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Abstract. I collect a number of proofs of the existence of large almost disjoint

and independent families on the natural numbers. This is mostly the outcome

of a discussion on mathoverflow.

1. introduction

A family F ⊆ P(ω) is an independent family (over ω) if for every pair A, B of
disjoint finite subsets of F the set⋂

A ∩
(
ω \

⋃
B
)

is infinite. Fichtenholz and Kantorovich showed that there is an independent family
on ω of size continuum [3] (also see [6] or [8]). I collect several proofs of this
fundamental fact. A typical application of the existence of a large independent
family is the result that there are 22ℵ0 ultrafilters on ω due to Posṕı̌sil [11]:

Given an independent family (Aα)α<2ℵ0 , for every function f : 2ℵ0 → 2 there is
an ultrafilter pf on ω such that for all α < 2ℵ0 we have Aα ∈ pf iff f(α) = 1. Now
(pf )f :2ℵ0→2 is a family of size 22ℵ0 of pairwise distinct ultrafilters.

Independent families in some sense behave similarly to almost disjoint families.
Subsets A and B of ω are almost disjoint if A ∩ B is finite. A family F of infinite
subsets of P(ω) is almost disjoint any two distinct elements A, B of F are almost
disjoint.

2. Almost disjoint families

An easy diagonalisation shows that every countably infinite, almost disjoint fam-
ily can be extended.

Lemma 2.1. Let (An)n∈ω be a sequence of pairwise almost disjoint, infinite subsets
of ω. Then there is an infinite set A ⊆ ω that is almost disjoint from all An, n ∈ ω.

Proof. First observe that since the An are pairwise almost disjoint, for all n ∈ ω
the set

ω \
⋃
k<n

Ak

is infinite. Hence we can choose a strictly increasing sequence (an)n∈ω of natural
numbers such that for al n ∈ ω, an ∈ ω \

⋃
k<nAk. Clearly, if k < n, then an 6∈ Ak.
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It follows that for every k ∈ ω the infinite set A = {an : n ∈ ω} is almost disjoint
from Ak. �

A straight forward application of Zorn’s Lemma gives the following:

Lemma 2.2. Every almost disjoint family of subsets of ω is contained in a maximal
almost disjoint family of subsets of ω.

Corollary 2.3. Every infinite, maximal almost disjoint family is uncountable. In
particular, there is an uncountable almost disjoint family of subsets of ω.

Proof. The uncountability of an infinite, maximal almost disjoint family follows
from Lemma 2.1. To show the existence of such a family, choose a partition (An)n∈ω
of ω into pairwise disjoint, infinite sets. By Lemma 2.2, the almost disjoint fam-
ily {An : n ∈ ω} extends to a maximal almost disjoint family, which has to be
uncountable by our previous observation. �

Unfortunately, this corollary only guarantees the existence of an almost disjoint
family of size ℵ1, not necessarily of size 2ℵ0 .

Theorem 2.4. There is an almost disjoint family of subsets of ω of size 2ℵ0 .

All the following proofs of Theorem 2.4 have in common that instead of on ω, the
almost disjoint family is constructed as a family of subsets of some other countable
set that has a more suitable structure.

First proof. We define the almost disjoint family as a family of subsets of the
complete binary tree 2<ω of height ω rather than ω itself. For each x ∈ 2ω let
Ax = {x � n : n ∈ ω}.

If x, y ∈ 2ω are different and x(n) 6= y(n), then Ax ∩ Ay contains no sequence
of length > n. It follows that {Ax : x ∈ 2ω} is an almost disjoint family of size
continuum. �

Similarly, one can consider for each x ∈ [0, 1] the set Bx of finite initial segments
of the decimal expansion of x. {Bx : x ∈ [0, 1]} is an almost disjoint family of size
2ℵ0 of subsets of a fixed countable set.

Second proof. We again identify ω with another countable set, in this case the set Q
of rational numbers. For each r ∈ R choose a sequence (qrn)n∈ω of rational numbers
that is not eventually constant and converges to r. Now let Ar = {qrn : n ∈ ω}.

For s, r ∈ R with s 6= r choose ε > 0 so that

(s− ε, s+ ε) ∩ (r − ε, r + ε) = ∅.

Now As ∩ (s− ε, s+ ε) and Ar ∩ (r− ε, r + ε) are both cofinite and hence As ∩Ar
is finite. It follows that {Ar : r ∈ R} is an almost disjoint family of size 2ℵ0 . �

Third proof. We construct an almost disjoint family on the countable set Z × Z.
For each angle α ∈ [0, 2π) let Aα be the set of all elements of Z × Z that have
distance ≤ 1 to the line Lα = {(x, y) ∈ R2 : y = tan(α) · x}.
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For two distinct angles α and β the set of points in R2 of distance ≤ 1 to both
Lα and Lβ is compact. It follows that Aα ∩ Aβ is finite. Hence {Aα : α ∈ [0, 2π)}
is an almost disjoint family of size continuum. �

Fourth proof. We define a map e : [0, 1] → ωω as follows: for each x ∈ [0, 1] and
n ∈ ω let e(x)(n) be the integer part of n · x.

For every x ∈ [0, 1] let Ax = {(n, e(x)(n)) : n ∈ ω}. If x < y, then for all
sufficiently large n ∈ ω, e(x)(n) < e(y)(n). It follows that {Ax : x ∈ [0, 1]} is an
almost disjoint family of subsets of ω × ω.

Observe that e is an embedding of ([0, 1],≤) into (ωω,≤∗), where f ≤∗ g if for
almost all n ∈ ω, f(n) ≤ g(n). �

3. Independent families

Independent families behave similarly to almost disjoint families. The following
results are analogs of the corresponding facts for almost disjoint families.

Lemma 3.1. Let m be an ordinal ≤ ω and let (An)n<m be a sequence of infinite
subsets of ω such that for all pairs S, T of finite disjoint subsets of m the set⋂

n∈S
An \

(⋃
n∈T

An

)
is infinite. Then there is an infinite set A ⊆ ω that is independent over the family
{An : n < m} in the sense that for all pairs S, T of finite disjoint subsets of m both(

A ∩
⋂
n∈S

An

)
\

(⋃
n∈T

An

)
and ⋂

n∈S
An \

(
A ∪

⋃
n∈T

An

)
are infinite.

Proof. Let (Sn, Tn)n∈ω be an enumeration of all pairs of disjoint finite subsets of
m such that every such pair appears infinitely often.

By the assumptions on (An)n∈ω, we can choose a strictly increasing sequence
(an)n∈ω such that for all n ∈ ω,

a2n, a2n+1 ∈
⋂
k∈Sn

Ak \

( ⋃
k∈Tn

Ak

)
.

Now the set A = {a2n : n ∈ ω} is independent over {An : n < m}. Namely, let
S, T be disjoint finite subsets of m. Let n ∈ ω be such that S = Sn and T = Tn.
Now by the choice of a2n,

a2n ∈

(
A ∩

⋂
k∈Sn

Ak

)
\

( ⋃
k∈Tn

Ak

)
.
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On the other hand,

a2n+1 ∈
⋂
k∈Sn

Ak \

(
A ∪

⋃
k∈Tn

Ak

)
.

Since there are infinitely many n ∈ ω with (S, T ) = (Sn, Tn), it follows that the
sets (

A ∩
⋂
k∈Sn

Ak

)
\

( ⋃
k∈Tn

Ak

)
and ⋂

k∈Sn

Ak \

(
A ∪

⋃
k∈Tn

Ak

)
are both infinite. �

Another straight forward application of Zorn’s Lemma yields:

Lemma 3.2. Every independent family of subsets of ω is contained in a maximal
independent family of subsets of ω.

Corollary 3.3. Every infinite maximal independent family is uncountable. In par-
ticular, there is an uncountable independent family of subsets of ω.

Proof. By Lemma 3.2, there is a maximal independent family. By Lemma 3.1 such
a family cannot be finite or countably infinite. �

As in the case of almost disjoint families, this corollary only guarantees the
existence of independent families of size ℵ1. But Fichtenholz and Kantorovich
showed that there are independent families on ω of size continuum.

Theorem 3.4. There is an independent family of subsets of ω of size 2ℵ0 .

In the following proofs of this theorem, we will replace the countable set ω by
other countable sets with a more suitable structure. Let us start with the original
proof by Fichtenholz and Kantorovich [3] that was brought to my attention by
Andreas Blass.

First proof. Let C be the countable set of all finite subsets of Q. For each r ∈ R
let

Ar = {a ∈ C : a ∩ (−∞, r] is even}.

Now the family {Ar : r ∈ R} is an independent family of subsets of C.
Let S and T be finite disjoint subsets of R. A set a ∈ C is an element of⋂

r∈S
Ar \

(
C \

⋃
r∈T

Ar

)
if for all r ∈ S, a ∩ (−∞, r] is odd and for all r ∈ T , a ∩ (−∞, r] is even. But it
is easy to see that there are infinitely many finite sets a of rational numbers that
satisfy these requirements. �
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The following proof is due to Hausdorff and generalizes to higher cardinals [4].
We will discuss this generalization in Section 4.

Second proof. Let
I = {(n,A) : n ∈ ω ∧A ⊆ P(n)}

For all X ⊆ ω let X ′ = {(n,A) ∈ I : X ∩ n ∈ A}. We show that {X ′ : X ∈ P(ω)}
is an independent family of subsets of I.

Let S and T be finite disjoint subsets of P(ω). A pair (n,A) ∈ I is in⋂
X∈S

X ′ ∩

(
I \

⋃
X∈T

X ′

)
if for all X ∈ S, X ∩n ∈ A and for all X ∈ T , X ∩n 6∈ A. Since S and T are finite,
there is n ∈ ω such that for any two distinct X,Y ∈ S ∪ T , X ∩ n 6= Y ∩ n. Let
A = {X ∩ n : X ∈ S}. Now

(n,A) ∈
⋂
X∈S

X ′ ∩

(
I \

⋃
X∈T

X ′

)
.

Since there are infinitely many n such that for any two distinct X,Y ∈ S ∪ T ,
X ∩ n 6= Y ∩ n, this shows that⋂

X∈S
X ′ ∩

(
I \

⋃
X∈T

X ′

)
is infinite. �

A combinatorially simple, topological proof of the existence of large independent
families can be obtained using the Hewitt-Marczewski-Pondiczery theorem which
says that the product space 2R is separable ([5, 9, 10], also see [2]). This is the first
topological proof.

Third proof. For each r ∈ R let Br = {f ∈ 2R : f(r) = 0}. Now whenever S and T

are finite disjoint subsets of R,⋂
r∈S

Br ∩

(
2R \

⋃
r∈T

Br

)
is a nonempty clopen subset of 2R.

The family (Br)r∈R is the prototypical example of an independent family of size
continuum on any set. A striking fact about the space 2R is that it is separable.
Namely, let D denote the collection of all functions f : R → 2 such that there are
rational numbers q0 < q1 < · · · < q2n−1 such that for all x ∈ R,

f(x) = 1 ⇔ x ∈
⋃
i<n

(q2i, q2i+1).

D is a countable dense subset of 2R.
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For each r ∈ R let Ar = Br ∩D. Now for all pairs S, T of finite disjoint subsets
of R, ⋂

r∈S
Ar ∩

(
D \

⋃
r∈T

Ar

)
= D ∩

⋂
r∈S

Br ∩

(
2R \

⋃
r∈T

Br

)
is infinite, being the intersection of a dense subset with a nonempty open subset of a
topological space without isolated points. It follows that (Ar)r∈R is an independent
family of size continuum on the countable set D. �

The second topological proof of Theorem 3.4 was pointed out by Ramiro de la
Vega.

Fourth proof. Let B be a countable base for the topology on R that is closed under
finite unions. Now for each r ∈ R consider the set Ar = {B ∈ B : r ∈ B}. Then
(Ar)r∈R is an independent family of subsets of the countable B.

Namely, let S and T be disjoint finite subsets of R. The set R \ T is open and
hence there are open sets Us ∈ B, s ∈ S, such that each Us contains s and is disjoint
from T . Since B is closed under finite unions, U =

⋃
s∈S Us ∈ B. Clearly, there

are actually infinitely many possible choices of a set U ∈ B such that S ⊆ U and
T ∩ U = ∅. This shows that

⋂
r∈S Ar \

(⋃
r∈T Ar

)
is infinite. �

A variant of the Hewitt-Marczewski-Pondiczery argument was mentioned by
Martin Goldstern who claims to have heard it from Menachem Kojman.

Fifth proof. Let P be the set of all polynomials with rational coefficients. For each
r ∈ R let Ar = {p ∈ P : p(r) > 0}. If S, T ⊆ R are finite and disjoint, then there
is a polynomial in P such that p(r) > 0 for all r ∈ A and p(r) ≤ 0 for all r ∈ T .
All positive multiples of p satisfy the same inequalities. It follows that (Ar)r∈R is
an independent family of size 2ℵ0 over the countable set P . �

The next proof was pointed out by Tim Gowers. This is the dynamical proof.

Sixth proof. Let X be a set of irrationals that is linearly independent over Q. Kro-
necker’s theorem states that for every finite set {r1, . . . , rk} ⊆ X with pairwise
distinct ri, the closure of the set {(nr1, . . . , nrk) : n ∈ Z} is all of the k-dimensional
torus Rk/Zk ([7], also see [1]).

For each r ∈ X let Ar be the set of all n ∈ Z such that the integer part of n · r is
even. Then {Ar : r ∈ X} is an independent family of size continuum. To see this,
let S, T ⊆ X be finite and disjoint. By Kronecker’s theorem there are infinitely
many n ∈ Z such that for all r ∈ S, the integer part of n · r is even and for all
r ∈ T , the integer part of n · r is odd. For all such n,

n ∈
⋂
r∈S

Ar ∩
⋂
r∈T

Z \Ar.

�

The following proof was mentioned by KP Hart. Let us call it the almost disjoint
proof.
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Seventh proof. Let F be an almost disjoint family on ω of size continuum. To each
A ∈ F we assign the collection A′ of all finite subsets of ω that intersect A. Now
{A′ : A ∈ F} is an independent family of size continuum.

Given disjoint finite sets S, T ⊆ F , by the almost disjointness of F , each A ∈ S
is almost disjoint from

⋃
T . It follows that there are infinitely many finite subsets

of ω that intersect all A ∈ S but do not intersect any A ∈ T . Hence⋂
A∈S

A′ ∩

(
ω \

⋃
A∈T

A′

)
is infinite. �

The last proof was communicated by Peter Komjáth. This is the proof by finite
approximation.

Eighth proof. First observe that for all n ∈ ω there is a family (Xk)k<n of subsets
of 2n such that for any two disjoint sets S, T ⊆ n,⋂

k∈S

Xn
k ∩

(
2n \

⋃
k∈T

Xk

)
is nonempty. Namely, let Xk = {f ∈ 2n : f(k) = 0}.

Now choose, for every n ∈ ω, a family (Xn
s )s∈2n of subsets of a finite set Yn such

that for disjoint sets S, T ⊆ 2n,⋂
s∈S

Xn
s ∩

(
2n \

⋃
s∈T

Xn
s

)
is nonempty. We may assume that the Yn, n ∈ ω, are pairwise disjoint.

For each σ ∈ 2ω let Xσ =
⋃
n∈ωX

n
σ�n. Now {Xσ : σ ∈ 2ω} is an independent

family of size 2ℵ0 on the countable set
⋃
n∈ω Yn. �

4. Independent families on larger sets

We briefly point out that for every cardinal κ there is an independent family
of size 2κ of subsets of κ. We start with a corollary of the Hewitt-Marczewski-
Pondiczery Theorem higher cardinalities.

Lemma 4.1. Let κ be an infinite cardinal. Then 22κ has a dense subset D such
that for every nonempty clopen subset A of 22κ , D ∩ A is of size κ. In particular,
22κ has a dense subset of size κ.

Proof. For each finite partial function s from κ to 2 let [s] denote the set {f ∈ 2κ :
s ⊆ f}. The product topology on 2κ is generated by all sets of the form [s]. Every
clopen subset of 2κ is compact and therefore the union of finitely many sets of the
form [s]. It follows that 2κ has exactly κ clopen subsets. The continuous functions
from 2κ to 2 are just the characteristic functions of clopen sets. Hence there are
only κ continous functions from 2κ to 2. Let D denote the set of all continuous
functions from 2κ to 2.
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Since finitely many points in 2κ can be separated simultaneously by pairwise
disjoint clopen sets, every finite partial function from 2κ to 2 extends to a continuous
functions defined on all of 2κ. It follows that D is a dense subset of 22κ of size κ.

Now, if A is a nonempty clopen subset of 22κ , then there is a finite partial function
s from 2κ to 2 such that [s] ⊆ A. Cleary, the number of continuous extensions of s
to all of 2κ is κ. Hence D ∩A is of size κ. �

As in the case of independent families on ω, from the previous lemma we can
derive the existence of large independent families of subsets of κ.

Theorem 4.2. For every infinite cardinal cardinal κ, there is a family F of size
2κ such that for all disjoint finite sets A,B ⊆ F , the set(⋂

A
)
\
⋃
B

is of size κ.

First proof. Let D ⊆ 22κ be as in Lemma 4.1. For each x ∈ 2κ let Bx = {f ∈ 22κ :
f(x) = 0} and Ax = D ∩ Bx. Whenever S and T are disjoint finite subsets of 2κ,
then (⋂

x∈S
Bx

)
\
⋃
x∈T

Bx

is a nonempty clopen subset of 22κ . It follows that(⋂
x∈S

Ax

)
\
⋃
x∈T

Ax = D ∩

((⋂
x∈S

Bx

)
\
⋃
x∈T

Bx

)
is of size κ. It follows that F = {Ax : x ∈ 2κ} is as desired. �

We can translate this topological proof into combinatorics as follows:
The continuous functions from 2κ to 2 are just characteristic functions of clopen

sets. The basic clopen sets are of the form [s], where s is a finite partial function
from κ to 2. All clopen sets are finite unions of sets of the form [s]. Hence we can
code clopen subsets of 2κ in a natural way by finite sets of finite partial functions
from κ to 2. We formulate the previous proof in this combinatorial setting. The
following proof is just a generalization of our second proof of Theorem 3.4. This is
essentially Hausdorff’s proof of the existence large independent families in higher
cardinalities.

Second proof. Let D be the collection of all finite sets of finite partial functions
from κ to 2. For each f : 2κ → 2 let Af be the collection of all a ∈ D such that for
all s ∈ a and all x : κ→ 2 with s ⊆ x we have f(x) = 1.

Claim 4.3. For any two disjoint finite sets S, T ⊆ 2κ the set(⋂
x∈S

Ax

)
\
⋃
x∈T

Ax

is of size κ.
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For all x ∈ S and all y ∈ T there is α ∈ κ such that x(α) 6= y(α). It follows that
for every x ∈ S there is a finite partial function s from κ to 2 such that s ⊆ x and
for all y ∈ T , s 6⊆ T . Hence there is a finite set a of finite partial functions from
κ to 2 such that all x ∈ S are extensions of some s ∈ a and no y ∈ T extends any
s ∈ a. Now a ∈

(⋂
x∈S Ax

)
\
⋃
x∈T Ax. But for every α < κ we can build the set a

in such a way that α is in the domain of some s ∈ a. It follows that there are in
fact κ many distinct sets a ∈

(⋂
x∈S Ax

)
\
⋃
x∈T Ax. �
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