AN UPPER BOUND FOR THE CELLULARITY OF THE PHASE
SPACE OF A MINIMAL DYNAMICAL SYSTEM

STEFAN GESCHKE

ABSTRACT. Let G be a topological group acting continuously on an infinite
compact space X. Suppose the dynamical system (X, G) is minimal. If G is
k-bounded for some infinite cardinal k, then the cellularity of X is at most k.

1. INTRODUCTION

The purpose of this note is to point out a relation between cardinal invariants
of the phase space and the group of a minimal dynamical system.

Generalizing a theorem of Balcar and Blaszczyk [1], it was shown in [5] that
whenever (G, X) is a minimal dynamical system and G is Rp-bounded, then the
Boolean algebra ro(X) of regular open subsets of X is the completion of a free
Boolean algebra. In particular, X is of countable cellularity. This result is clearly
related to an older result of Uspenskif [8], who showed that if an Ng-bounded group
acts continuously and transitively on a compact space X, then X is Dugundji and
hence of countable cellularity.

Using some of the ideas from [5], we show that whenever G is a k-bounded group
and (G, X) is a minimal system, then the cellularity of X is at most &.

This result might be interesting for compact homogeneous spaces. A well-known
open question by van Douwen (see [7]) about compact homogeneous spaces is
whether the cellularity of such a space can be larger than 280. One feasible approach
to show that it cannot, is to try to construct, for a given compact homogeneous
space X, a 2%-bounded group acting sufficiently transitively on X, i.e., in such a
way that that (G, X) is a minimal system.

2. PRELIMINARIES

Let G be a topological group and X a compact space. An action of G on X is a
homomorphism ¢ from G to the group Aut(X) of autohomeomorphisms of X. The
action ¢ is continuous if the map

Gx X — X;(g,2) — ¢(g)(z)

is continuous. Typically we will not mention ¢ and write gz instead of ¢(g)(x).

A topological group G together with a topological space X and a continuous
action of G on X is a dynamical system. X is the phase space of the system. For
every ¢ € X the set Gx = {gz : g € G} is the G-orbit of z. The dynamical system
(G, X)) is minimal if every G-orbit is dense in X.

For an infinite cardinal k, the group G is k-bounded if for every non-empty open
subset O of G there is a set S C G of size k such that SO = G. Here SO denotes
the set {gh:g € SAheO}.
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The cellularity of X is the least cardinal x such that every family O of size
> k of non-empty open subsets of X contains two distinct sets with a non-empty
intersection.

3. PROOF OF THE MAIN RESULT

Let X be a compact space. C(X) denotes the space of continuous real valued
functions on X equipped with the sup-norm ||||s. If G acts on X via ¢, then the
natural action of G on C'(X) is defined by letting gf = fop(g). It is easily checked
that G acts on C(X) by isometries and that the action of G on C'(X) is continuous
if the action on X is continuous.

The action of G on C(X) provides us with a simple way of constructing G-
equivariant quotients of X, i.e., quotients for which the quotient map commutes
with the group actions. Let B be a closed subalgebra of C'(X) which is closed under
the action of G on C(X). Define an equivalence relation ~p on X as follows:

For all z,y € X let  ~p y iff for all b € B, b(x) = b(y). It is well-known that
X/ ~p is Hausdorff. Since B is closed under the action of G, the action of G on
X is compatible with ~5. Hence, there is a natural action of G on X/ ~p. This
action is continuous. X/ ~p is a G-equivariant quotient of X.

Definition 3.1. A continuous map f : X — Y between topological spaces is
semi-open if for every non-empty open set O C X, f[O] has a non-empty interior.

The following is well known.

Lemma 3.2. Let (G,X) and (G,Y) be dynamical systems. Assume that w: X —
Y is continuous, onto and G-equivariant, i.e., assume that w commutes with the
actions. Suppose that (G, X) is a minimal system. Then 7 is semi-open.

For the convenience of the reader we include a proof of this lemma.

Proof. Suppose O C X is a non-empty open set. Let U C O be a non-empty open
set with clx U C O. Since (G, X) is minimal, every G-orbit in X meets the set
U. It follows that GU = X. Since X is compact, a finite number of translates
of U covers X. It follows that a finite number of translates of 7[U] and hence of
m[clx U] cover Y. Since the translates of w[clx U] are closed sets, one of them has a
non-empty interior, by the Baire Category Theorem. It follows that 7[clx U], and
therefore 7[O], has a non-empty interior. O

Lemma 3.3. Let k be an infinite cardinal. Suppose G is a k-bounded group acting
continuously on a metric space Z. Then every G-orbit in Z has a dense subset of
size < K.

Proof. Let z € Z. For every n € w let U, be the open ball of radius QL around

z. Since G acts continuously on Z, the map G — Z; g + gz is continuous. Thus,
there is an open neighborhood V,, of the neutral element of G such that V,,z C U,.
Since G is k-bounded, there is a set S,, C G of size < k such that S,,V,, = G. Now
Gz = 5,V,z C SU,,. Tt is easily checked that | J Sy z is dense in Gz. [l

necw

In the following, we use elementary submodels of H,, = (H,, €) for some infinite
cardinal x. Here H, denotes the set of all sets whose transitive closure is of size
< x. The readers not familiar with the method of elementary submodels might
consult [3], [4] or [6] for an introduction.

Fix a sufficiently large cardinal y. Note that, for every cardinal k, if M is an
elementary submodel of H, and x C M, then for every set S € M which is of size
Kk, S € M since M contains a bijection between x and S.



THE CELLULARITY OF THE PHASE SPACE OF A MINIMAL DYNAMICAL SYSTEM 3

Lemma 3.4. Let Z be a metric space and suppose that a k-bounded group acts
continuously on Z. If M is an elementary submodel of H,, such that kU{k, Z,G} C
M, then clz(Z N M) is closed under the action of G.

Proof. Let z € ZN M. By Lemma 3.3, Gz has a dense subset D of size k. M knows
about this and hence we may assume D € M. Since k C M, D C M. It follows
that Gz C clz(Z N M).
Now let z € clz(ZNM). By the first part of the proof, G(ZNM) C clz(ZNM).
Hence
Gz CGclz(ZNM)=clz(G(ZNM)) Cclz(ZnM).

O

Corollary 3.5. Let (G,X) be a dynamical system such that G is k-bounded. If
M is an elementary submodel of size k of H, such that kU {xk, X,G} C M, then
B = clox)(C(X) N M) is a closed subalgebra of C(X), which is closed under the
action of G. In particular, X/ ~pg is a G-equivariant quotient of X of weight < k.

Proof. By Lemma 3.4, B is closed under the action of G. It is easily checked that
C(X) N M is a subalgebra of C(X). It follows that B = clgx)(C(X)N M) is a
closed subalgebra of C'(X).

Now X/ ~p is a G-equivariant quotient of X. C(X/ ~p) is isometrically iso-
morphic to B and therefore has a dense subset of size < k. It follows that X/ ~p
is of weight < k. O

Theorem 3.6. Let (G, X) be a minimal system and suppose that G is k-bounded.
Then the cellularity of X is at most k.

Proof. Let A be a maximal family of pairwise disjoint non-empty open subsets
of X. We may assume that each A € A is of the form f;'[R\ {0}] for some
continuous f4 : X — R. Let M be an elementary submodel of H, of size s
such that x U {x, X,G, A} € M. Let B = clg(x)(C(X) N M). By Corollary 3.5,
X/ ~p is a G-equivariant quotient of X of weight < k. Let 7 : X — X/ ~p be the
quotient map. By Lemma 3.2, 7 is semi-open. Note that C(X/ ~p) is isometrically
isomorphic to B via the map

com:C(X/ ~p)— B;f— fom.
Claim 3.7. AN M is a maximal family of pairwise disjoint open sets in X.

Let O C X be non-empty and open. Choose a non-empty open set U C 7[O]. We
may assume that U is of the form f~1[R\ {0}] for some continuous f: X/ ~p— R
with fom € Clc(X)(C(X) N M).

Choose n € w so that |[f]|ee —% > L. Let far : X/ ~g— R be such that

n n

fuomeC(X)NM and ||f — fulloe< L. Now
11
Unv = [ {R\ (nvn):| cUuU.

Note that 7= [Up] = (farom) 7! [R\ (=2, 1)] is an element of M.

Since M knows that A is a maximal family of disjoint open sets, there is A €
ANM such that ANm=1[Uy,] is non-empty. Now 7[A]N7[O] # 0. By our assumption
on A, A= f;*[R\ {0}] for some continuous function f. M knows about this and
hence we can choose f4 € M. The function f4 witnesses that for all x,y € X with
reAandy ¢ A, z g y. Hence 771 [n[A]] = A.

The set 7[A N7~ 1[Ux]] is a nonempty subset of w[O]. It follows that there are
z € A and y € O such that 7(z) = 7(y). But 7~ 1[r[A]] = A and therefore y € A.
It follows that AN O # (. This proves the claim.
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Since AN M is already a maximal family of pairwise disjoint open subsets of X,
A= ANM and therefore A C M. Since |M|< &, |A|< k. O
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