AN UPPER BOUND FOR THE CELLULARITY OF THE PHASE SPACE OF A MINIMAL DYNAMICAL SYSTEM

STEFAN GESCHKE

ABSTRACT. Let G be a topological group acting continuously on an infinite compact space X. Suppose the dynamical system (X,G) is minimal. If G is κ -bounded for some infinite cardinal κ , then the cellularity of X is at most κ .

1. INTRODUCTION

The purpose of this note is to point out a relation between cardinal invariants of the phase space and the group of a minimal dynamical system.

Generalizing a theorem of Balcar and Błaszczyk [1], it was shown in [5] that whenever (G, X) is a minimal dynamical system and G is \aleph_0 -bounded, then the Boolean algebra $\operatorname{ro}(X)$ of regular open subsets of X is the completion of a free Boolean algebra. In particular, X is of countable cellularity. This result is clearly related to an older result of Uspenskiĭ [8], who showed that if an \aleph_0 -bounded group acts continuously and transitively on a compact space X, then X is Dugundji and hence of countable cellularity.

Using some of the ideas from [5], we show that whenever G is a κ -bounded group and (G, X) is a minimal system, then the cellularity of X is at most κ .

This result might be interesting for compact homogeneous spaces. A well-known open question by van Douwen (see [7]) about compact homogeneous spaces is whether the cellularity of such a space can be larger than 2^{\aleph_0} . One feasible approach to show that it cannot, is to try to construct, for a given compact homogeneous space X, a 2^{\aleph_0} -bounded group acting sufficiently transitively on X, i.e., in such a way that that (G, X) is a minimal system.

2. Preliminaries

Let G be a topological group and X a compact space. An *action* of G on X is a homomorphism φ from G to the group $\operatorname{Aut}(X)$ of autohomeomorphisms of X. The action φ is *continuous* if the map

$$G \times X \to X; (g, x) \mapsto \varphi(g)(x)$$

is continuous. Typically we will not mention φ and write gx instead of $\varphi(g)(x)$.

A topological group G together with a topological space X and a continuous action of G on X is a dynamical system. X is the phase space of the system. For every $x \in X$ the set $Gx = \{gx : g \in G\}$ is the G-orbit of x. The dynamical system (G, X) is minimal if every G-orbit is dense in X.

For an infinite cardinal κ , the group G is κ -bounded if for every non-empty open subset O of G there is a set $S \subseteq G$ of size κ such that SO = G. Here SO denotes the set $\{gh : g \in S \land h \in O\}$.

Date: August 31, 2006.

²⁰⁰⁰ Mathematics Subject Classification. 54H20.

Key words and phrases. minimal dynamical system, cellularity, boundedness.

STEFAN GESCHKE

The cellularity of X is the least cardinal κ such that every family \mathcal{O} of size $> \kappa$ of non-empty open subsets of X contains two distinct sets with a non-empty intersection.

3. Proof of the main result

Let X be a compact space. C(X) denotes the space of continuous real valued functions on X equipped with the sup-norm $\|\cdot\|_{\infty}$. If G acts on X via φ , then the natural action of G on C(X) is defined by letting $gf = f \circ \varphi(g)$. It is easily checked that G acts on C(X) by isometries and that the action of G on C(X) is continuous if the action on X is continuous.

The action of G on C(X) provides us with a simple way of constructing Gequivariant quotients of X, i.e., quotients for which the quotient map commutes with the group actions. Let B be a closed subalgebra of C(X) which is closed under the action of G on C(X). Define an equivalence relation \sim_B on X as follows:

For all $x, y \in X$ let $x \sim_B y$ iff for all $b \in B$, b(x) = b(y). It is well-known that X/\sim_B is Hausdorff. Since B is closed under the action of G, the action of G on X is compatible with \sim_B . Hence, there is a natural action of G on X/\sim_B . This action is continuous. X/\sim_B is a G-equivariant quotient of X.

Definition 3.1. A continuous map $f : X \to Y$ between topological spaces is *semi-open* if for every non-empty open set $O \subseteq X$, f[O] has a non-empty interior.

The following is well known.

Lemma 3.2. Let (G, X) and (G, Y) be dynamical systems. Assume that $\pi : X \to Y$ is continuous, onto and G-equivariant, i.e., assume that π commutes with the actions. Suppose that (G, X) is a minimal system. Then π is semi-open.

For the convenience of the reader we include a proof of this lemma.

Proof. Suppose $O \subseteq X$ is a non-empty open set. Let $U \subseteq O$ be a non-empty open set with $\operatorname{cl}_X U \subseteq O$. Since (G, X) is minimal, every *G*-orbit in *X* meets the set *U*. It follows that GU = X. Since *X* is compact, a finite number of translates of *U* covers *X*. It follows that a finite number of translates of $\pi[U]$ and hence of $\pi[\operatorname{cl}_X U]$ cover *Y*. Since the translates of $\pi[\operatorname{cl}_X U]$ are closed sets, one of them has a non-empty interior, by the Baire Category Theorem. It follows that $\pi[\operatorname{cl}_X U]$, and therefore $\pi[O]$, has a non-empty interior.

Lemma 3.3. Let κ be an infinite cardinal. Suppose G is a κ -bounded group acting continuously on a metric space Z. Then every G-orbit in Z has a dense subset of size $\leq \kappa$.

Proof. Let $z \in Z$. For every $n \in \omega$ let U_n be the open ball of radius $\frac{1}{2^n}$ around z. Since G acts continuously on Z, the map $G \to Z$; $g \mapsto gz$ is continuous. Thus, there is an open neighborhood V_n of the neutral element of G such that $V_n z \subseteq U_n$. Since G is κ -bounded, there is a set $S_n \subseteq G$ of size $\leq \kappa$ such that $S_n V_n = G$. Now $Gz = S_n V_n z \subseteq SU_n$. It is easily checked that $\bigcup_{n \in \omega} S_n z$ is dense in Gz.

In the following, we use elementary submodels of $\mathcal{H}_{\chi} = (\mathcal{H}_{\chi}, \in)$ for some infinite cardinal χ . Here \mathcal{H}_{χ} denotes the set of all sets whose transitive closure is of size $\langle \chi \rangle$. The readers not familiar with the method of elementary submodels might consult [3], [4] or [6] for an introduction.

Fix a sufficiently large cardinal χ . Note that, for every cardinal κ , if M is an elementary submodel of \mathcal{H}_{χ} and $\kappa \subseteq M$, then for every set $S \in M$ which is of size $\kappa, S \subseteq M$ since M contains a bijection between κ and S.

Lemma 3.4. Let Z be a metric space and suppose that a κ -bounded group acts continuously on Z. If M is an elementary submodel of \mathcal{H}_{χ} such that $\kappa \cup \{\kappa, Z, G\} \subseteq M$, then $\operatorname{cl}_{Z}(Z \cap M)$ is closed under the action of G.

Proof. Let $z \in Z \cap M$. By Lemma 3.3, Gz has a dense subset D of size κ . M knows about this and hence we may assume $D \in M$. Since $\kappa \subseteq M$, $D \subseteq M$. It follows that $Gz \subseteq cl_Z(Z \cap M)$.

Now let $z \in cl_Z(Z \cap M)$. By the first part of the proof, $G(Z \cap M) \subseteq cl_Z(Z \cap M)$. Hence

$$Gz \subseteq G \operatorname{cl}_Z(Z \cap M) = \operatorname{cl}_Z(G(Z \cap M)) \subseteq \operatorname{cl}_Z(Z \cap M).$$

Corollary 3.5. Let (G, X) be a dynamical system such that G is κ -bounded. If M is an elementary submodel of size κ of \mathcal{H}_{χ} such that $\kappa \cup \{\kappa, X, G\} \subseteq M$, then $B = cl_{C(X)}(C(X) \cap M)$ is a closed subalgebra of C(X), which is closed under the action of G. In particular, X/\sim_B is a G-equivariant quotient of X of weight $\leq \kappa$.

Proof. By Lemma 3.4, B is closed under the action of G. It is easily checked that $C(X) \cap M$ is a subalgebra of C(X). It follows that $B = cl_{C(X)}(C(X) \cap M)$ is a closed subalgebra of C(X).

Now X/\sim_B is a *G*-equivariant quotient of *X*. $C(X/\sim_B)$ is isometrically isomorphic to *B* and therefore has a dense subset of size $\leq \kappa$. It follows that X/\sim_B is of weight $\leq \kappa$.

Theorem 3.6. Let (G, X) be a minimal system and suppose that G is κ -bounded. Then the cellularity of X is at most κ .

Proof. Let \mathcal{A} be a maximal family of pairwise disjoint non-empty open subsets of X. We may assume that each $A \in \mathcal{A}$ is of the form $f_A^{-1}[\mathbb{R} \setminus \{0\}]$ for some continuous $f_A : X \to \mathbb{R}$. Let M be an elementary submodel of \mathcal{H}_{χ} of size κ such that $\kappa \cup \{\kappa, X, G, \mathcal{A}\} \subseteq M$. Let $B = \operatorname{cl}_{C(X)}(C(X) \cap M)$. By Corollary 3.5, X/\sim_B is a G-equivariant quotient of X of weight $\leq \kappa$. Let $\pi : X \to X/\sim_B$ be the quotient map. By Lemma 3.2, π is semi-open. Note that $C(X/\sim_B)$ is isometrically isomorphic to B via the map

$$\circ \pi : C(X/\sim_B) \to B; f \mapsto f \circ \pi.$$

Claim 3.7. $\mathcal{A} \cap M$ is a maximal family of pairwise disjoint open sets in X.

Let $O \subseteq X$ be non-empty and open. Choose a non-empty open set $U \subseteq \pi[O]$. We may assume that U is of the form $f^{-1}[\mathbb{R} \setminus \{0\}]$ for some continuous $f: X/\sim_B \to \mathbb{R}$ with $f \circ \pi \in \mathrm{cl}_{C(X)}(C(X) \cap M)$.

Choose $n \in \omega$ so that $||f||_{\infty} -\frac{1}{n} > \frac{1}{n}$. Let $f_M : X/ \sim_B \to \mathbb{R}$ be such that $f_M \circ \pi \in C(X) \cap M$ and $||f - f_M||_{\infty} < \frac{1}{n}$. Now

$$U_M = f_M^{-1}\left[\mathbb{R}\setminus\left(-\frac{1}{n},\frac{1}{n}\right)\right] \subseteq U.$$

Note that $\pi^{-1}[U_M] = (f_M \circ \pi)^{-1} \left[\mathbb{R} \setminus \left(-\frac{1}{n}, \frac{1}{n} \right) \right]$ is an element of M.

Since M knows that A is a maximal family of disjoint open sets, there is $A \in \mathcal{A} \cap M$ such that $A \cap \pi^{-1}[U_M]$ is non-empty. Now $\pi[A] \cap \pi[O] \neq \emptyset$. By our assumption on \mathcal{A} , $A = f_A^{-1}[\mathbb{R} \setminus \{0\}]$ for some continuous function f. M knows about this and hence we can choose $f_A \in M$. The function f_A witnesses that for all $x, y \in X$ with $x \in A$ and $y \notin A$, $x \not\sim_B y$. Hence $\pi^{-1}[\pi[A]] = A$.

The set $\pi[A \cap \pi^{-1}[U_M]]$ is a nonempty subset of $\pi[O]$. It follows that there are $x \in A$ and $y \in O$ such that $\pi(x) = \pi(y)$. But $\pi^{-1}[\pi[A]] = A$ and therefore $y \in A$. It follows that $A \cap O \neq \emptyset$. This proves the claim.

Since $\mathcal{A} \cap M$ is already a maximal family of pairwise disjoint open subsets of X, $\mathcal{A} = \mathcal{A} \cap M$ and therefore $\mathcal{A} \subseteq M$. Since $|M| \leq \kappa$, $|\mathcal{A}| \leq \kappa$. \Box

References

[1] B. Balcar, A. Błaszczyk, On minimal dynamical systems on Boolean algebras, Comment. Math. Univ. Carolinae 31 (1990), 7–11

[2] E. van Douwen,

[3] A. Dow, An introduction to applications of elementary submodels to topology, Topology Proceedings 13 (1988), p. 17–72

[4] S. Geschke, Applications of elementary submodels in general topology, Synthese 133, 31–41 (2002)

[5] S. Geschke, A note on minimal dynamical systems, Acta Univ. Carol., Math. Phys. 45, No. 2, 35–43 (2004)

[6] W. Just, M. Weese, Discovering modern set theory II: Set-theoretic tools for every mathematician, Providence 1997 [American Mathematical Society, Graduate Studies in Mathematics 18]

[7] K. Kunen, Large homogeneous compact spaces, Open Problems in Topology, North Holland, Amsterdam (1990), 263–269

 [8] V.V. Uspenskiĭ, Why compact groups are dyadic, General topology and its relations to modern analysis and algebra VI, Proc. 6th Symp., Prague/Czech. 1986, Res. Expo. Math. 16, 601–610 (1988)

Department of Mathematics, Boise State University, 1910 University Drive, Boise, ID 83725–1555, USA and II. Mathematisches Institut, Freie Universität Berlin.

 $E\text{-}mail \ address: \ \texttt{geschkeQmath.boisestate.edu}$