
FUNCTIONS WITH MANY LOCAL EXTREMA

STEFAN GESCHKE

Abstract. Answering a question addressed by Dirk Werner we show that the

set of local extrema of a nowhere constant continuous function f : [0, 1] → R
is always meager but possibly of full measure. The set of local extrema of

a nowhere constant C∞-function from [0, 1] to R can be of arbitrarily large

measure below 1.

1. introduction

In [1], Behrends, Natkaniec and the author studied the question whether a con-
tinuous function f from a topological space X into the real line can have a local
extremum at every point of X without being constant. Among other things it was
observed that if X is a connected space of weight < |R |, then every continuous
function f : X → R that has a local extremum at every point of X is constant.
Also, if X is a connected linear order in which every family of pairwise disjoint open
intervals is of size < |R| and f : X → R is continuous and has a local extremum at
every point of X, then f is constant.

The proof of the latter fact given in [1] shows that if X is a connected linear
order and f : X → R is continuous and has a local extremum at every point of
X, then f is constant on a nonempty open interval. In fact, the collection of open
intervals on which f is constant has a dense union.

Recently, the results mentioned above have been improved by Fedeli and Le
Donne (see [2]), who showed that if X is a connected space in which every family of
pairwise disjoint open sets is of size < |R|, then every continuous function f : X → R
that has a local extremum at every point is constant.

In this note we answer a question addressed by Dirk Werner, namely how many
local extrema a non-constant continuous function, say from the unit interval, into
the reals can actually have.

It is relatively easy to construct a continuous function f : [0, 1]→ R that is not
constant and whose set of local minima is open and dense. Just choose a closed
nowhere dense set A ⊆ [0, 1] of positive measure (see Lemma 1) and let f(x) be
the measure of A ∩ [0, x]. Then clearly, f is continuous, not constant and constant
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on every open interval disjoint from A. In particular, f has a local minimum and
maximum at every point of X \A.

This example shows that we should consider functions that are not constant on
any nonempty open interval.

2. Measure

The following lemma is well known.

Lemma 1. Let ε > 0. Then there is a closed nowhere dense set A ⊆ [0, 1] of
measure at least 1− ε.

Proof. Let {(an, bn) : n ∈ N} be the collection of all open subintervals of [0, 1] with
rational endpoints. For each n ∈ N let (cn, dn) ⊆ (an, bn) be an open interval of
length at most 2−n · ε. Now B =

⋃
n∈N(cn, dn) is a dense open set of measure at

most ε. Hence, the set A = [0, 1] \ B is closed, nowhere dense and of measure at
least 1− ε. �

By removing a suitable open interval from A we can actually assume that A is
exactly of measure 1− ε.

Lemma 2. Let a, b ∈ R be such that a < b. Let A ⊆ [a, b] be closed and nowhere
dense. Then the function fAa,b : [a, b]→ R that assigns to every point x its distance
from A is continuous and has local minima exactly at the points of A. Moreover,
whenever I ⊆ [a, b] is a maximal open interval disjoint from A, then fAa,b � cl(I)
is piecewise linear and in fact consists of two linear (in the sense of affine linear)
pieces, one of slope 1 and one of slope −1.

Theorem 3. There is a continuous function g : [0, 1] → R such that g is not
constant on any non-empty open interval and the set of local minima of g is of
measure 1. In particular, the set of local minima of g is dense in [0, 1].

Proof. Let a, b ∈ [0, 1] be such that a < b. Suppose that f : [a, b] → R is linear
(in the sense of affine linear) with f(a) = c and f(b) = d. Let c = a + 1

8 (b − a)
and d = b − 1

8 (b − a). Let A be a closed nowhere dense subset of [c, d] of measure
1
2 (b− a). We may assume c, d ∈ A.

Now let f∗ : [a, b]→ R be defined as follows. For each x ∈ [a, b] let

f(x) =


4 f(b)−f(a)

b−a (x− a) + f(a), x ≤ c

fAc,d(x) + 1
2 (f(a) + f(b)), c ≤ x ≤ d

4 f(b)−f(a)
b−a (x− b) + f(b), x ≥ d

In other words, f∗ is a continuous function whose graph starts and ends at the
same points as the graph of f , but f∗ has local minima at every point of A, except
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possibly the first and last points of A, i.e., c and d. In particular, the set of local
minima of f∗ is of measure at least 1

2 (b− a). We observe that

sup{|f∗(x)− f(x)| : x ∈ [a, b]} ≤ max(b− a, |f(b)− f(a)|).

Given a function f : [0, 1]→ R, we define f∗ : [0, 1]→ R as follows. If I ⊆ [0, 1]
is a maximal open interval such that f is linear in I, we let f∗ � cl I = (f � cl I)∗.
If x ∈ [0, 1] is not contained in a maximal open interval on which f is linear, we let
f∗(x) = f(x). From our construction it follows that f∗ is continuous if f is.

Now choose A ⊆ [0, 1] closed, nowhere dense, and of measure 1
2 . Let f0 = fA0,1.

For every n > 0 let fn = f∗n−1. The sequence (fn)n∈N is a sequence of continuous
functions. By our observation above, the sequence converges uniformly. It follows
that the limit g of this sequence is a continuous function from [0, 1] to R.

It is easily checked that g is nowhere constant. Also, the set of local minima of g

is the union of the sets of local minima of the fn. By induction it follows that the
measure of the set of local minima of fn is at least

∑n+1
k=1

1
2k . Hence the measure

of the set of local minima of g is 1. �

Clearly, if f : [0, 1]→ R is continuously differentiable and has a dense set of local
extrema, then f has to be constant. In particular, a nowhere constant, continuously
differentiable function on the unit interval cannot have a set of local extrema of full
measure. However, nowhere constant C∞-functions can have sets of local extrema
of large measure.

Theorem 4. For every ε > 0 there is an infinitely often differentiable function
f : [0, 1] → R such that f is not constant on any non-empty open interval and the
set of local minima of f is of measure at least 1− ε.

Proof. We start the proof with a preliminary remark.

Claim 5. For all a, b ∈ [0, 1] with a < b there is a C∞-function h : [0, 1]→ R such
that h vanishes outside (a, b) and is positive and nowhere constant on (a, b).

For the proof of the claim we define g : R→ R as follows: For all x ∈ R let

g(x) =

e−(x−1)−2 · e−(x+1)−2
x ∈ (−1, 1)

0 x 6∈ (−1, 1).

It is well known that g is infinitely often differentiable. Clearly, g is nowhere
constant and positive on the set (−1, 1). The claim is witnessed by translations of
scaled versions of g.

Now let A ⊆ [0, 1] be as in Lemma 1 and choose a maximal family G of non-
negative C∞-functions on [0, 1] with the following properties:
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(1) For every g ∈ G the set g−1[(0,∞)] is a non-empty open interval Ig ⊆
[0, 1] \A.

(2) For g, h ∈ G with g 6= h the intervals Ig and Ih are disjoint.

Such a family G exists by Zorn’s Lemma. Since {Ig : g ∈ G} is a disjoint family of
non-empty open intervals, it is countable. It follows that G is countable.

By the claim,
⋃
{Ig : g ∈ G} is a dense subset of [0, 1] \ A. Since A is nowhere

dense and yet of positive measure, [0, 1] \A is not the union of finitely many open
intervals and hence G is infinite. Let (gn)n∈ω be an enumeration of G without
repetition.

For every n ∈ ω choose εn > 0 such that for all m ≤ n we have

εn · sup
{∣∣∣g(m)

n (x)
∣∣∣ : x ∈ [0, 1]

}
< 2−n.

Here g
(m)
n denotes the m-th derivative of gn.

For every n ∈ ω let fn =
∑n
m=0 εmgm. Since the Igm

, m ∈ ω, are pairwise
disjoint and by the choice of the εm, the sequence (fn)n∈ω converges uniformly in
every derivative and hence converges to a C∞-function f : [0, 1]→ R.

Clearly, B = f−1(0) = [0, 1] \
⋃
{Ig : g ∈ G} and B is a closed nowhere dense

superset of A. Moreover, f is not constant on any open interval disjoint from B.
Since B is nowhere dense, this implies that f is nowhere constant. Clearly, every
point of B, and hence of A, is a local minimum of f . �

Let us point out that the use of Zorn’s Lemma in the proof of Lemma 4 can
be easily avoided and that for any given ε a suitable function f can be defined
explicitly using a closed, but lengthy, formula.

3. Category

We point out that the analog of Theorem 3 for category fails badly.

Theorem 6. If f : [0, 1] → R is continuous and not constant on any non-empty
open interval, then the set of local minima of f is meager.

The proof of this theorem uses the following lemma.

Lemma 7. The set of local minima of a continuous function f : [0, 1]→ R is Fσ.

Proof. For a, b, c, d ∈ [0, 1] ∩Q with a < b < c < d consider the set

Ma,b,c,d = {x ∈ [b, c] : f(x) = min(f [(a, d)])}.

Clearly, Ma,b,c,d is closed and every element of Ma,b,c,d is a local minimum of f .
On the other hand, if x is a local minimum of f , then there are a, b, c, d ∈ [0, 1]∩Q
such that a < b < c < d and x ∈Ma,b,c,d. It follows that the set of local minima of
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f is equal to ⋃
{Ma,b,c,d : a, b, c, d ∈ [0, 1] ∩Q ∧ a < b < c < d},

which is clearly Fσ. �

Proof of Theorem 6. By Lemma 7, the set M of local minima of f can be written as⋃
n∈N Mn where each Mn is closed. Assume that M is not meager. Then for some

n ∈ N, Mn is somewhere dense. Since Mn is closed, Mn actually contains a non-
empty open interval (a, b). But a continuous function that has a local minimum at
each point of a nonempty interval is constant on that interval. A contradiction. �

Corollary 8. If f : [0, 1] → R is not constant on any non-empty open interval,
then the set of local extrema of f is meager. However, even the set of local minima
can be of measure 1.
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