finite}.

By Theorem 18, M K-embeds into X and K is minimal with this property. 2

3 Covering numbers

3.1 Covering metric spaces by K-linear sets

Fix K > 1. Theorem 17 shows that every uncountable Polish space has large
K-linear subset. We generalize this fact and show that it is consistent that
every separable metric space can be covered by a small number of K-linear
sets.

Let U be Urysohn’s universal separable metric space. Since every separable
metric space isometrically embeds into U, it is sufficient to show that U can
consistently be covered by a small number of K-linear sets. We will, however,
carry out a forcing construction that works for any fixed separable metric
space, not just the Urysohn space.

Definition 22 Let M be a separable metric space. Let PM denote the forcing
notion consisting of finite subsets of M that are k-linear for some k with
1 < k < K. The order on PM is reverse inclusion.

Lemma 23 PM is σ-linked.
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PROOF. First observe that all 2-element subsets of M isometrically embed
into R. It follows that the set of all singletons in PM is linked.

Now let n > 1. For a partial 1-1 map e from M into R let Distortion(e)
denote the least k such that the e is a k-embedding. If e is of size n, then e
can be considered as an element of (M × R)n. Clearly, the map Distortion is
continuous on the set of elements of (M × R)n that correspond to 1-1 maps
of size n.

Let p ∈ PM be of size n, say p = {a1, . . . , an}. Choose k < K so that p is
k-linear and fix a k-embedding e : p → R. Let U1, . . . , Un ⊆ M be pairwise
disjoint open sets such that for all i ∈ {1, . . . , n}, ai ∈ Ui. Let V1, . . . , Vn ⊆ R
be pairwise disjoint open sets such that for all i ∈ {1, . . . , n}, e(ai) ∈ Vi.

By the continuity of Distortion we can choose the Ui and Vi so small that for
all (x1, . . . , xn) ∈ U1 × · · · × Un and all (y1, . . . , yn) ∈ V1 × · · · × Vn we have

Distortion((x1, y1), . . . , (xn, yn)) <
k +K

2
.

We may assume that all the Vi are intervals of length ε for some fixed ε > 0.
We may also assume that all the Ui are of diameter < ε. Finally, we may
assume that the Ui are chosen from a fixed countable base of the topology on
M .

Now, whenever

(x0
1, . . . , x

0
n), (x1

1, . . . , x
1
n) ∈ U1 × · · · × Un

the conditions {x0
1, . . . , x

0
n} and {x1

1, . . . , x
1
n} are compatible: It is enough to

show that {xji : j ∈ 2 ∧ i ∈ {1, . . . , n}} is k+K
2

-linear. But we can construct a
k+K

2
-embedding

f : {xji : j ∈ 2 ∧ i ∈ {1, . . . , n}} → R

as follows:

For i ∈ {1, . . . , n} we choose y0
i and y1

i in Vi of the same distance as x0
i and

x1
i . This is possible since the interval Vi is of length ε. We claim that the map
f that maps each xji to yji is a k+K

2
-embedding.

To see this, consider two distinct points a, b ∈ dom(f). If a ∈ Uia and b ∈ Uib
with ia 6= ib, then f(a) ∈ Via and f(b) ∈ Vib . From the choice of the Ui and
the Vi it follows that

2

k +K
≤ dM(f(a), f(b))

|a− b|
≤ k +K

2
.
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If a and b lie in the same Ui, then

dM(f(a), f(b))

|a− b|
= 1.

It follows that f indeed is a k+K
2

-embedding.

This argument shows that for each condition p ∈ PM with p = {x1, . . . , xn} for
some pairwise distinct xi, there are pairwise disjoint basic open sets U1, . . . , Un ⊆
M such that the set PU1,...,Un of all conditions q = {y1, . . . , yn} ∈ PM with
(y1, . . . , yn) ∈ U1 × · · · × Un is linked and p ∈ PU1,...,Un . Since there are only
countably many basic open sets and hence only countably many finite se-
quences of those, it follows that PM is σ-linked. 2

Using this lemma it is easy to show

Theorem 24 There is a c.c.c. forcing notion P such that

P “for every K > 1 and every separable metric space M ,

M is coverable by at most ℵ1 K-linear sets”

PROOF. Since every separable metric space is isometric to a subspace of
Urysohn’s universal space U, it is enough to force that U can be covered by at
most ℵ1 K-linear sets. It is worth pointing out that the space U in a forcing
extension V [G] of the set-theoretic universe V is simply the completion in
V [G] of the space U in V .

We now construct P as follows:

Let Q denote the finite support product of countably many copies of PU. Q is
σ-linked:

Let PU =
⋃
n∈ω Ln where each Ln is linked. For each f ∈ ω<ω let Lf denote the

subset of Q that consists of all conditions q such that q(n) = Lf(n) whenever
n ∈ dom(f) and q(n) = 1PU otherwise. It is easily checked that each Lf is
linked and that Q =

⋃
f∈ω<ω Lf . It follows that Q is σ-linked.

Q generically adds countably many K-linear subsets of U and an easy density
argument shows that these sets cover the ground model version of U. Now let
P be the finite support iteration of Q of length ω1.

Let G be a P-generic filter over the ground model V . Since the length of
the iteration is of uncountable cofinality, every new real is added at some
intermediate stage of the iteration. In particular, every element of the Urysohn
space of the final extension appears at some intermediate stage of the iteration.

15



It follows that the ℵ1 K-linear subsets of U that have been added in the
process, countably many at each stage, cover the whole Urysohn space of
V [G] 2

Corollary 25 It is consistent with arbitrarily large values of 2ℵ0 that every
separable metric space can be covered by ℵ1 K-linear sets.

PROOF. Start with a model of set theory with the desired size of 2ℵ0 and
force with the partial order P constructed in Theorem 24. Since P is c.c.c., no
cardinals are collapsed. Since P has a dense subset of size 2ℵ0 , the value of 2ℵ0

is not changed in the generic extension by P. 2

Note that the argument can be easily modified in such a way that we obtain
the consistency result for all K > 1 at the same time. All that has to be
guaranteed is that for every n > 0, the constant K = 1 + 1

n
is dealt with

cofinally often during the iteration.

It is worth pointing out that even R2 is not coverable by less than 2ℵ0 isometric
copies of subsets of R. This is because every isometric copy of a subset of R
is contained in a one-dimensional affine subspace of R2 and less than 2ℵ0 one-
dimensional affine subspaces do not cover R2.

3.2 Covering Rn by low-distortion copies of the real line

Theorem 24 might be regarded as slightly unsatisfactory since the K-linear
sets added by forcing notions of the form PM are very thin, i.e., they actually
do not resemble anything that really looks like the real line.

It may be more natural to try to cover separable metric spaces by bi-Lipschitz-
images of R. There are obvious limitations to this: in a zero-dimensional space
such as the Cantor space every continuous image of the real line is just a
singleton. Hence we cannot hope to cover general separable metric spaces by
less than 2ℵ0 continuous images of the real line.

On the other hand, there is no obvious limitation if we want to cover Rn by a
small number of bi-Lipschitz images of R. The problem is, however, that K-
bi-Lipschitz maps from closed subsets of R into Rn might not be extendable
to K-bi-Lipschitz maps that are defined on all of R.

We will produce K-bi-Lipschitz images of R using graphs of Lipschitz func-
tions.
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Lemma 26 Let f : R → R be Lipschitz of constant ε > 0. Then f , regarded
as a subset of R2, is a

√
1 + ε-bi-Lipschitz image of R.

PROOF. Let g : R → R2 be defined by letting g(x) = (f(x), x). Now, for
two distinct x, y ∈ R we have

|g(x)− g(y)|
|x− y|

=

√
(f(x)− f(y))2 + (x− y)2

|x− y|
≥ 1.

On the other hand,

|g(x)− g(y)|
|x− y|

=

√
(f(x)− f(y))2 + (x− y)2

|x− y|

≤

√
(ε · (x− y))2 + (x− y)2

|x− y|
=
√

1 + ε

Hence g is
√

1 + ε-bi-Lipschitz. Clearly, f = g[R]. 2

We use the Dual Open Coloring Axiom (DOCA) to show the consistency of
covering Rn by fewer than 2ℵ0 K-bi-Lipschitz images of R.

For every topological space X the set [X]2 of two element subsets of X carries
the topology generated by sets of the form

{{x, y} : x ∈ U ∧ y ∈ V }

where U and V are disjoint open subsets of X. An open pair cover on X is a
finite collection U1, . . . , Un of open subsets of [X]2 such that [X]2 = U1 ∪ · · · ∪
Un. A set H ⊆ X is homogeneous of color i ∈ {1, . . . , n} if [H]2 ⊆ Ui. Now
DOCA is the statement

“For every open pair cover U1, . . . , Un on a Polish space X, X is the union of
fewer than 2ℵ0 homogeneous sets”.

The axiom DOCA is known to be consistent with ZFC [4] and it implies
2ℵ0 > ℵ1. All known models of DOCA satisfy 2ℵ0 = ℵ2.

Theorem 27 For every K > 1 and every n > 1, DOCA implies that R2 is
the union of less than 2ℵ0 K-bi-Lipschitz images of R.

PROOF. We define an open pair cover on R2 as follows:
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Let ε > 0 be such that
√

1 + ε < K. Let γ = arc tan ε. Choose finitely many
open intervals I1, . . . , In of angles such that every angle is contained in at least
one Ii and moreover, each Ii has diameter less than 2γ. For each i ∈ {1, . . . , n}
let Ui denote the set of all

{(x1, y1), (x2, y2)} ∈ [R2]2

such that the angle of the line through (x1, y1) and (x2, y2) with the x-axis is
an element of Ii.

Since the Ii are open, the Ui are open subsets of [R2]2. For each i let αi be the
midpoint of the interval Ii. Now, if H is a homogeneous subset of R2 of color
i, then rotating H by the angle −αi yields a subset of R2 that is the graph of
a partial Lipschitz map from R to R of constant ε.

A partial Lipschitz map of constant ε has a unique extension to the closure
of its domain that is also Lipschitz of constant ε. A partial Lipschitz map of
constant ε from a closed subset of R to R can be extended to all of R by linear
interpolation on the open intervals where the map is originally undefined. By
Lemma 26 and by the choice of K, the graph of a Lipschitz map of constant
ε from R to R is a K-bi-Lipschitz image of R.

Being a K-bi-Lipschitz image of R is clearly rotation invariant. It follows that
every homogeneous set H for the open pair cover U1, . . . , Un is contained in a
K-bi-Lipschitz image of R. Using the Dual Open Coloring Axiom we obtain
a family H ⊆ P(R2) of size < 2ℵ0 consisting of homogeneous sets such that
R2 =

⋃H. Since each H ∈ H is contained in a K-bi-Lipschitz image of R by
the argument above, R2 is coverable by < 2ℵ0 K-bi-Lipschitz images of R. 2

The next lemma shows that higher dimensional instances of Theorem 27 ac-
tually follow from it.

Lemma 28 Let K > 1. If R2 can be covered by κ K-linear sets for some
K > 1 and some cardinal κ, then for every n > 1, Rn can be covered by κ
Kn−1-linear sets.

If R2 can be covered by κ K-bi-Lipschitz images of R for some K > 1 and some
cardinal κ, then for every n > 1, Rn can be covered by κ Kn−1-bi-Lipschitz
images of R.

PROOF. We show the lemma by induction on n and concentrate on the
statement about K-bi-Lipschitz images of R. The K-linear sets can be handled
in the same way.
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Suppose Rn can be covered by less than 2ℵ0 Kn−1-bi-Lipschitz images of R.
Fix a family F of size < 2ℵ0 of Kn−1-bi-Lipschitz maps from R to Rn whose
images cover all of Rn. For each f ∈ F the map

id×f : R2 → R× Rn; (x, y) 7→ (x, f(y))

is clearly Kn−1-bi-Lipschitz.

Fix a family G of size < 2ℵ0 of K-bi-Lipschitz maps from R to R2 whose images
cover all of R2. For all g ∈ G and all f ∈ F the map

(id×f) ◦ g : R→ Rn+1

is Kn-bi-Lipschitz. Moreover, the images of all the maps (id×f) ◦ g, f ∈ F ,
g ∈ G, cover all of Rn+1. But there are only |F | · |G |< 2ℵ0 maps of this
form. 2

Corollary 29 For every n > 1 and every K > 1, DOCA implies that Rn can
be covered by less than 2ℵ0 K-bi-Lipschitz copies of R.

A more general form of Lemma 28 can be proved in the same way.

Lemma 30 Let K > 1, n > m ≥ 1 and let κ be a cardinal. If Rm+1 can be
covered by κ sets that K-embed into Rm, then Rn can be covered by κ sets that
Kn−m-embed into Rm.

If Rm+1 can be covered by κ K-bi-Lipschitz images of Rm, then Rn can be
covered by κ Kn−m-bi-Lipschitz images of Rm.

4 Covering the plane by K-linear sets and localization numbers

We use the results from Section 2.5 to show a relation between the so-called
localization numbers and coverings of R2 by K-linear sets.

Definition 31 Let m > n > 0. A set S ⊆ mω is n-ary if no n + 1 distinct
points of S pairwise disagree for the first time at the same coordinate. The
least number of n-ary sets that cover mω is the localization number ln,m.

It is not hard to see that

2ℵ0 = l1,2 ≥ l2,3 ≥ . . .

Moreover, a simple induction shows that ln,m = ln,n+1 whenever m > n > 0.
For all n,m > 1 with n < m the statement lm,m+1 > ln,n+1 is consistent with
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ZFC [14]. It is even possible to separate finitely many numbers ln,n+1 in the
same model of set theory [6].

Theorem 32 Let K > k > 1, n > 1 and suppose there is an (n+ 1)-element
subset F of R2 that is not K-linear. Then at least ln,n+1 k-linear sets are
necessary to cover R2.

PROOF. Let F = {x0, . . . , xn}. There are pairwise disjoint open sets

O0, . . . , On ⊆ R2

such that xi ∈ Oi for all i ≤ n and whenever yi ∈ Oi for all i ≤ n, then
{y0, . . . , yn} is k-linear. Using F , respectively the collection U0, . . . , Un, as a
template, we construct an embedding e : (n + 1)ω → R2 such that whenever
S ⊆ (n+ 1)ω is not n-ary, then e[S] is not k-linear.

It is clear that the existence of e gives the desired result: If S is a family of
k-linear subsets of R2 such that

⋃S = R2, then {e−1[S] : S ∈ S} is a family
of n-ary sets that covers (n+ 1)ω.

Let G denote the set cl(U0 ∪ · · · ∪ Un). By recursion on (n + 1)<ω we define
a family (fσ)σ∈(n+1)<ω of affine linear bijections on R2. Each fσ will be the
composition of a translation and dilation, i.e., a homothetic transformation.
Let f∅ be the identity on R2. Suppose fσ has been defined for some σ ∈
(n+ 1)<ω. For each i ≤ n choose a homothetic transformation fσ_i : R2 → R2

that maps the set G to a subset of fσ[Ui]. Moreover, choose fσ_i so that the
diameter of each fσ_i[Uj], j ≤ n, is at most one half of the diameter of fσ[Ui].

Now we are ready to define the embedding e. For a ∈ (n+ 1)ω let

e(a) = lim
k→∞

fa�k(xa(k)).

Equivalently, e(a) is the unique element of the set
⋂
k∈ω fa�k[cl(Ua(k))].

If S ⊆ (n+ 1)ω is not n-ary, then there are points a0, . . . , an ∈ S that pairwise
disagree for the first time on the same coordinate k, i.e., for some σ ∈ (n+1)k,
σ = a0 � k = · · · = an � k and a0(k), . . . , an(k) are pairwise different. We may
assume that ai(k) = i for all i ≤ n. Now

e(ai) ∈ fσ[Uai(k)] = fσ[Ui].

Since fσ is a homothetic transformation, by the choice of the original set F
and by the choice of the Ui, the set {e(a0), . . . , e(an)} is not k-linear. This
finishes the proof of the Theorem. 2
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A similar argument shows that for all n ≥ 2 and all sufficiently small K > 1,
at least ln,n+1 subsets of Rn that K-embed into Rn−1 are necessary to cover
all of Rn.

The next theorem nicely complements Theorem 32.

Theorem 33 Let K > k > 1 and n > 1 be such that every (n + 1)-element
subset of R2 is k-linear. Then there is a forcing extension of the set-theoretic
universe in which R2 can be covered by ℵ1 K-linear subsets while ln,n+1 > ℵ1.

We first need to make sure that for every n > 1 there is some k > 1 such that
every (n+ 1)-element subset of R2 is k-linear. This follows from

Theorem 34 (Matoušek [13]) For every n > 0 there is Kn > 1 such that
every metric space with n points is Kn-linear.

There are two different strategies to prove Theorem 33. The first one is to
start with a model of set theory in which CH holds and then to increase ln,n+1

in a way that tends to increase other cardinal invariants as little as possible.
This approach is resonably well understood [15].

We will use a different approach. Namely, we start with a model of set theory
in which ln,n+1 is large, for example a model of Martin’s Axiom and ¬CH,
and then decrease the number of K-linear sets needed to cover R2 without
decreasing ln,n+1.

A property of a forcing notion P that guarantees that ln,n+1 is not decreased
by forcing with P is σ-(n+ 1)-linkness.

Definition 35 A subset S of a forcing notion P is n-linked if any n elements
of S have a common extension in P. P is σ-n-linked if P is the union of
countably many n-linked subsets.

Lemma 36 Suppose P is σ-(n+1)-linked. Let G be P-generic over the ground
model V . Then (ln,n+1)

V [G] ≥ (ln,n+1)
V .

PROOF. First observe that P is c.c.c. Hence V [G] has the same cardinals as
V . Now let κ be a cardinal and assume that in V [G], (Sα)α<κ is a family of
n-ary subsets of (n + 1)ω with (n + 1)ω =

⋃
α∈κ Sα. For each α < κ let Ṡα be

a P-name for Sα.

There is a condition in G that forces (n+1)ω to be the union of the Ṡα, α < κ,
and that forces each Ṡα to be n-ary. For simplicity we assume that the largest
element of P already forces this. The general case is handled by exactly the
same argument but is notationally slightly more complicated.
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We work in the ground model. Let P =
⋃
i∈ω Pi with each Pi (n + 1)-linked.

For every i ∈ ω and every α < κ let

Siα = {a ∈ (n+ 1)ω : ∃p ∈ Pi(p  a ∈ Ṡα)}.

For each a ∈ (n + 1)ω there is some α < κ and a condition p ∈ P that
forces a to be an element of Ṡα. If p ∈ Pi, then a ∈ Siα. It follows that
(n + 1)ω =

⋃
α<κ∧i∈ω S

i
α. The proof of the lemma is finished if we can show

that each Siα is n-ary. This is because in V , (n+1)ω is the union of the κ n-ary
sets Siα. This shows (ln,n+1)

V ≤ (ln,n+1)
V [G].

Now let α < κ and i ∈ ω. Suppose a0, . . . , an are elements of Siα. Fix p0, . . . pn ∈
Pi such that for all j ≤ n, pj forces aj to be in Ṡα. Since Pi is (n+ 1)-linked,
the pj have a common extension p ∈ P. Now p forces a0, . . . , an to be elements
of Ṡα. Since Ṡα is forced to be n-ary, a0, . . . , an cannot pairwise disagree for
the first time at the same coordinate. Hence Siα is indeed n-ary. 2

Lemma 37 Suppose K, k and n are as in Theorem 33. Then there is a forcing
notion P that is σ-(n+ 1)-linked and adds countably many k-linear subsets of
R2 that cover the ground model plane.

PROOF. As in the proof of Theorem 24, the basic building block is the
forcing notion PR2 as defined in Definition 22. PR2 is the set of finite subsets
of R2 that are `-linear for some ` < K, ordered by reverse inclusion. Lemma
23 states that PR2 is σ-linked.

The only modifaction that has to be applied to the proof of Lemma 23 to give
σ-(n+ 1)-linkedness in the current situation is this:

Suppose ` < K. Given a finite `-linear subset {x1, . . . , xm} of R2, there are
pairwise disjoint open neighborhoods Uj of the xj such that if for all j ∈
{1, . . . ,m}, Fj is an (n + 1)-element subset of Uj, then

⋃
1≤j≤m Fj is `′-linear

for some `′ with k < `′ < K. This follows by choosing the Uj sufficiently small
and using the fact that each Fj is k-linear, where k < K.

This implies that whenever pi = {yi1, . . . , yim}, i ≤ n, are conditions in PR2

with yij ∈ Uj for all i ≤ n and 1 ≤ j ≤ m, then the pi have a common
extension in PR2 . Now the same argument as in the proof of Lemma 23 shows
that PR2 is σ-(n+ 1)-linked.

We now define P to be the finite support product of countably many copies
of PR2 . An easy density argument shows that P indeed adds countably many
K-linear sets that cover the ground model plane. As with the corresponding
statement for σ-linkedness in the proof of Theorem 24, P is σ-(n+1)-linked. 2

22



Lemma 38 An iteration of σ-n-linked forcing notions of length < (2ℵ0)+ is
σ-n-linked.

PROOF. Let δ be an ordinal below (2ℵ0)+ and suppose ((Pα)α≤δ, (Q̇α)α<δ)
is an iteration of σ-n-linked forcing notions, i.e., assume that for each α < δ,

Pα Q̇α is σ-n-linked.

For each α < δ fix Pα-names Q̇i
α, i ∈ ω, such that

Pα Q̇α =
⋃
i∈ω

Q̇i
α.

Clearly, it is enough to show that Pδ has a dense subset that is σ-n-linked.
By induction on the length of the iteration it is easy to show that Pδ has a
dense subset P consisting of conditions p such that for all α < δ, if α is in the
support of p, then p � α decides which Q̇i

α contains p.

By the Hewitt-Marczewski-Pondiczery Theorem (see [3, Theorem 2.3.15]) the
space ωδ is separable and hence there is a countable family D of functions from
δ to ω such that every finite partial function from δ to ω has an extension in
D.

Now for each f ∈ D we define a subset Pf of P as follows: a condition p ∈ P
belongs to Pf if for all α < δ,

p � α  p(α) ∈ Q̇f(α)
α .

By the choice of D and P , P =
⋃
f∈D Pf . We are finished if we can show that

each Pf is n-linked.

Fix f ∈ D and let p1, . . . , pn ∈ Pf . By recursion on α < δ we define a condition
p such that for all α < δ,

p � α  p(α) < p1(α), . . . , pn(α).

At stage α, a suitable name p(α) exists since p � α is a common extension of
p1 � α, . . . , pn � α and thus

p � α  p1(α), . . . , pn(α) ∈ Q̇f(α)
α .

2

Proof of Theorem 33 We start by forcing ln,n+1 > ℵ1. Since each n-ary
subset of (n + 1)ω is nowhere dense, ln,n+1 > ℵ1 follows for instance from
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Martin’s Axiom for ℵ1 dense sets. Now we perform an iteration of length ℵ1

of a forcing notion P as in Lemma 37. By Lemma 38, this iteration is still
σ-(n+ 1)-linked and hence, by Lemma 36, the ln,n+1 of the final model is still
> ℵ1.

On the other hand, during the final iteration ℵ1 k-linear sets have been added,
countably many at each stage, that together cover the plane of the final model
of set theory. 2

A similar proof shows that it is consistent that for every K > 1, Rn+1 can be
covered by less than ln,n+1 subsets that K-embed into Rn.

Corollary 39 There is a strictly increasing sequence (Kn)n∈ω of real numbers
> 1 such that whenever n < m, then there is a forcing extension of the set-
theoretic universe where R2 can be covered by ℵ1 Km-linear set, but not by ℵ1

Kn-linear sets.

PROOF. For each n ≥ 3 let

Cn = {c > 1 : Every n-element subset of R2 is c-linear}.

By Theorem 34, Cn is non-empty. By Lemma 20, Cn is the intersection of a
family of closed sets and hence has a minimal element cn. By Corollary 19, the
set C = {cn : n ≥ 3} is unbounded in R. Let (Kn)n∈ω be a strictly increasing
sequence of real numbers > 1 such that for all n ∈ ω there is some c ∈ C such
that Kn < c < Kn+1.

Now, if n < m, then there is some i such that if c minimal with the property
that every (i + 1)-element subset of R2 is c-linear, then Kn < c < Km. By
Theorem 33 there is a forcing extension of the universe in which R2 can be
covered by ℵ1 Km-linear sets while li,i+1 > ℵ1. By Lemma 32, at least li,i+1

Kn-linear sets are neccessary to cover R2. 2

4.1 Discussion

For each K > 1 let κ(K) denote the least number of K-linear subsets of R2

that cover R2. Using the models constructed in [6] it is actually possible to
separate finitely many of the cardinal invariants κ(Kn) at the same time. It
is totally open is whether for every two real numbers k,K with 1 < k < K
there is a forcing extension of the universe in which κ(K) < κ(k). If yes, this
would give a family of cardinal invariants of order type R, where one cardinal
invariant κ is considered to be strictly below another cardinal invariant λ if
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κ ≤ λ holds in every generic extension of the set-theoretic universe and there
is a generic extension of the universe where κ < λ. A negative answer would
probably come with some interesting geometrical insight.

References

[1] Y. Bartal, N. Linial, M. Mendel, A. Naor, On Metric Ramsey Type Phenomena,
Annals of Mathematics 162 (2005), 643–709

[2] J. Bourgain, T. Figiel, V. Milman, On Hilbertian subsets of finite metric spaces,
Israel J. Math., 55 (1986), 147–152

[3] R. Engelking, General topology, translated from the Polish by the author, Second
edition, Sigma Series in Pure Mathematics, Heldermann Verlag, Berlin (1989)

[4] S. Geschke, A dual open coloring axiom, Annals of Pure and Applied Logic 140
(2006), 40–51

[5] S. Geschke, M. Goldstern, M. Kojman, Continuous Ramsey theory on Polish
spaces and covering the plane by functions, Journal of Mathematical Logic, Vol.
4 (2004), No. 2, 109–145

[6] S. Geschke, M. Kojman, Convexity numbers of closed subsets in Rn,
Proc. Am. Math. Soc. 130 (2002), No.10, 2871–2881

[7] R. Graham, B. Rothschild, J. Spencer, Ramsey theory, John Wiley & Sons Inc.,
New York, second edition (1990)

[8] T. Jech, Set theory, the third millennium edition, revised and expanded, Springer
Monographs in Mathematics, Springer Berlin (2003)

[9] H. Karloff, Y. Rabani, Y. Ravid, Lower bounds for randomized k-server and
motion planning algorithms, SIAM J. Comput., 23 (1994), 293–312

[10] A. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics,
Springer (1995)

[11] K. Kunen, Set theory. An introduction to independence proofs, 2nd print,
Studies in Logic and the Foundations of Mathematics, 102, Amsterdam-New York-
Oxford: North-Holland (1983)
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