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Abstract. Let G be a topological group acting continuously on an infinite
compact space X. Suppose the dynamical system (X,G) is minimal. If G is

κ-bounded for some infinite cardinal κ, then the cellularity of X is at most κ.

1. Introduction

The purpose of this note is to point out a relation between cardinal invariants
of the phase space and the group of a minimal dynamical system.

Generalizing a theorem of Balcar and B laszczyk [1], it was shown in [5] that
whenever (G,X) is a minimal dynamical system and G is ℵ0-bounded, then the
Boolean algebra ro(X) of regular open subsets of X is the completion of a free
Boolean algebra. In particular, X is of countable cellularity. This result is clearly
related to an older result of Uspenskĭı [8], who showed that if an ℵ0-bounded group
acts continuously and transitively on a compact space X, then X is Dugundji and
hence of countable cellularity.

Using some of the ideas from [5], we show that whenever G is a κ-bounded group
and (G,X) is a minimal system, then the cellularity of X is at most κ.

This result might be interesting for compact homogeneous spaces. A well-known
open question by van Douwen (see [7]) about compact homogeneous spaces is
whether the cellularity of such a space can be larger than 2ℵ0 . One feasible approach
to show that it cannot, is to try to construct, for a given compact homogeneous
space X, a 2ℵ0 -bounded group acting sufficiently transitively on X, i.e., in such a
way that that (G,X) is a minimal system.

2. Preliminaries

Let G be a topological group and X a compact space. An action of G on X is a
homomorphism ϕ from G to the group Aut(X) of autohomeomorphisms of X. The
action ϕ is continuous if the map

G×X → X; (g, x) 7→ ϕ(g)(x)

is continuous. Typically we will not mention ϕ and write gx instead of ϕ(g)(x).
A topological group G together with a topological space X and a continuous

action of G on X is a dynamical system. X is the phase space of the system. For
every x ∈ X the set Gx = {gx : g ∈ G} is the G-orbit of x. The dynamical system
(G,X) is minimal if every G-orbit is dense in X.

For an infinite cardinal κ, the group G is κ-bounded if for every non-empty open
subset O of G there is a set S ⊆ G of size κ such that SO = G. Here SO denotes
the set {gh : g ∈ S ∧ h ∈ O}.
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The cellularity of X is the least cardinal κ such that every family O of size
> κ of non-empty open subsets of X contains two distinct sets with a non-empty
intersection.

3. Proof of the main result

Let X be a compact space. C(X) denotes the space of continuous real valued
functions on X equipped with the sup-norm ||·||∞. If G acts on X via ϕ, then the
natural action of G on C(X) is defined by letting gf = f ◦ϕ(g). It is easily checked
that G acts on C(X) by isometries and that the action of G on C(X) is continuous
if the action on X is continuous.

The action of G on C(X) provides us with a simple way of constructing G-
equivariant quotients of X, i.e., quotients for which the quotient map commutes
with the group actions. Let B be a closed subalgebra of C(X) which is closed under
the action of G on C(X). Define an equivalence relation ∼B on X as follows:

For all x, y ∈ X let x ∼B y iff for all b ∈ B, b(x) = b(y). It is well-known that
X/ ∼B is Hausdorff. Since B is closed under the action of G, the action of G on
X is compatible with ∼B . Hence, there is a natural action of G on X/ ∼B . This
action is continuous. X/ ∼B is a G-equivariant quotient of X.

Definition 3.1. A continuous map f : X → Y between topological spaces is
semi-open if for every non-empty open set O ⊆ X, f [O] has a non-empty interior.

The following is well known.

Lemma 3.2. Let (G,X) and (G, Y ) be dynamical systems. Assume that π : X →
Y is continuous, onto and G-equivariant, i.e., assume that π commutes with the
actions. Suppose that (G,X) is a minimal system. Then π is semi-open.

For the convenience of the reader we include a proof of this lemma.

Proof. Suppose O ⊆ X is a non-empty open set. Let U ⊆ O be a non-empty open
set with clX U ⊆ O. Since (G,X) is minimal, every G-orbit in X meets the set
U . It follows that GU = X. Since X is compact, a finite number of translates
of U covers X. It follows that a finite number of translates of π[U ] and hence of
π[clX U ] cover Y . Since the translates of π[clX U ] are closed sets, one of them has a
non-empty interior, by the Baire Category Theorem. It follows that π[clX U ], and
therefore π[O], has a non-empty interior. �

Lemma 3.3. Let κ be an infinite cardinal. Suppose G is a κ-bounded group acting
continuously on a metric space Z. Then every G-orbit in Z has a dense subset of
size ≤ κ.

Proof. Let z ∈ Z. For every n ∈ ω let Un be the open ball of radius 1
2n around

z. Since G acts continuously on Z, the map G → Z; g 7→ gz is continuous. Thus,
there is an open neighborhood Vn of the neutral element of G such that Vnz ⊆ Un.
Since G is κ-bounded, there is a set Sn ⊆ G of size ≤ κ such that SnVn = G. Now
Gz = SnVnz ⊆ SUn. It is easily checked that

⋃
n∈ω Snz is dense in Gz. �

In the following, we use elementary submodels of Hχ = (Hχ,∈) for some infinite
cardinal χ. Here Hχ denotes the set of all sets whose transitive closure is of size
< χ. The readers not familiar with the method of elementary submodels might
consult [3], [4] or [6] for an introduction.

Fix a sufficiently large cardinal χ. Note that, for every cardinal κ, if M is an
elementary submodel of Hχ and κ ⊆M , then for every set S ∈M which is of size
κ, S ⊆M since M contains a bijection between κ and S.
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Lemma 3.4. Let Z be a metric space and suppose that a κ-bounded group acts
continuously on Z. If M is an elementary submodel of Hχ such that κ∪{κ, Z,G} ⊆
M , then clZ(Z ∩M) is closed under the action of G.

Proof. Let z ∈ Z∩M . By Lemma 3.3, Gz has a dense subset D of size κ. M knows
about this and hence we may assume D ∈ M . Since κ ⊆ M , D ⊆ M . It follows
that Gz ⊆ clZ(Z ∩M).

Now let z ∈ clZ(Z ∩M). By the first part of the proof, G(Z ∩M) ⊆ clZ(Z ∩M).
Hence

Gz ⊆ G clZ(Z ∩M) = clZ(G(Z ∩M)) ⊆ clZ(Z ∩M).
�

Corollary 3.5. Let (G,X) be a dynamical system such that G is κ-bounded. If
M is an elementary submodel of size κ of Hχ such that κ ∪ {κ,X,G} ⊆ M , then
B = clC(X)(C(X) ∩M) is a closed subalgebra of C(X), which is closed under the
action of G. In particular, X/ ∼B is a G-equivariant quotient of X of weight ≤ κ.

Proof. By Lemma 3.4, B is closed under the action of G. It is easily checked that
C(X) ∩M is a subalgebra of C(X). It follows that B = clC(X)(C(X) ∩M) is a
closed subalgebra of C(X).

Now X/ ∼B is a G-equivariant quotient of X. C(X/ ∼B) is isometrically iso-
morphic to B and therefore has a dense subset of size ≤ κ. It follows that X/ ∼B
is of weight ≤ κ. �

Theorem 3.6. Let (G,X) be a minimal system and suppose that G is κ-bounded.
Then the cellularity of X is at most κ.

Proof. Let A be a maximal family of pairwise disjoint non-empty open subsets
of X. We may assume that each A ∈ A is of the form f−1

A [R \ {0}] for some
continuous fA : X → R. Let M be an elementary submodel of Hχ of size κ
such that κ ∪ {κ,X,G,A} ⊆ M . Let B = clC(X)(C(X) ∩M). By Corollary 3.5,
X/ ∼B is a G-equivariant quotient of X of weight ≤ κ. Let π : X → X/ ∼B be the
quotient map. By Lemma 3.2, π is semi-open. Note that C(X/ ∼B) is isometrically
isomorphic to B via the map

· ◦ π : C(X/ ∼B)→ B; f 7→ f ◦ π.

Claim 3.7. A ∩M is a maximal family of pairwise disjoint open sets in X.

Let O ⊆ X be non-empty and open. Choose a non-empty open set U ⊆ π[O]. We
may assume that U is of the form f−1[R \ {0}] for some continuous f : X/ ∼B→ R
with f ◦ π ∈ clC(X)(C(X) ∩M).

Choose n ∈ ω so that | |f| |∞ − 1
n > 1

n . Let fM : X/ ∼B→ R be such that
fM ◦ π ∈ C(X) ∩M and ||f − fM||∞< 1

n . Now

UM = f−1
M

[
R \

(
− 1
n
,

1
n

)]
⊆ U.

Note that π−1[UM ] = (fM ◦ π)−1
[
R \

(
− 1
n ,

1
n

)]
is an element of M .

Since M knows that A is a maximal family of disjoint open sets, there is A ∈
A∩M such that A∩π−1[UM ] is non-empty. Now π[A]∩π[O] 6= ∅. By our assumption
on A, A = f−1

A [R \ {0}] for some continuous function f . M knows about this and
hence we can choose fA ∈M . The function fA witnesses that for all x, y ∈ X with
x ∈ A and y 6∈ A, x 6∼B y. Hence π−1[π[A]] = A.

The set π[A ∩ π−1[UM ]] is a nonempty subset of π[O]. It follows that there are
x ∈ A and y ∈ O such that π(x) = π(y). But π−1[π[A]] = A and therefore y ∈ A.
It follows that A ∩O 6= ∅. This proves the claim.
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Since A∩M is already a maximal family of pairwise disjoint open subsets of X,
A = A ∩M and therefore A ⊆M . Since |M|≤ κ, |A|≤ κ. �
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