
WEAK BOREL CHROMATIC NUMBERS

STEFAN GESCHKE

Abstract. Given a graph G whose set of vertices is a Polish space

X, the weak Borel chromatic number of G is the least size of a

family of pairwise disjoint G-independent Borel sets that covers all

of X. Here a set of vertices of a graph G is independent if no two

vertices in the set are connected by an edge.

We show that it is consistent with an arbitrarily large size of the

continuum that every closed graph on a Polish space either has a

perfect clique or has a weak Borel chromatic number of at most ℵ1.

We observe that some weak version of Todorcevic’s Open Coloring

Axiom for closed colorings follows from MA.

Slightly weaker results hold for Fσ-graphs. In particular, it is

consistent with an arbitrarily large size of the continuum that every

locally countable Fσ-graph has a Borel chromatic number of at

most ℵ1.

We refute various reasonable generalizations of these results to

hypergraphs.

1. Introduction

Given a graph G = (X,E), a coloring of G is a function c from X

to some set of colors such that no two vertices that are connected by

an edge get the same color. The chromatic number of a graph is the

least possible size of the range of a coloring. In [6], Kechris, Solecki

and Todorcevic studied Borel chromatic numbers of analytic graphs.

We give their definition of Borel chromatic numbers. If X is a Polish

space and G = (X,E) is a graph on X, the Borel chromatic number
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of G is the least n ≤ ω such that there is a coloring c : X → n of G

that is Borel. If no such n exists, the Borel chromatic number of G is

uncountable. In [10], the Borel chromatic number of a graph is defined

in a slightly different way, namely as the least size of the range of a

Borel coloring of the graph into a Polish space. This definition only

differs from the original definition in that the value “uncountable” is

replaced by 2ℵ0 .

We extend the definition of the Borel chromatic number by increasing

the resolution in the uncountable. Given a graph G = (X,E) on a

Polish space X, the weak Borel chromatic number of G is the least

cardinal κ such that there is a coloring c : X → κ of G whose fibers

are Borel. Observe that the weak Borel chromatic number agrees with

the Borel chromatic number as long as only countable numbers are

considered. A graph whose Borel chromatic number is uncountable

has an uncountable weak Borel chromatic number as well, only that

this number can be an uncountable cardinal below 2ℵ0 .

Kechris, Solecki and Todorcevic showed that there is a closed graph

G0 on the Cantor space 2ω such that for every analytic graph G =

(X,E) on a Polish space X, G has an uncountable chromatic number

if, and only if, there is a continuous function f : 2ω → X that maps

edges of G0 to edges of G. Clearly, the Borel chromatic number of G0

itself has to be uncountable. On the other hand, G0 is a tree, i.e., it

does not have any cycles, and therefore its true chromatic number is 2.

B. Miller showed that the measurable chromatic number of G0 is

in fact 3 [12]. He asked whether anything can be said about the weak

Borel chromatic number of G0 compared to other combinatorial cardinal

characteristics of the continuum [13]. The proof by Kechris et al. that

the Borel chromatic number of G0 is uncountable actually shows that

the weak Borel chromatic number of G0 is at least cov(meager), the least

size of a family of meager sets that covers all of 2ω. From the universal

property of G0 it follows that every analytic graph with an uncountable

Borel chromatic number has a weak Borel chromatic number of at least

cov(meager).



WEAK BOREL CHROMATIC NUMBERS 3

An obvious lower bound for the chromatic number, and therefore for

the Borel chromatic number of a graph G, is the supremum of the sizes

of complete subgraphs. In Section 3 we show that if G = (X,E) is a

graph on a Polish space whose edge relation is closed, then the Borel

chromatic number of G can be forced to be ℵ1 by some ccc forcing un-

less there is a perfect subset of X that supports a complete subgraph of

G. This forcing dichotomy is reminiscent of Todorcevic’s observation

that an open graph on a Polish space either has a complete subgraph

whose set of vertices is perfect, or has a countable chromatic number.

Todorcevic’s observation let to the formulation of the Open Coloring

Axiom [15]. From our results it follows that the Borel chromatic num-

ber of G0 can be forced to be smaller than 2ℵ0 .

In Section 4 we use the ideas from Section 3 and show that under

Martin’s Axiom, a closed graph G on a second countable Hausdorff

space of size < 2ℵ0 is countably chromatic unless it has large complete

subgraphs. The latter statement actually is a weak version of the Open

Coloring Axiom mentioned above, but for closed as opposed to open

graphs. In Section 5 we repeat the treatment that closed graphs re-

ceived in Sections 3 and 4 with Fσ-graphs and obtain slightly weaker

results. The results on Fσ-graphs in particular apply to the Vitali

equivalence relation E0 (see [4]) and to graphs of the form GS studied

in [10], which are similar to G0 but not closed. It follows for example

that it is consistent with an arbitrarily large size of the continuum that

2ω is the union of ℵ1 compact E0-transversals. Here a set T ⊆ 2ω is an

E0-transversal if no two distinct elements of T are related by E0.

Finally, in Section 6 we consider hypergraphs and show that prac-

tically all of the results in the previous section fail badly even for

3-uniform hypergraphs, i.e., hypergraphs whose edges are 3-element

subsets of the set of vertices.

2. Preliminaries

There are two different ways to implement graphs. In [6] a graph on

a set of X vertices is a symmetric, irreflexive relation on X. If the set

of vertices is a Polish space X, a graph on X is open, closed, Fσ, Gδ,
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respectively analytic if the relation is, as a subset of

X2 \ {(x, x) : x ∈ X}.

We prefer to consider a graph G as a pair (X,E), where X is a

set, the set of vertices, and E is a subset of the collection [X]2 of all

two-element subsets of X. E is the set of edges of G.

For every Hausdorff space X, the natural topology on the set [X]2

is generated by sets of the form

[U, V ] = {{x, y} : x ∈ U ∧ y ∈ V }

where U and V are disjoint open subsets of X.

It turns out that with respect to this topology, the set of edges of a

graph is open, closed, Fσ, respectively Gδ iff the edge relation is with

respect to the usual topology on X2 \ {(x, x) : x ∈ X}. In particular,

by a closed graph on a Polish space we mean a pair (X,E), where X

is a Polish space and E is a closed subset of [X]2.

Definition 1. Let G = (X,E) be a graph on a Polish space.

a) I ⊆ X is G-independent or independent in G iff [I]2 ∩ E = ∅.
(G-independent sets are called G-discrete in [6].)

b) C ⊆ X is a G-clique or a clique in G iff [C]2 ⊆ E.

c) The weak Borel chromatic number of G is the least size of a family

P of pairwise disjoint G-independent Borel subsets of X such that

X =
⋃
P .

3. A forcing dichotomy for closed graphs

We prove the following theorem:

Theorem 2. Let G = (ωω, E) be a closed graph. Then either G has a

perfect clique or there is a ccc forcing extension of the universe in which

ωω is covered by ℵ1 compact G-independent sets while 2ℵ0 is arbitrarily

large.

Before we turn to the proof of this theorem, we derive the following

corollary from it:
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Corollary 3. Let X be a Polish space and let G = (X,E) be a closed

graph. Then either G has a perfect clique or there is a ccc forcing

extension of the universe in which the weak Borel chromatic number of

G is at most ℵ1 while 2ℵ0 is arbitrarily large.

Proof. Let X and G be as in the statement of the corollary and suppose

that X does not contain a perfect G-clique. After removing countably

many points from X, we may assume that X has no isolated points.

Since X is a perfect Polish space, there is a continuous injective map

f from ωω onto X. Let

G∗ = (ωω, {{x, y} ∈ [ωω]2 : {f(x), f(y)} ∈ E}).

Since f is continuous and 1-1, G∗ is a closed graph on ωω. If there is a

perfect G∗-clique, then there is a G∗-clique C that is homeomorphic to

2ω. Since f is 1-1, f [C] is again homeomorphic to 2ω. Moreover, f [C]

is a G-clique. But this shows that G has a perfect clique, contradicting

our assumption on G.

It follows that there is no perfect G∗-clique. Hence by Theorem 2,

there is a ccc forcing extension of the universe in which ωω is covered

by ℵ1 compact G∗-independent sets while the continuum is arbitrarily

large. The images of these G∗-independent sets under f are compact

G-independent sets that cover X.

Let (Iα)α<ω1 be an enumeration of a collection of closedG-independent

sets that cover X. For each α < ω1 let Bα = Iα \
⋃
{Iβ : β < α}. Now

{Bα : α < ω1} is a partition of X into ℵ1 G-independent Borel sets,

witnessing that the weak Borel chromatic number of G is at most ℵ1

in this generic extension of the universe. �

The main tool in the proof of Theorem 2 is the forcing notion P(G)

associated with every closed graph G on ωω.

Definition 4. For every closed graph G = (ωω, E) let P(G) denote the

partial order defined as follows: A pair p = (Tp, Fp) is a condition in

P(G) if

(1) Tp is a finite subtree of ω<ω,
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(2) there is some mp ∈ ω such that all maximal elements of Tp are

of length mp,

(3) if s and t are two distinct maximal elements of Tp, then for all

x, y ∈ ωω with s ⊆ x and t ⊆ y we have {x, y} 6∈ E,

(4) Fp is a finite subset of ωω, and

(5) for all {x, y} ∈ [Fp]
2, x � mp ∈ Tp and x � mp 6= y � mp.

For two conditions p, q ∈ P(G) we write p ≤ q iff

(6) Tq ⊆ Tp and Tq consists precisely of all elements of Tp of length

≤ mq.

(7) Fq ⊆ Fp.

Observe that conditions (3) and (5) imply that Fp is a G-independent

subset of X. The idea is that the tree Tp approximates a compact G-

independent subset of ωω that contains all the elements of Fp. Our first

goal is to show that P(G) is ccc if G has no perfect cliques.

We need the following two results:

Theorem 5 (Kubís [7]). Let Y be an analytic Hausdorff space. If

F ⊆ [Y ]2 is Gδ and the graph (Y, F ) has an uncountable clique, then it

has a perfect clique.

Theorem 6 (Galvin, see [5, Theorem 19.7]). Let Y be an uncountable

Polish space and let K0, . . . , Kn−1 ⊆ [Y ]2 be sets with the Baire property

such that

[Y ]2 = K0 ∪ · · · ∪Kn−1.

Then there is a perfect set P ⊆ Y such that for some i ∈ n, [P ]2 ⊆ Ki.

The following lemma was conjectured by the author and proved by

Conley and B. Miller. The proof presented here is due to the author.

Lemma 7. If G has no perfect cliques, then P(G) is ccc.

Proof. Suppose that P(G) has an uncountable antichain A. We can

assume that all p ∈ A have the same first component T and that all

Fp, p ∈ A, are of the same size n. It follows that mp has the same value

m for all p ∈ A. We may also assume that

Fp � m = {x � m : x ∈ Fp}
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is the same set S ⊆ ωm for all p ∈ A.

Let B be the set of all p ∈ P(G) such that Tp = T and Fp � m =

S. For each p ∈ B let (x0(p), . . . , xn−1(p)) be the lexicographically

increasing enumeration of Fp. The map p 7→ (x0(p), . . . , xn−1(p)) is a

bijection from B onto a clopen subset of (ωω)n. This induces a natural

topology on B. Note that for all p, q ∈ B and all i < n we have

xi(p) � m = xi(q) � m.

Claim 8. Let p, q ∈ B. Then p and q are compatible in P(G) iff for

all i < n, either xi(p) = xi(q) or {xi(p), xi(q)} 6∈ E.

If p and q are compatible, then

Fp ∪ Fq = {x0(p), . . . , xn−1(p), x0(q), . . . , xn−1(q)}

is G-independent. But Fp ∪Fq is G-independent iff for all i < n, either

xi(p) = xi(q) or {xi(p), xi(q)} 6∈ E. This is because if i, j < n are

distinct, then, by condition (3) in the definition P(G), {xi(p), xj(q)} 6∈
E.

On the other hand, if Fp ∪ Fq is G-independent, then we can find

a common extension r = (Tr, Fr) of p and q as follows: Let Fr =

Fp∪Fq. Choose mr large enough such that for all x, y ∈ Fr with x 6= y,

x � mr 6= y � mr and for all x′, y′ ∈ X with x′ � mr = x � mr and

y′ � mr = y � mr we have {x′, y′} 6∈ E. This is possible since E is

closed. We define the tree Tr in the following way:

Let

S0 = (Fp ∪ Fq) � mr = {y1 . . . , yn, z1, . . . , zn}.

For each maximal element of T = Tp = Tq that is not an element

of S we choose an extension of length mr. Let S1 be the set of all

these extensions. Let Tr be the tree consisting of all initial segments

(not necessarily proper) of elements of S0 ∪ S1, i.e., let Tr be the tree

generated by S0 ∪ S1. It is obvious that r = (Tr, Fr) is an extension of

both p and q provided it is a condition at all.

Conditions (1), (2), (4), and (5) in the definition of P(G) are clearly

satisfied. For condition (3) let s and t be two distinct maximal elements

of Tr and let x, y ∈ ωω be such that x � mr = s and y � mr = t.
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If x � m 6= y � m, then {x, y} 6∈ E since p and q satisfy (3). If

x � m = y � m, then {x, y} 6∈ E by the choice of mr and of Tr. This

finishes the proof of the claim.

Let

F = {{p, q} ∈ [B]2 : p and q are not compatible in P(G)}.

Since E is closed and by the claim, F is a Boolean combination of

finitely many subsets of [B]2 that are open or closed. In particular,

F is Gδ. Hence Theorem 5 applies to (B,F ). Since A ⊆ B is an

uncountable antichain in P(G), it is, in fact, an uncountable (B,F )-

clique. Hence there is a perfect (B,F )-clique C ⊆ B.

To each pair {p, q} ∈ [C]2 we assign a color c(p, q) ∈ 3n as follows:

for each i < n let

c(p, q)(i) =


0, xi(p) = xi(q),

1, xi(p) 6= xi(q) and {xi(p), xi(q)} 6∈ E,

2, xi(p) 6= xi(q) and {xi(p), xi(q)} ∈ E.

The coloring c is clearly Borel. By Theorem 6 there is a perfect c-

homogeneous set D ⊆ C. We can choose D homeomorphic to 2ω. Let

s be the constant value of c on [D]2. Since the elements of D are

pairwise incompatible and by the claim, there is some i < n such that

for all {p, q} ∈ [D]2, {xi(p), xi(q)} ∈ E. Now the set {xi(p) : p ∈ D}
is a G-clique. Moreover, this set is a 1-1 continuuous image of a copy

of 2ω and therefore itself a copy of 2ω. It follows that G has a perfect

clique, contradicting our assumptions on G. �

Lemma 9. Let (Gα)α<κ be a family of closed graphs on either 2ω or

ωω. If for all α < κ there are no perfect Gα-cliques, then the finite

support product Q of the forcing notions P(Gα) is ccc.

Proof. Suppose there is an uncountable antichain A ⊆ Q. Using the

∆-System Lemma we may assume that the supports of the conditions

in A form a ∆-system with some root r ⊆ κ. Two conditions in A

are compatible iff their restrictions to r are compatible. Since A is an

antichain, no two elements of A have compatible restrictions to r.
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A proof that is almost identical to the proof of Lemma 7 now shows

that one of the graphs Gα, α ∈ r, has a perfect clique, contradicting

the assumptions on the graphs Gα. �

Theorem 10. There is a ccc forcing extension of the set-theoretic uni-

verse with the same size of 2ℵ0 in which for every closed graph G on

ωω without perfect cliques, ωω is covered by ℵ1 compact G-independent

sets.

Proof. Let (Gα)α<2ℵ0 be an enumeration of all closed graphs on ωω

without perfect cliques such that every graph occurs infinitely often in

the enumeration. Let Q be the finite support product of the forcings

P(Gα), α < 2ℵ0 . By Lemma 9, Q is ccc. It follows that Q preserves car-

dinals and cofinalities and that it adds exactly 2ℵ0 reals. In particular,

forcing with Q does not change the value of 2ℵ0 .

Since every closed graph G on ωω appears infinitely often in the

enumeration (Gα)α<2ℵ0 , Q adds a generic filter for the finite support

product of countably many copies of P(G).

Claim 11. For every closed graph G on ωω the finite support product

of ω copies of PG adds countably many compact G-independent sets

that cover the ground model elements of ωω.

For each n ∈ ω let Γn be the generic filter added by the n-th com-

ponent of the finite support product of ω-many copies of P(G). Let

Tn =
⋃
p∈Γn

Tp. By the definition of P(G) and be the definition of the

relation ≤ on P(G), Tn is a finitely branching tree. An easy density

argument shows that Tn is a tree of height ω. Let Cn = [Tn]. Now

Cn is a compact subset of ωω. Using condition (3) of Definition 4 it is

easily checked that each Cn is G-independent. If p = (Tp, Fp) ∈ Γn and

x ∈ Fp, then necessarily x ∈ Cn.

If x is a ground model element of ωω and p is a condition in the

finite support product, then there is some n ∈ ω such that the n-th

coordinate of p is trivial. We can extend p to a stronger condition q such

that q(n) has a first component Tq(n) = {∅} and a second component

Fq(n) = {x}. It follows that the set of conditions that force x to be an
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element of one of the sets Cn is dense in the finite support product.

Hence
⋃
n∈ω Cn contains all ground model elements of X. This finishes

the proof of the claim.

It follows that for every closed graph G on ωω, Q adds countably

many compact G-independent sets that cover all ground model ele-

ments of ωω.

Iterating forcing with the respective versions of Q of length ω1 with

finite supports yields a model of set theory in which 2ℵ0 is the same

ordinal as in the ground model and in which for every closed graph G

on ωω, ωω is covered by ℵ1 compact G-independent sets.

This is because if the graph G appears at stage α < ω1, all we

have to do is to choose, for each β ∈ [α, ω1), a countable collection Cβ
of compact G-independent sets in the intermediate model with index

β + 1 that covers the elements of ωω of the previous model with index

β. In the final model, the collection
⋃
β∈[α,ω1) Cβ is of size at most ℵ1

and covers the underlying space of G. �

Proof of Theorem 2. We start by adding Cohen reals to the set-theoretic

universe V in order to obtain a model V [Γ0] of set theory in which 2ℵ0

has the desired size. Then we consider the intermediate model V [Γ0]

as the new ground model and form the generic extension V [Γ0,Γ1] of

V [Γ0] constructed in Theorem 10.

Observe that for a given closed graph G on ωω the statement “G

has no perfect clique” is Π1
2 and hence absolute. That is, if G ∈ V

has no perfect clique in V , then it has no perfect clique in any generic

extension of V either and therefore the weak Borel chromatic number

of G in V [Γ0,Γ1] is at most ℵ1. �

4. Fragments of a “closed coloring axiom”

The uncountablility of the Borel chromatic number of G0 follows from

the fact that every G0-independent subset of 2ω with the Baire property

is meager. This implies that there is a set A ⊆ 2ω of size non(meager)

that is not the union of countably many G0-independent Borel sets.

Here non(meager) is the least size of a nonmeager set of reals. In
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particular, there are models of ZFC in which there is a subset of 2ω of

size ℵ1 < 2ℵ0 that is not the union of countably many G0-independent

Borel sets. However, we have the following theorem.

Theorem 12. Assume Martin’s Axiom.

a) For every closed graph G on a Polish space X without perfect

cliques, every set Y ⊆ X of size < 2ℵ0 is contained in the union of

countably many closed G-independent sets.

b) If X is a second countable Hausdorff space of size < 2ℵ0 and G

is a closed graph on X without infinite cliques, then X is the union of

countably many closed G-independent sets.

Proof. a) Let G be a closed graph on a Polish space X without perfect

cliques. After removing countably many points from X if necessary, we

may assume thatX is perfect. SinceX is a perfect Polish space, it is the

continuous image of ωω under an injective map f . We define a closed

graph G∗ on ωω as in the proof of Corollary 3. The finite support

product of countably many copies of P(G∗) is ccc by Lemma 7. A

sufficiently generic filter of this finite support product adds countably

many compact G∗-independent sets covering all of f−1[Y ]. The images

of these sets are G-independent and cover Y .

b) Let E ⊆ [X]2 be the set of edges of G. Let P be the forcing notion

consisting of all finite G-independent subsets of X ordered by reverse

inclusion. Clearly, forcing with P adds a G-independent subset of X.

We show that P is ccc.

Suppose there is an uncountable antichain A ⊆ P. We can assume

that all elements of A are of the same size n. Fix a countable base B for

the topology ofX. For each p ∈ A choose disjoint sets Up
0 , . . . , U

p
n−1 ∈ B

such that for all i < n, p ∩ Up
i has exactly one element and such that

for all {i, j} ∈ [n]2, if x ∈ Up
i and y ∈ Up

j , then {x, y} 6∈ E. This is

possible since [X]2 \ E is open.

Since B is countable, there are only countably many possibilities for

the sequence (Up
i )i<n. Hence we may assume that for all i < n, Up

i is

the same set Ui for all p ∈ A.
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For every p ∈ A and i < n let xpi be the unique element of Ui ∩ p.
For each i < n we define a coloring ci : [A]2 → 3 by letting

ci(p, q) =


0, if xpi = xqi ,

1, if xpi 6= xqi and {xpi , x
q
i} 6∈ E

2, if xpi 6= xqi and {xpi , x
q
i} ∈ E.

By the infinite Ramsey theorem there is an infinite set B ⊆ A that

is homogeneous for all ci. Note that for any two distinct elements p

and q of A there is i < n such that ci(p, q) = 2 for otherwise, p and q

would be compatible in P . It follows that for some i < n, ci(p, q) = 2

for all {p, q} ∈ [B]2. But now {xpi : p ∈ B} is an infinite G-clique,

contradicting the assumptions on G.

By using a ∆-system argument first and then an argument almost

identical to the one above but slightly more complicated as far as no-

tation is concerned, we can also show that the finite support product

Q of countably many copies of P is ccc. Since X is of size < 2ℵ0 , MA

implies the existence of a sufficiently generic filter of Q that codes a

countable family of G-independent sets that covers all of X. �

5. Fσ-graphs

There is an Fσ-graph that has an uncountable clique, but no perfect

clique [14, Claim 3.2] (also see [11, Proposition 2.5]). For this Fσ-graph

there is no ℵ1-preserving forcing extension of the universe in which

countably many independent sets cover the ground model vertices of

the graph. This shows that the proof of Theorem 2 does not apply to

Fσ-graphs.

Kubís and Shelah proved that for every α < ω1 it is consistent that

there is an Fσ-graph on 2ω that has a clique of size ℵα but no perfect

clique [8]. This shows that Theorem 2 at least consistently fails for

Fσ-graphs.
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Lemma 13. Let G = (X,E) be an Fσ-graph on a Polish space X.

Let A ⊆ X be G-independent. Then there is a σ-centered forcing no-

tion that adds countably many closed G-independent sets that cover the

ground model set A.

Proof. Since E is Fσ, [X]2 \ E is Gδ. Let (On)n∈ω be a decreasing

sequence of open subsets of [X]2 such that [X]2 \ E =
⋂
n∈ω On. Fix a

countable basis B for the topology on X. Let P consist of conditions

of the form p = (np,Up, Fp) where

(1) np ∈ ω,

(2) Fp a finite subset of A,

(3) Up is a finite set of nonempty elements of B,

(4) Fp ⊆
⋃
Up,

(5) every U ∈ Up is of diameter at most 2−np ,

(6) for all U, V ∈ Up with U 6= V , cl(U) ∩ cl(V ) = ∅, and

(7) for all U, V ∈ Up with U 6= V , [U, V ] ⊆ Onp .

Given p, q ∈ P, we write p ≤ q if

(8) np ≥ nq,

(9) for all U ∈ Up either U ∈ Uq or there is V ∈ Uq such that

cl(U) ⊆ V , and

(10) Fp ⊇ Fq.

We first show that P is σ-centered. Observe that there are only

countably many possibilities for np and Up. Given n ∈ ω and a finite

set U ⊆ B consisting of nonempty sets, any two conditions p, q ∈ P
with np = nq = n and Up = Uq = U are compatible, witnessed by the

common extension (n,U , Fp ∪ Fq). It follows that P is σ-centered.

For n ∈ ω let Dn = {p ∈ P : np ≥ n}. We show that each of the sets

Dn is dense in P. Let p ∈ P. Since Fp ⊆ A and A is G-independent, for

all {x, y} ∈ [Fp]
2 we have {x, y} ∈

⋂
m∈ω Om and hence {x, y} ∈ On.

Since Fp is finite, it follows that there are sets Ux ∈ B, x ∈ Fp, such

that for distinct x, y ∈ Fp, Ux ∩ Uy = ∅ and [Ux, Uy] ⊆ On. We may

assume that the Ux, x ∈ Fp, have diameter at most 2−n and that

for each x ∈ Fp there is U ∈ Up such that cl(Ux) ⊆ U . Also, we
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may assume that for distinct x, y ∈ Fp, cl(Ux) ∩ cl(Uy) = ∅. Now

(max(n, np), {Ux : x ∈ Fp}, Fp) is a condition in Dn that extends p.

Let Γ be a P-generic filter over the ground model V . Let C =⋂
p∈Γ cl(

⋃
Up). Clearly, C is a closed set. Observe that by the density

of the sets Dn, n ∈ ω, and by the definition of the relation ≤ we have

C =
⋂
p∈Γ(

⋃
Up). Moreover, for every p ∈ Γ, Fp ⊆ C. Again by the

density of the sets Dn, for any two distinct points x, y ∈ C and all

n ∈ ω, there is a condition p ∈ Γ such that 2−np < 1
2
· d(x, y) and

np > n. Now if x ∈ U ∈ Up and y ∈ V ∈ Up, U ∩ V = ∅ and

[U, V ] ⊆ On. It follows that {x, y} ∈
⋂
n∈ω On = [X]2 \E. Therefore C

is G-independent.

By the usual argument it now follows that the finite support prod-

uct of countably many copies of P adds countably many closed G-

independent subsets of X that cover the ground model set A. It is

well-known that a finite support product of countably many σ-centered

forcing notions is again σ-centered. �

Corollary 14. Assume Martin’s Axiom for σ-centered partial orders.

Then for every Fσ-graph G on a Polish space X, every G-independent

set of size < 2ℵ0 is contained in the union of countably many closed

G-independent sets.

Proof. Let A ⊆ X be G-independent and of size < 2ℵ0 . We again use a

finite support product F of countably many copies of the forcing notion

P defined in the proof of Lemma 13. A sufficiently F-generic filter yields

countably many closed G-independent sets that cover A. �

Theorem 15. Let G = (X,E) be an Fσ-graph and let κ be an uncount-

able cardinal. Suppose in every ccc forcing extension of the set-theoretic

universe, the chromatic number of G is at most κ. Then there is a ccc

forcing extension of the universe with an arbitrarily large size of the

continuum in which X is covered by at most κ closed G-independent

sets.

Proof. First add Cohen reals in order to increase the size of the con-

tinuum to the desired value. Now cover X by κ G-independent sets
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and use Lemma 13 to cover each of these G-independent sets by count-

ably many closed G-independent sets. This can be done simultaneously

using a finite support product. Iterating this for ω1 steps with finite

supports yields a ccc forcing extension of the ground model with an ar-

bitrarily large size of the continuum in which X is covered by κ closed

G-independent sets. �

Corollary 16. Let G = (X,E) be a locally countable Fσ-graph, i.e., an

Fσ-graph in which every vertex has at most countably many neighbors.

Then there is a ccc extension of the universe with an arbitrarily large

size of the continuum in which the weak Borel chromatic number of G

is at most ℵ1.

Proof. If G is locally countable, all the connected components of G are

countable. Hence G is countably chromatic. The statement that G

is locally countable is Π1
2 and thus absolute. Hence G is countably

chromatic in every forcing extension of the universe. Now the corollary

follows from Theorem 15. �

6. Hypergraphs

Given a Hausdorff space X and n ∈ ω, we topologize [X]n in analogy

to [X]2. The notions clique, independent set and weak Borel chromatic

number have natural generalizations to n-uniform hypergraphs G =

(X,E). Here (X,E) is n-uniform if E ⊆ [X]n. We observe that the

natural analogs of Corollary 3 and Theorem 12 fail even for clopen

3-uniform hypergraphs on 2ω.

Definition 17. For all {x, y} ∈ [ωω]2 let ∆(x, y) = min{n ∈ ω :

x(n) 6= y(n)}. Now let {x, y, z} ∈ [2ω]3 and assume that x, y, z are

lexicographically increasing. Let

c3
type(x, y, z) =

1, ∆(x, y) < ∆(y, z)

0, ∆(y, z) < ∆(x, y)
.

Given {x, y, z} ∈ [2ω]3 with x, y, z lexicographically increasing, we

say that {x, y, z} is of type c3
type(x, y, z). Let E3

type ⊆ [2ω]3 be the

collection of all 3-element subsets of 2ω of type 1.
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Observe that there are no uncountable c3
type-homogeneous sets. More

precisely, if A ⊆ 2ω is uncountable, we may assume, after removing

countably many points if necessary, that for every open set O ⊆ 2ω,

O ∩ A is either empty or uncountable. Now the tree of finite initial

segments of A is perfect. It follows that A has infinite subsets A0 and

A1 such that for all i ∈ 2, all three-element subsets of Ai are of type i.

It follows that even though there are no perfect (2ω, E3
type)-cliques,

2ω is not the union of fewer than 2ℵ0 independent sets.

Galvin showed that for every continuous coloring c : [2ω]3 → 2 there

is a perfect set P ⊆ 2ω such that for all {x, y, z} ∈ [P ]3, c(x, y, z) only

depends on the type of {x, y, z} (see [2] for a proof). In other words,

P is homogeneous for each of the two partial colorings obtained by

restricting c to all three-element subsets of 2ω of type 0, respectively

of type 1.

Hence one might look for analogs of Corollary 3 and Theorem 12

that talk only about one type of three-element sets.

Definition 18. Let G = (2ω, E) be a 3-uniform hypergraph and i ∈ 2.

C ⊆ 2ω is an i-clique of G if for all {x, y, z} ∈ [C]3 of type i, {x, y, z} ∈
E. Likewise, I ⊆ 2ω is an i-independent set of G if for all {x, y, z} ∈ [I]3

of type i, {x, y, z} 6∈ E.

Definition 19. For {x, y} ∈ [2ω]2 let cmin(x, y) = ∆(x, y) mod 2. Let

E3
min = {e ∈ [2ω]3 : e is not cmin-homogeneous}.

Since cmin is continuous, G = (2ω, E3
min) a clopen graph on 2ω. The

following lemma shows that G is a counterexample to various weak

3-dimensional versions of Corollary 3 and Theorem 12.

Lemma 20. a) G has no cliques of size ≥ 6.

b) For every i ∈ 2, G has no uncountable i-cliques.

c) Every G-independent set is cmin-homogeneous.

d) For every i ∈ 2, every i-independent set of G is the union of

countably many cmin-homogeneous sets.
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e) If κ < 2ℵ0 is an uncountable cardinal, then there is a set A ⊆ 2ω

of size κ+ that cannot be covered by less than κ i-independent subsets

of G.

Proof. a) The Ramsey number for 3 is 6. It follows that every set

A ⊆ 2ω of size at least 6 contains a cmin-homogeneous set of size 3 and

therefore fails to be a G-clique.

b) Let A ⊆ 2ω be uncountable. Then A has a subset F of size 6 such

that all three-element subsets of F are of type i. As in the proof of a),

F has a cmin-homogeneous subset {x, y, z}. Now {x, y, z} is of type i

and not in E3
min. It follows that A is not an i-clique of G.

c) This follows immediately from the definition of G.

d) Let A ⊆ 2ω be an i-independent subset of G. For reasons of sym-

metry we may assume that i = 1. If A is uncountable, after removing

countably many points from A, we may again assume that the tree

T (A) ⊆ 2<ω of finite initial segments of elements of A is perfect. Let

t be a splitting node of this tree, i.e., an element with two immediate

successors. Let j = |t| mod 2.

If a ∈ A and t_1 ⊆ a we say that a is a right extension of t. If a ∈ A
and t_0 ⊆ a, a is a left extension of t. Since t is a splitting node, it has

both a left extension x and a right extension y. Now t is the maximal

common initial segment of x and y.

If a, b ∈ A are distinct right extensions of t, then {x, a, b} is of type

1. Since A is i-independent, {x, a, b} is cmin-homogeneous. It follows

that for all distinct a, b ∈ A with t_1 ⊆ a, b, cmin(a, b) = cmin(x, a) = j.

Hence the set of all right extensions of t is cmin-homogeneous.

Except for possibly one element of A, every a ∈ A is a right extension

of some splitting node in T (A). Since T (A) is countable, this implies

that A is the union of countably many cmin-homogeneous sets.

e) The main argument of the proof of e) has already been used in

[3]. For x, y ∈ 2ω let x⊗ y = (x(0), y(0), x(1), y(1), . . . ). The mapping

⊗ is a homeomorphism between (2ω)2 and 2ω. Fix a, b ∈ 2ω.
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If H ⊆ 2ω is cmin-homogeneous of color 0, then for every x ∈ 2ω

there is at most one y ∈ 2ω with x ⊗ y ∈ H. If H is maximal ho-

mogeneous, then there is some y with x ⊗ y ∈ H. Thus, a maximal

cmin-homogeneous set H of color 0 gives rise to a function fH : 2ω → 2ω

with H = {x⊗ f(x) : x ∈ 2ω}. We have a⊗ b ∈ H iff fH(a) = b.

Similarly, every maximal cmin-homogeneous set H of color 1 gives

rise to a function fH : 2ω → 2ω with H = {f(x) ⊗ x : x ∈ 2ω}. If

a⊗ b ∈ H, then fH(b) = a.

Now let B ⊆ 2ω be of size κ+. Let A = {a⊗ b : a, b ∈ B}. Suppose

H is a family of size < κ of i-independent sets of G that covers A. We

may assume that H is infinite. By d) we may assume that H consists

of cmin-homogeneous sets. By enlarging the sets in H, we may assume

that they are maximal cmin-homogeneous sets. Using the connection

between maximal cmin-homogeneous sets and functions, we see that

there is a family F of size |H|< κ of functions from 2ω to 2ω such that

for all a, b ∈ B there is f ∈ F such that f(a) = b or f(b) = a. But this

contradicts a theorem of Kuratowski [9].

Kuratowski’s theorem states that the minimal size of a family F of

functions from κ+ to κ+ such that for all a, b ∈ κ+ there is f ∈ F with

f(a) = b or f(b) = a is κ. For an English proof of this theorem see

[1]. �
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