
A DUAL OPEN COLORING AXIOM

STEFAN GESCHKE

Abstract. We discuss a dual of the Open Coloring Axiom (OCA[ARS]) in-

troduced by Abraham, Rubin, and Shelah [2] and show that it follows from

a statement about continuous colorings on Polish spaces that is known to be
consistent. We mention some consequences of the new axiom and show that

OCA[ARS] implies that all cardinal invariants in Cichoń’s diagram are at least

ℵ2.

1. Introduction

There are two versions of the Open Coloring Axiom, the one introduced by
Abraham, Rubin, and Shelah [2] and the one introduced by Todorcevic [13]. We
deal with the first axiom, which we denote by OCA[ARS], following the notation in
[11].

For every topological space X, the set [X]2 of two-element subsets of X carries
a natural topology, the one inherited from X2. The basic open sets of [X]2 are the
sets of the form {{x, y} ∈ [X]2 : x ∈ U, y ∈ V }, where U and V are disjoint open
sets in X.

Let U1, . . . , Un be open sets with [X]2 = U1 ∪ · · · ∪ Un. We refer to C =
(U1, . . . , Un) as a finite open pair cover on X. A set H ⊆ X is C-homogeneous
(or just homogeneous if C is clear from the context) if for some i ∈ {1, . . . , n},
[H]2 ⊆ Ui.

OCA[ARS] is the statement “for every separable metric space X of size ℵ1 and ev-
ery finite open pair cover C on X, X is covered by countably many C-homogeneous
sets”.

If we consider, for a given finite open pair cover C on an uncountable Polish
space X, the σ-ideal IC generated by the C-homogeneous subsets of X, the axiom
OCA[ARS] easily implies non(IC) > ℵ1. Here non(IC) is the uniformity of the ideal
IC , i.e., the least size of a subset of X not in IC . Dual to non(IC) is covering
number cov(IC), the least size of a subset F of IC such that X =

⋃
F .

Dualizing OCA[ARS] we therefore obtain the statement “for every Polish space
X and every finite open pair cover C on X, cov(IC) < 2ℵ0”. We will refer to this
statement as the dual open coloring axiom.

A special case of finite open pair covers are the so called continuous pair colorings
studied in [8] and [6]. A continuous pair coloring on a Polish space X is simply a
continuous map c : [X]2 → n or equivalently, letting Ui = c−1(i) for i ∈ n, a finite
open pair-cover (U0, . . . , Un−1) on X with the Ui pairwise disjoint.

One of the drawbacks of the concept of continuous pair colorings is that con-
nected Polish spaces admit only constant continuous pair colorings. This is the
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main reason why we are interested in the more general concept of finite open pair
covers.

In [8] it was shown that the dual open covering axiom is consistent when re-
stricted to continuous pair colorings. In the present paper we give a proof of this
fact that gives a bit more information than the original consistency proof. More-
over, we show that the general dual open coloring axiom follows from its restriction
to continuous pair colorings.

2. Covering Xn+1 by n-ary functions

One reason to study finite open pair covers is their connection to coverings of
powers of a space X by graphs of functions.

Definition 2.1. Let X be a set and n ∈ ω. A point (x0, . . . , xn) ∈ Xn+1 is
covered by a function f : Xn → X if there is a permutation σ of n + 1 such that
f(xσ(0), . . . , xσ(n−1)) = xσ(n).

Let A ⊆ Xn+1. A family F of functions from Xn to X covers A if every point
in A is covered by a function in F .

By a theorem of Kuratowski [10], for every infinite cardinal κ, exactly κ n-ary
functions are needed to cover all of (κ+n)n+1. Here κ+n denotes the n-th cardinal
successor of κ. (Kuratowski originally formulated his theorem in a slightly different
way. The formulation used here and its proof can be found in [1].)

Example 2.2. Let X be a Polish space and n ≥ 1. Consider the following open
pair cover on Xn+1. For every i < n + 1 let

Ui = {{(x0, . . . , xn), (y0, . . . , yn)} ∈ [Xn+1]2 : xi 6= yi}.
Let C = (U0, . . . , Un). Clearly, a set H ⊆ Xn+1 is C-homogeneous iff there is a
function f : Xn → X and a permutation σ of n + 1 such that σ(n) = i and

H ⊆ {(x0, . . . , xn) : xσ(n) = f(xσ(0), . . . , xσ(n−1))}.

If |X|= 2ℵ0 ≤ κn+1 for some infinite cardinal κ, then, by Kuratowski’s theorem,

hm(C) ≤ κ.

Example 2.2 shows that while maximal homogeneous sets exist for all finite
open pair covers by Zorn’s lemma, these maximal homogeneous sets do not have
to be nice in the sense of being Borel, analytic etc. On the other hand, maximal
homogeneous sets for continuous pair colorings are always closed since in that case
closures of homogeneous sets are again homogeneous by continuity.

Definition 2.3. Let X be a metric space and let d denote the metric on X. For
c ∈ R we say that a function f : X → X is Lipschitz of class < c if for all x0, x1 ∈ X
with x0 6= x1, ∣∣∣∣d(f(x0), f(x1))

d(x0, x1)

∣∣∣∣ < c.

We say that f is Lipschitz of class ≤ c if for all x0, x1 ∈ X with x0 6= x1,∣∣∣∣d(f(x0), f(x1))
d(x0, x1)

∣∣∣∣ ≤ c.

Example 2.4. Let ε > 0. We consider an open-pair cover on R2. Let

U0 =
{
{(x0, x1), (y0, y1)} ∈ [R2]2 : x0 6= y0 ∧

∣∣∣∣x1 − y1

x0 − y0

∣∣∣∣ < 1
}

and

U1 =
{
{(x0, x1), (y0, y1)} ∈ [R2]2 : x1 6= y1 ∧

∣∣∣∣x0 − y0

x1 − y1

∣∣∣∣ < 1 + ε

}
.
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Put C = (U0, U1). Then H ⊆ R2 is (U0, U1)-homogeneous if either there is a
function f : R → R that is Lipschitz of class < 1 such that H ⊆ {(x, y) : f(x) = y}
or there is a function f : R → R that is Lipschitz of class < 1 + ε such that
H ⊆ {(x, y) : x = f(y)}.

In particular, R2 can be covered by hm(C) functions that are Lipschitz of class
< 1 + ε.

3. Continuous pair colorings

First let us note that, as long as we are interested in uncountable homogeneity
numbers of continuous pair colorings, we may restrict our attention to colorings
that only use two colors. This is because every continuous pair coloring on a Polish
space that uses n colors can be decomposed into colorings that only use two colors.

Namely, replace a coloring c = [X]2 → n on a Polish space by h ◦ c where
h : n → 2 is onto. Then consider the colorings c � [H]2 for every closed (h ◦ c)-
homogeneous set H. The coloring c � [H]2 is again a continuous pair coloring on
a Polish space but uses less than n colors. Iterating this we obtain continuous
colorings that only use two colors.

This argument does not work for finite open pair covers because homogeneous
sets for a finite open pair cover on a Polish spaces are not necessarily included in a
homogeneous set that carries a Polish space topology (see the remark after Example
2.2).

We mention two important examples of continuous pair colorings.

Definition 3.1. For {x, y} ∈ [ωω]2 let

∆(x, y) = min{n ∈ ω : x(n) 6= y(n)}

and let
cparity(x, y) = ∆(x, y) mod 2.

Let cmin = cparity � [2ω]2. As it turns out, hm(cparity) = hm(cmin) [6, Lemma 2.10].
We define hm = hm(cmin).

It was shown in [8] that hm is minimal among the uncountable homogeneity
numbers of continuous pair colorings on Polish spaces.

Let us mention a connection between cparity-homogeneous sets and certain func-
tions from ωω to itself. This connection was observed in [8].

Remark 3.2. Let d be the metric on ωω defined by

d(x, y) =

{
2−∆(x,y), if x 6= y

0, otherwise.

For x, y ∈ ωω let x ⊗ y = (x(0), y(0), x(1), y(1), . . . ). The mapping ⊗ is a homeo-
morphism between (ωω)2 and ωω.

If H ⊆ ωω is cparity-homogeneous of color 0, then for every x ∈ ωω there is at
most one y ∈ ωω with x⊗y ∈ H. If H is maximal homogeneous, then there is some
y with x⊗ y ∈ H. Thus, a maximal cparity-homogeneous set H of color 0 gives rise
to a function fH : ωω → ωω with H = {x⊗ f(x) : x ∈ ωω}.

Similarly, every maximal cparity-homogeneous set H of color 1 gives rise to a
function fH : ωω → ωω with H = {f(x) ⊗ x : x ∈ ωω}. A straight forward
calculation shows that if H is of color 0, then fH is Lipschitz of class ≤ 1 and if H
is of color 1, then fH is Lipschitz of class ≤ 1/2.

In particular, (ωω)2 can be covered by hm Lipschitz functions of class ≤ 1.
Actually, the number of Lipschitz functions of arbitrary class needed to cover (ωω)2

is exactly hm (see [6] for a proof of the latter statement).
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From this remark it follows that by Kuratowski’s theorem, hm+ ≥ 2ℵ0 [8]. On
the other hand, Example 2.2 shows that uncountable homogeneity numbers of finite
open pair covers on Polish spaces can be more than just one cardinal away from
2ℵ0 . Moreover, if the size of the continuum is κ+, then there is a finite open pair
cover on R2 whose homogeneity number is exactly κ.

This is not true for continuous pair colorings on Polish spaces. For instance,
after adding, for some infinite cardinal κ, κ+ Sacks reals to a model of CH using a
countable support product, we obtain a model of hm = 2ℵ0 = κ+ [8].

Also, from Remark 3.2 it follows that there is a family of size hm of continuous
functions from ωω to ωω that covers (ωω)2. Since the size of such a family is at
least d [6], d ≤ hm.

Using this inequality, in [6] it was shown that there is a continuous pair coloring
cmax on 2ω such that for every continuous pair coloring c on a Polish space X we
have hm(c) ≤ hm(cmax). We improve this result and show

Theorem 3.3. Let C be a finite open pair cover on a Polish space X. Then
hm(C) ≤ hm(cmax).

This theorem is perhaps a bit surprising since the natural lower bound for un-
countable homogeneity numbers of continuous pair colorings, namely hm, is not (at
least not provably in ZFC) a lower bound of the uncountable homogeneity numbers
of finite open pair covers on Polish spaces.

The only property of cmax that will be used in the proof of Theorem 3.3 is that
its homogeneity number is maximal among the homogeneity numbers of continuous
pair colorings on 2ω.

The proof of Theorem 3.3 uses a series of lemmas. The first lemma is essentially
Exercise 13.5 in [9].

Lemma 3.4. Let X a Polish space. Then there is a Polish space topology on X
which refines the original topology and is zero-dimensional.

Lemma 3.5. Every Polish space X can be covered by ≤ d sets that are either
singletons or copies of 2ω.

Proof. Let τ be the original topology on X. Let τ ′ be a zero-dimensional Polish
topology on X that refines τ . Such a topology exists by Lemma 3.4. Let Y denote
the space X with the topology τ ′.

Being a Polish space, Y is a continuous image of ωω. Since ωω can be covered
by d compact sets, there is a family K of compact subsets of Y such that |K|≤ d
and

⋃
K = Y .

Using Cantor-Bendixson analysis, every K ∈ K decomposes into at most count-
ably many points and a (possibly empty) compact set without isolated points. Since
Y is zero-dimensional, every non-empty compact subset of Y without isolated points
is homeomorphic to 2ω. Let K ⊆ Y be a copy of 2ω.

The topology τ ′ refines the topology τ . But since K is compact with respect to
τ ′, the two topologies coincide on K. It follows that K is homeomorphic to 2ω as
a subspace of X. Thus, the family K gives rise to a family K′ of size ≤ d such that⋃
K′ = X and K′ consists of singletons and copies of 2ω. �

Lemma 3.6. Let C = (U0, . . . , Un−1) be an open pair cover on 2ω. Then there
is a continuous coloring c : [2ω]2 → n such that for all i < n, c−1(i) ⊆ Ui. In
particular, hm(C) ≤ hm(c).

Proof. Let {s, t} ∈ [2ω]2. Let m ∈ ω be minimal such that for some i < n the
following holds: for all x, y ∈ 2ω with s � m ⊆ x and t � m ⊆ y, {x, y} ∈ Ui. Let
c(s, t) = i where i < n is minimal with the property that for all x, y ∈ 2ω with
s � m ⊆ x and t � m ⊆ y, {x, y} ∈ Ui.
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This defines the continuous coloring c : [2ω]2 → n. It is easily checked that it
has the desired properties. �

Proof of Theorem 3.3. Let X and C be as in the statement of the theorem. Let K
be a family of size ≤ d consisting of singletons and copies of 2ω such that

⋃
K = X.

The singletons in K are trivially C-homogeneous. Every other element of K can
be covered by ≤ hm(cmax) C-homogeneous sets by Lemma 3.6. Since d ≤ hm(cmax),
it follows that X can be covered by ≤ hm(cmax) C-homogeneous sets. �

4. Homogeneity numbers are big

We show that hm is at least cof(N ), the cofinality of the ideal of measure zero
subsets of the real line. The cardinal cof(N ) the biggest cardinal that appears in
the Cichoń diagram. Recall the combinatorial characterization of cof(N ) (see [3]
or [4, Theorem 2.3.9]):

A function S : ω → [ω]<ω is a slalom (or, more precisely, a 2n-slalom) if for all
n ∈ ω, |S(n)|≤ 2n. A real r ∈ ωω goes through a slalom S if for all but finitely
many n ∈ ω, r(n) ∈ S(n). Now cof(N ) is the least size of a family F of slaloms
such that every real r ∈ ωω goes through an element of F .

Theorem 4.1. hm ≥ cof(N )

Proof. We may assume that hm < 2ℵ0 . By Remark 3.2, there is a family F of size
hm of functions from ωω to ωω such that for every pair (x, y) ∈ (ωω)2 there is a
function f ∈ F such that f is Lipschitz of class ≤ 1 and f(x) = y or f is Lipschitz
of class ≤ 1/2 and f(y) = x.

Let χ be a sufficiently large cardinal and fix Skolem functions for the structure
(Hχ,∈). For M ⊆ Hχ and x ∈ Hχ let M [x] denote the closure of M ∪ {x} under
the Skolem functions for Hχ.

Let M be an elementary submodel of Hχ of size hm such that F ⊆ M . Let
x ∈ ωω be arbitrary. We show that x goes through a slalom that belongs to M .

Since |M [x]|=|M |= hm < 2ℵ0 , there is a real y ∈ 2ω \ M [x]. Since F ⊆ M ,
there is a function f ∈ M such that f is Lipschitz of class ≤ 1 and f(x) = y or f
is Lipschitz of class ≤ 1/2 and f(y) = x. But if f(x) = y for any function f ∈ M ,
then y ∈ M [x], contradicting the choice of y.

It follows that there is a Lipschitz function f ∈ M of class ≤ 1/2 such that
f(y) = x. For a function g : ωω → ωω being Lipschitz of class ≤ 1/2 means that for
every n, the first n + 1 coordinates of g(z) only depend on the first n coordinates
of z. It follows that for every n ∈ ω the set S(n) = {f(z)(n) : z ∈ 2ω} is of size at
most 2n

Since x = f(y) ∈ f [2ω], x goes through the slalom S. Since S can be defined
using parameters in M , namely f , we have S ∈ M . �

Corollary 4.2. Assume the dual open coloring axiom. Then
(1) All cardinal invariants mentioned in Cichoń’s diagram are < 2ℵ0 .
(2) For every ε > 0, R2 can be covered by < 2ℵ0 functions from R to R that

are Lipschitz of class < 1 + ε.
(3) Every closed set S ⊆ R2 either has a (nonempty) perfect 3-clique or it can

be covered by < 2ℵ0 of its convex subsets. Here a subset C ⊆ S is a 3-clique1

of S if for any three distinct points in C the triangle spanned by the three
points is not a subset of S.

1The name “clique” was chosen since a 3-clique is a clique (in the graph theoretic sense) in the

hypergraph (S, {A ∈ [S]3 : A is defected in S}). Here A ⊆ S is defected in S if the convex hull of
A is not included in S.
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Proof. (1) follows directly from Theorem 4.1. (2) is Example 2.4. For (3) we have
to refer to [8], where is was proved that every closed set S in the real plane that
does not have a perfect 3-clique can be covered by hm(c) convex subsets for some
continuous pair coloring c on ωω. �

5. OCA[ARS] and cardinal invariants

We show that OCA[ARS] implies that all cardinal invariants in Cichoń’s diagram
are big. The argument for this is a dualization of the argument used in the proof
of Theorem 4.1.

The additivity add(N ) of the ideal of measure zero subsets of the real line is
the least size of a family of measure zero sets whose union is not in the ideal.
This cardinal invariant is the smallest in Cichoń’s diagram. The combinatorial
characterization of add(N ) dual to the one of cof(N ) mentioned before Theorem
4.1 is as follows:

add(N ) is the least size of a subset A of ωω, such that there is no countable
family of slaloms such that every element of A goes through at least one of these
slaloms.

Theorem 5.1. Assume OCA[ARS]. Then add(N ) ≥ ℵ2 and hence all cardinal
invariants in Cichoń’s diagram are at least ℵ2.

Proof. Let A ⊆ ωω be of size ℵ1. We show that there are countably many slaloms
such that every real in A goes through one of these slaloms.

By enlarging A if necessary, we may assume that |A ∩ 2ω|= ℵ1. By OCA[ARS],
A is covered by countably many cparity-homogeneous sets. The translation between
cparity-homogeneous sets and Lipschitz functions (Remark 3.2) shows that there is
a countable family F such that for all x, y ∈ A there is a function f ∈ F such
that f is Lipschitz of class ≤ 1 and f(x) = y or f is Lipschitz of class ≤ 1/2 and
f(y) = x. Let χ be a sufficiently large cardinal. As in the proof of Theorem 4.1,
we fix Skolem functions for the structure (Hχ,∈).

Let M be a countable elementary submodel of (Hχ,∈) containing F . We claim
that every real in A goes through a slalom from M .

Let x ∈ A be arbitrary. Choose y ∈ (A ∩ 2ω) \ M [x]. This is possible since
M [x] is countable and |A ∩ 2ω|= ℵ1. Clearly, no function in M maps x to y. Since
F ⊆ M , there is a function f ∈ M such that f is Lipschitz of class ≤ 1/2 and
f(y) = x. In particular, x ∈ f [2ω] ∈ M . Exactly as in the proof of Theorem 4.1 it
follows that x goes through a slalom from M . �

6. A consistency result

In [8] it was shown that in the iterated Sacks model, for every continuous coloring
c on a Polish space X, hm(c) ≤ ℵ1. (Recall that 2ℵ0 = ℵ2 in the Sacks model.) By
Theorem 3.3, this implies that the Sacks model is a model of the dual open coloring
axiom.

We will construct another model of set theory in which the continuum is ℵ2

but hm(cmax) = ℵ1. The reason for constructing this model is that until now, no
reasonable cardinal characteristic of the continuum was known that can be strictly
bigger than hm(cmax) (except for 2ℵ0 , of course).

Definition 6.1. For n ∈ ω a set X ⊆ ωω is n-ary if there is no F ∈ [X]n+1 such
that ∆ is constant on [F ]2. In other words, no node in

T (X) = {s ∈ ω<ω : ∃x ∈ X(s ⊆ x)}
has more than n immediate successors. Note that the closure of an n-ary set is
n-ary.
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Let ln,ω be the least size of a family of n-ary sets that covers ωω. For every
m > n let ln,m be the least size of a family of n-ary sets that covers mω. We will
refer to the numbers ln,ω and ln,m as localization numbers.

Obviously, for all n, m ∈ ω with n < m, ln,m ≤ ln,ω and d ≤ ln,ω. Apart from
the trivial monotonicity properties of the localization numbers we have ln+1,n+2 ≤
ln,n+1 [12]. By induction on m this implies ln,m = ln,n+1 for all n, m ∈ ω with
n < m.

In [7] it was shown that for all n ∈ ω we have ln,n+1 ≤ hm. However, we will
show that hm(cmax) < ln,ω for all n ∈ ω is consistent. In particular, we will get a
model where ln,n+1, d < ln,ω for every n ∈ ω.

We will use a countable support iteration of length ω2 over a model of CH of a
forcing notion that we call the Miller lite forcing.

6.1. The finite version of Miller forcing.

Definition 6.2. Miller lite forcing (ML) consists of subtrees T of ω<ω such that
for every n ∈ ω and every node s ∈ T there is t ∈ T such that s ⊆ t and t has at
least n immediate successors in T . The elements of ML are ordered by set-theoretic
inclusion.

It should be clear that the finitely splitting trees, i.e., trees in which every node
only has finitely many successors, are dense in ML.

If G is an ML-generic filter over some model of set theory, then the trees in G
have a unique common branch, the generic real added by ML. The filter G can be
recovered from the generic real.

The main technical device used for analyzing the Miller lite forcing is fusion. For
p ∈ ML and t ∈ p let

pt = {s ∈ p : s ⊆ t ∨ s ⊇ t}
and let succp(t) denote the set of immediate successors of t in p. For n ∈ ω and
p ∈ ML let

pn = {t ∈ p : t ∈ succp(s) for some s ∈ p that is minimal with |succp(s)|> n}.

For p, q ∈ ML let p ≤n q if p ≤ q and pn = qn. A sequence (pn)n∈ω in ML is a
fusion sequence if for all n ∈ ω, pn+1 ≤n pn. The fusion of the the sequence (pn)n∈ω

is the condition p =
⋂

n∈ω pn ∈ ML. For every n ∈ ω we have p ≤n pn.

Lemma 6.3. ML satisfies Axiom A as defined in [5].

Proof. Axiom A is witnessed by the sequence (≤n)n∈ω defined above. �

We say that p ∈ ML is normal if for all s ∈ p with | succp(s) |> 1 and all
t ∈ p such that t is a minimal proper extension of s with |succp(t)|> 1 we have
|succp(t)|=|succp(s)| +1.

For every n ∈ ω let In =
∏n

k=0(k + 1) and let Iω =
∏

k∈ω(k + 1). For notational
convenience we put I−1 = {∅}. For sequences σ and τ we use σ_τ to denote the
concatenation of the two sequences. For i ∈ ω we denote by σ_i the concatenation
of σ and the sequence of length 1 with value i.

If p ∈ ML is normal, then for every n ∈ ω there is a natural bijection

In → pn;σ 7→ tσ,

namely the one that preserves the lexicographic order. The map⋃
n∈ω

In → p;σ 7→ tσ
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preserves ⊆ and induces a homeomorphism h : Iω → [p], which preserves the
lexicographic order. Here

[p] = {x ∈ ωω : ∀n ∈ ω(x � n ∈ p)}

is the set of all branches of p. For every σ ∈ In let p ∗ σ = ptσ
.

Note that the normal conditions are dense in ML. We will therefore tacitly
assume that all conditions under consideration are normal. However, there is one
point where one has to be careful. Given a condition p ∈ ML we will often construct
a condition q ≤n p in the following way:

For each σ ∈ In we choose a condition qσ ≤ p ∗ σ. It is easily checked that
q =

⋃
σ∈In

qσ is again a condition in ML and that q ≤n p. Moreover, for every
σ ∈ In we have qσ = q ∗ σ.

Even if p and all qσ are normal, q is usually not normal. But there is a normal
condition q′ ≤n q. There is a canonical way of constructing such a condition q′.
Passing from q to q′ is normalization of q below n. Normalization below n will
always be carried out without mentioning in the situation just described.

ML has the following Ramsey theoretic property:

Lemma 6.4. Let p ∈ ML and let c : [[p]]2 → 2 be a continuous pair coloring. Then
there is a condition q ≤ p such that [q] is c-homogeneous.

Proof. We start by constructing a condition r ≤ p such that for any two distinct
branches x, y ∈ [r] the color c(x, y) is already determined by x � ∆(x, y) + 1 and
y � ∆(x, y) + 1. We say that c is an almost node coloring on [r].

The condition r will be the fusion of a fusion sequence (rn)n∈ω. Let r0 = p.
Suppose we have constructed rn. Let σ ∈ In−1 and suppose that i and j are

distinct elements of n+1. By thinning out the parts rn ∗(σ_i) and rn ∗(σ_j) of rn

we obtain a condition rn,1 ≤n rn such that c(x, y) is the same for all x ∈ [rn,1∗(σ_i)]
and all y ∈ [rn,1 ∗ (σ_j)]. This is possible by the continuity of c.

Iterating this argument we can construct a condition rn+1 ≤n rn such that for
all σ ∈ In−1 and all distinct i, j ∈ n + 1 the coloring c is constant on

{{x, y} : x ∈ [rn+1 ∗ (σ_i)] ∧ y ∈ [rn+1 ∗ (σ_j)]}.

This finishes the inductive construction of the rn.
Put r =

⋂
n∈ω rn. Now c is an almost node coloring on [r].

A node s ∈ r is a splitting node of r if it has more than one immediate successor.
For every splitting node s ∈ r we define a coloring cs : [succr(s)]2 → 2 by letting
cs(t0, t1) = c(x, y) where x, y ∈ [r] are chosen such that t0 ⊆ x and t1 ⊆ y. Note
that this definition is independent of the particular choice of x and y since c is an
almost node coloring on [r].

We now decrease the condition r further in order to get a condition r′ such that
for every splitting node s ∈ r′ the set succr′(s) is cs-homogeneous.

The condition r′ will be the fusion of a fusion sequence (r′n)n∈ω. Let r′0 = r.
Suppose r′n has been defined. We construct r′n+1 ≤n r′n as follows.

By the finite Ramsey theorem, there is m ∈ ω such that every pair coloring (with
two colors) on a set of size m has a homogeneous set of size n. For every σ ∈ In

we choose a splitting node sσ of r′n ∗ σ with |succr′
n
(sσ)|≥ m. By the choice of m,

there is a csσ -homogeneous set Hσ ⊆ succr′
n
(sσ) of size n. Let

r′n+1 = {t ∈ r′n : ∃σ ∈ In∃s ∈ Hσ(s ⊆ t ∨ t ⊆ s)}.

Clearly, r′n+1 ≤n r′n.
Let r′ =

⋂
n∈ω r′n. For every splitting node s ∈ r′ the set of immediate successors

is cs-homogeneous, say of color is.
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Our next goal is to find a condition q ≤ r′ such that for every splitting node
s ∈ q we get the same color is. If r′ has a cofinal set of splitting nodes s with is = 0,
then we can use a fusion argument as above in order to find a condition q ≤ r′ such
that all splitting nodes s of q have is = 0.

If r′ does not have a cofinal set of splitting nodes s with is = 0, then there is
t ∈ r′ such that no splitting node s of r′t has is = 0. In this case q = r′t is a condition
with is = 1 for all splitting nodes s of q.

In either case [q] is c-homogeneous. �

Lemma 6.4 can be used to show that forcing with ML does not add new reals
that avoid all ground model homogeneous sets.

Lemma 6.5. Let c : [ωω]2 → 2 be a continuous coloring in the ground model M . If
G is ML-generic over M , then in M [G], ωω is covered by the c-homogeneous sets
coded in M .

The proof of this lemma needs some preparation.
Let c be a continuous pair coloring on ωω as in Lemma 6.5. Then c induces a

mapping
c : (ω<ω)2 → {0, 1,undefined}

as follows:
For s, t ∈ ω<ω let c(s, t) = i ∈ 2 if for all x, y ∈ ωω with s ⊆ x and t ⊆ y we

have x 6= y and c(x, y) = i. Otherwise let c(s, t) = undefined. Note that c(s, t) ∈ 2
implies that s and t are incomparable.

For a forcing notion P, a name ẋ for a new element of ωω, and a condition p ∈ P
let

Tp(ẋ) = {s ∈ ω<ω : ∃q ≤ p(q 
 s ⊆ ẋ)}
be the tree of p-possibilities for ẋ. Let ẋ[p] denote the longest initial segment of ẋ
that is decided by p, i.e., the stem of the tree Tp(ẋ). Note that, since ẋ is a name
for a new real, Tp(ẋ) is a perfect tree and ẋ[p] is finite. Cleary, p forces ẋ to be a
branch of Tp(ẋ).

Now let ẋ be an ML-name for a new element of ωω and let c : [ωω]2 → 2 be
continuous. We say that a condition p ∈ ML is accurate (with respect to ẋ) if for
all n ∈ ω and all σ, τ ∈ In with σ 6= τ we have c(ẋ[p ∗ σ], ẋ[p ∗ τ ]) ∈ 2.

Proof of Lemma 6.5. Let c be as in the formulation of the lemma. Let ẋ be an
ML-name for a new element of ωω. We have to show that the set of conditions
in ML that force ẋ to be an element of some c-homogeneous ground model set is
dense.

Let p ∈ ML. It is sufficient to find a condition r ≤ p such that the set [Tq(ẋ)] is
c-homogeneous. We show slightly more.

Claim 6.6. There is an accurate condition r ≤ p such that [Tr(ẋ)] is c-homogeneous.

In order to prove the claim, it is actually sufficient to show that there is any
accurate condition q ≤ p.

For suppose that q ≤ p is accurate. Then c gives rise to a mapping

d : q2 → {0, 1,undefined}

by letting d(s, t) = c(ẋ[qs], ẋ[qt]) for all s, t ∈ q. Since q is accurate, d comes from
a continuous pair coloring d : [[q]]2 → 2.

Now by Lemma 6.4, there is a condition r ≤ q such that [r] is d-homogeneous.
Clearly, r is accurate and the d-homogeneity of [r] implies that [Tr(ẋ)] is c-homo-
geneous.
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It remains to find an accurate condition q ≤ p. First of all we observe that for
all q0, q1 ≤ p there are q′0 ≤ q0 and q′1 ≤ q1 such that c(ẋ[q′0], ẋ[q′1]) ∈ 2. This can
be seen as follows:

Choose decreasing sequences (qj,n)n∈ω, j ∈ 2, in ML such that ẋ[q0,0] and ẋ[q1,0]
are incomparable and for all j ∈ 2 and all n ∈ ω, qj,n ≤ qj and qj,n decides ẋ � n.
This is possible since ẋ is a name for a new real. For j ∈ 2 let xj =

⋃
n∈ω ẋ[qj,n].

By the continuity of c, there is n ∈ ω such that c(x0, x1) depends only on x0 � n
and x1 � n. In particular, c(ẋ[q0,n], ẋ[q1,n]) = c(x0, x1) ∈ 2. Now q′0 = q0,n and
q′1 = q1,n have the desired properties.

The accurate condition q ≤ p will be the fusion of a fusion sequence (qn)n∈ω. Let
q0 = p. Suppose qn has been defined. Let σ ∈ In−1 and let i, j be distinct elements
of n + 1. By what we have said before, there are conditions qn,i ≤ qn ∗ (σ_i) and
qn,j ≤ qn ∗ (σ_j) such that c(ẋ[qn,i], ẋ[qn,j ]) ∈ 2. It follows that we can thin out
the parts qn ∗ (σ_i) and qn ∗ (σ_j) of qn in order to obtain a condition q′n ≤n qn

such that c(ẋ[q′n ∗ (σ_i)], ẋ[q′n ∗ (σ_j)]) ∈ 2.
Iterating this argument we arrive at a condition qn+1 ≤n qn such that for all

σ ∈ In−1 and distinct i, j ∈ n + 1 we have c(ẋ[qn+1 ∗ (σ_i)], ẋ[qn+1 ∗ (σ_j)]) ∈ 2.
This finishes the inductive construction of the fusion sequence (qn)n∈ω.

It is easily checked that q =
⋂

n∈ω qn is indeed accurate. �

6.2. Iterating ML. For every ordinal α let MLα denote the countable support
iteration of ML of length α. Since ML satisfies Axiom A, MLα does not collapse
ℵ1. We will use the analogue of Lemma 6.5 for MLα.

Lemma 6.7. Let c : [ωω]2 → 2 be a continuous coloring in the ground model M .
Let α be an ordinal. Then for every MLα-generic filter G over M , (ωω)M [G] is
covered by c-homogeneous sets coded in the ground model.

Before we give the proof of Lemma 6.7, let us derive from it

Corollary 6.8. Forcing with MLω2 over a model of CH yields a model of the dual
open coloring axiom.

Proof. Let G be an MLω2-generic filter over the ground model M . Assume that M
is a model of CH. In M [G] let C be a finite open pair cover on a Polish space X.
By Theorem 3.3, hm(C) ≤ hm(cmax). By Lemma 6.7, in M [G], 2ω is covered by the
cmax-homogeneous sets coded in the ground model. Since M satisfies CH, there are
only ℵ1 Borel sets in the ground model. It follows that hm(C) ≤ hm(cmax) = ℵ1 in
M [G]. By the usual arguments, M [G] |= 2ℵ0 = ℵ2. �

In [8] Lemma 6.7 is proved for the countable support iteration of Sacks forcing
instead of ML. In the case of ML one has to deal with finitely splitting trees that
split more and more as we go down the tree as opposed to binary trees in the case
of Sacks forcing. This issue has been addressed in the proof of the consistency of
hm(cmin) < hm(cmax) presented in [6].

We put together the techniques used in [6] and in [8] in order to prove Lemma
6.7. We first have to extend out notion of fusion to countable support iterations of
ML.

Let α be an ordinal. For F ∈ [α]<ℵ0 , η : F → ω, and p, q ∈ MLα let q ≤F,η p
if q ≤ p and for all β ∈ F , q � β 
 q(β) ≤η(β) p(β). Roughly speaking, q ≤F,η p
means that on each coordinate from F , q is ≤n-below p where n is given by η.

A sequence (pn)n∈ω of conditions in MLα is a fusion sequence if there is an
increasing sequence (Fn)n∈ω of finite subsets of α and a sequence (ηn)n∈ω such that
for all n ∈ ω, ηn : Fn → ω, pn+1 ≤Fn,ηn pn, for all γ ∈ Fn we have ηn(γ) ≤ ηn+1(γ),
and for all γ ∈ supt(pn) there is m ∈ ω such that γ ∈ Fm and ηm(γ) ≥ n.
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This notion is precisely what is needed in countable support iterations to get
suitable fusions. It essentially means that once we have touched (i.e., decreased) a
coordinate of p0, we have to build a fusion sequence in that coordinate.

If (pn)n∈ω is a fusion sequence in MLα, its fusion pω is defined inductively. Let
Fω =

⋃
Fn.

Suppose pω(γ) has been defined for all γ < β for some β < α. If β 6∈ Fω, let
pω(β) be a name for 1ML. If β ∈ Fω, then pω � β forces (pn(β))n∈ω to be a fusion
sequence in ML. Let pω(β) be a name for the fusion of the pn(β)’s.

Now fix a continuous coloring c : [ωω]2 → 2. If G is MLα-generic over the ground
model M and x ∈ (ωω)M [G], then there is some ordinal β ≤ α and an MLβ-name ẋ
for an element of ωω not added before stage β of the iteration such that ẋG = x. In
this last equation ẋ is considered as an MLα-name in the natural way. This shows
that in order to prove Lemma 6.7 it suffices to show the following:

Lemma 6.9. Let α be an ordinal and suppose that ẋ is an MLα-name for an
element of ωω that is not added in an initial stage of the iteration. Then for every
condition p ∈ MLα there is a condition q ≤ p such that [Tq(ẋ)] is c-homogeneous.

The way to build a condition q for which [Tq(ẋ)] is c-homogeneous is the following:
q will be the fusion of a fusion sequence (pn)n∈ω with witness (Fn, ηn)n∈ω. For
each n, (pn, Fn, ηn) will determine a finite initial segment Tn of Tq(ẋ). We have to
make sure that Tq(ẋ) is the union of the Tn and that the Tn are good enough to
guarantee the c-homogeneity of [Tq(ẋ)]. The latter will be ensured by the (Fn, ηn)-
faithfulness of each pn defined below.

Definition 6.10. Let i ∈ 2 be a fixed color. For F and η as before, a condition q ∈
MLα is (F, η)-faithful if for all σ, τ ∈

∏
γ∈F Iη(γ) with σ 6= τ , c(x[q ∗σ], x[q ∗ τ ]) = i.

The color i that appears in Definition 6.10 will be chosen so that it is possible
to construct q ≤ p such that [Tq(ẋ)] is homogeneous of color i.

There are two cases. If α is a successor ordinal, i.e., α = β+1 for some ordinal β,
then by Claim 6.6, we may assume that p � β forces that [Tp(β)(ẋ)] is c-homogenous
and that p(β) is accurate. Moreover, we may assume that p � β decides the color
of [Tp(α)(ẋ)] to be i ∈ 2. This is how we choose i if α is a successor ordinal.

If α is a limit ordinal, then we can find the color i using the following Lemma.
The Lemma was proved in [8, Lemma 30] for countable support iterations of Sacks
forcing, but is was pointed out that the same proof goes through for other forcing
iterations as well.

Lemma 6.11. For i ∈ 2 let

Ei = {p ∈ MLα : ∀β < α∀q ≤ p∃q′ ≤ q∃q0, q1 ∈ MLβ,α

(q′ � β 
 q0, q1 ≤ q′ � [β, α) ∧ c(x[q0], x[q1]) = i)}
where MLβ,α denotes the natural MLβ-name for the rest of the iteration up to α.
Then E0 and E1 are open and E0 ∪ E1 is dense in MLα.

Using this lemma, we may assume that p already is an element of some Ei. That
is how we choose i if α is a limit ordinal.

We now state and prove the two Lemmas that we use in the inductive contruction
of the fusion sequence (pn)n∈ω.

Lemma 6.12. Let α be a limit ordinal and let ẋ be a MLα-name for an element
of ωω which is not added by an initial stage of the iteration. Let F , η, and i be as
in Definition 6.10 and suppose that q ∈ MLα is (F, η)-faithful.

a) Let β ∈ α \ F and let F ′ = F ∪ {β} and η′ = η ∪ {(β, 0)}. Then q is
(F ′, η′)-faithful.
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b) Suppose q ∈ Ei. Let β ∈ F and let η′ =
(
η � (F \ {β})

)
∪ {(β, η(β) + 1)}.

Then there is r ≤F,η q such that r is (F, η′)-faithful.

Proof. a) follows immediately from the definitions.
For b) let δ = max(F ) + 1 and n = η(β) + 1.

Claim 6.13. There is a condition q′ ≤F,η q such that for each σ ∈
∏

γ∈F Iη(γ)

there are sequences qσ,0, . . . , qσ,n of names for conditions such that for all k ≤ n,

q′ ∗ σ � δ 
 qσ,k ≤ q � [δ, α),

q′ ∗ σ � δ decides ẋ[qσ,k], and for all l ≤ n with k 6= l,

q′ ∗ σ � δ 
 c(x[qσ,k], x[qσ,l]) = i.

For the proof of the claim, let {σ1, . . . , σm} be an enumeration of
∏

γ∈F Iη(γ).
We build a ≤F,η-decreasing sequence (qj)j≤m such that q0 = q and q′ = qm works
for the claim. As we construct qj , we find suitable qσj ,k for all k < n.

Let j ∈ {1, . . . ,m} and assume that qj−1 has already been constructed. Since
q ∈ Ei and Ei is open, there are q∗j ≤ qj−1 ∗ σj and sequences qσj ,0 and q∗σj ,1 of
names of conditions such that

q∗j � δ 
 qσj ,0, q
∗
σj ,1 ≤ q � [δ, α) ∧ c(ẋ[qσj ,0], ẋ[q∗σj ,1]) = i.

Iterating this process by splitting q∗σj ,1 into qσj ,1 and q∗σj ,2 and so on and decreasing
q∗j , we finally obtain q∗j ≤ qj−1 ∗ σj and qσj ,k, k ≤ n, such that for all k ≤ n.

q∗j � δ 
 qσj ,k ≤ q � [δ, α)

and for all l ≤ n with l 6= k,

q∗j � δ 
 c(ẋ[qσj ,k], ẋ[qσj ,l]) = i.

We may assume that q∗j � δ decides ẋ[qσj ,k] for all k ≤ n. Let qj ≤F,η qj−1

be such that qj ∗ σj � δ = q∗j � δ and qj � [δ, α) = q � [δ, α). This finishes the
construction, and it is easy to check that it works.

Continuing the proof of lemma 6.12, let qσ,k and q′ be as in the claim. For
ρ ∈ Iη(β) let rρ_0, . . . , rρ_n be sequences of names for conditions such that for all
k ≤ n and all σ ∈

∏
γ∈F Iη(γ) with σ(β) = ρ,

q′ ∗ σ � δ 
 rρ_k = qσ,k.

Let r be a sequence of names for conditions such that r � δ = q′ � δ and for all
σ ∈

∏
γ∈F Iη′(γ),

q′ ∗ σ � δ 
 r � [δ, α) = rσ(β).

With this choice of r we have r ≤F,η q. It follows from the construction that r
is (F, η′)-faithful. �

A similar lemma is true if the new real is added in a successor step.

Lemma 6.14. Let α be a successor ordinal, say α = δ+1 and let ẋ be a MLα-name
for an element of ωω which is not added by an initial stage of the iteration. Let F ,
η, and i be as in Definition 6.10 and suppose that q ∈ MLα is (F, η)-faithful.

a) Let β ∈ α \ F and let F ′ = F ∪ {β} and η′ = η ∪ {(β, 0)}. Then q is
(F ′, η′)-faithful.

b) Suppose

q � δ 
 “ [Tq(δ)] is c-homogeneous of color i and q(δ) is accurate”.

Let β ∈ F and let η′ = η � F \ {β} ∪ {(β, η(β) + 1)}. Then there is r ≤F,η q such
that r is (F, η′)-faithful.
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Proof. As in Lemma 6.12, a) follows directly from the definitions.
For the proof of b) let n = η(β) + 1. We have to consider two cases. First

suppose β = δ. In this case let r ≤F,η q be such that r � δ 
 r(δ) = q(δ) and for all
σ ∈

∏
γ∈F Iη(γ) and all k ≤ n, r ∗ σ � δ decides ẋ[r(δ) ∗ (σ(δ)_k)].

Note that r is indeed (F, η′)-faithful since we assumed q � δ to force that [Tq(δ)]
is c-homogeneous of color i and that q(δ) is accurate.

If β 6= δ, the argument will be similar to the one used for Lemma 6.12. For all
k ≤ n and all σ ∈

∏
γ∈F Iη(γ) let qσ,k be a name for a condition such that

q ∗ σ � δ 
 qσ,k ≤ q(δ) ∗ σ(δ)

and for all l ≤ n with l 6= k

q ∗ σ � δ 
 c(ẋ[qσ,k(δ)], ẋ[qσ,l(δ)]) = i.

Now fix q′ ≤F,η q such that for all σ ∈
∏

γ∈F Iη(γ) and all k ≤ n, q′ ∗ σ � δ

decides ẋ[qσ,k]. Note that for all k, l ≤ n with k 6= l we have that

q′ ∗ σ � δ 
 c(ẋ[qσ,k], ẋ[qσ,l]) = i.

Choose r such that r � δ = q′ � δ and for all σ ∈
∏

γ∈F Iη′(γ)

r ∗ σ � δ 
 r(δ) ∗ σ(δ) = qσ,k

where k = σ(β)(n− 1) (i.e., k is the last digit of σ(β)).
It follows from the definition of r that r ≤F,η q. It is easily checked that r is

(F, η′)-faithful. �

Using the last two lemmas, we can prove Lemma 6.9, which finishes the proof of
Lemma 6.7.

Proof of Lemma 6.9. Since ẋ is a name for a real not added in an initial stage of
the iteration MLα, cf(α) ≤ ℵ0. Let p ∈ MLα. If α is a limit ordinal, using Lemma
6.11, we can decrease p such that for some i ∈ 2, p ∈ Ei.

If α is a successor ordinal, say α = δ + 1, we can use Claim 6.6 to decrease p
such that for some i ∈ 2

p � δ 
 “[Tp(δ)] is c-homogeneous of color i and p(δ) is accurate”.

By induction, we define a sequence (pn, Fn, ηn)n∈ω such that

(1) for all n ∈ ω, pn ∈ MLα, pn ≤ p, Fn ∈ [α]<ℵ0 , ηn : Fn → ω, and pn is
(Fn, ηn)-faithful,

(2) for all n ∈ ω, Fn ⊆ Fn+1, pn+1 ≤Fn,ηn
pn, and for all γ ∈ Fn we have

ηn(γ) ≤ ηn+1(γ), and
(3) for all n ∈ ω and all γ ∈ supt(pn) there is m ∈ ω such that γ ∈ Fm and

ηm(γ) ≥ n.

This construction can be done using parts a) and b) of Lemma 6.12 and Lemma
6.14 respectively, depending on whether α is a limit ordinal or not, to extend Fn

or to make ηn bigger, together with some bookkeeping to ensure (3). Now (pn)n∈ω

is a fusion sequence. Let q be the fusion of this sequence. For each n ∈ ω let
Tn be the tree generated by {ẋ[pn ∗ σ] : σ ∈

∏
γ∈Fn

Iη(γ)}. It is easily seen that
Tq(ẋ) =

⋃
n∈ω Tn.

It now follows from the faithfulness of the pn that [Tq(ẋ)] is c-homogeneous of
color i. �

On the other hand, ML adds a generic real that for all n ∈ ω avoids every n-ary
set in the ground model.
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Lemma 6.15. Let G be ML-generic over the ground model M and let n ∈ ω. Then
in M [G], there is an element of ωω that is not covered by an n-ary set coded in the
ground model.

Proof. Let ẋ be a name for the generic real added by ML. We show that for every
n-ary set X ⊆ ωω, ẋ is forced to be an element of ωω \X.

Let p ∈ ML. Consider the tree p ∩ T (X). Since every element of p ∩ T (X)
has at most n immediate successors, there is t ∈ p such that t 6∈ p ∩ T (X). Now
pt 
 ẋ 6∈ X. �

Corollary 6.16. Forcing with MLω2 over a model of CH yields a model where for
every n ∈ ω we have ln,ω = 2ℵ0 = ℵ2.

Combining Corollary 6.8 and Corollay 6.16, we obtain

Corollary 6.17. The dual open coloring axiom is consistent with ln,ω = 2ℵ0 .
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