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Abstract. We show that the real line can be partitioned into two sets such

that each contractive map from one of the sets to itself is constant. This

answers a question of Behrends.

1. Introduction

Let X and Y be metric spaces. A mapping f : X → Y is Lipschitz of constant

c ≥ 0 if for all x0, x1 ∈ X , |f(x0) − f(x1)| ≤ c · |x0 − x1|. The mapping f is

contractive if it is Lipschitz of some constant < 1. Banach’s fixed point theorem

says that in a complete metric space X , every contractive mapping from X to X

has a fixed point.

It is natural to ask whether every metric space X with the property that every

contractive mapping f : X → X has a fixed point is complete. It is well known that

this is not the case. We even construct a subspace of R on which every contractive

selfmap is constant.

2. Diagonalizing continuous mappings

Definition 2.1. Let F be the family of all continuous functions f : R → R for

which one of the following holds:

(1) f is the identity;

(2) there is a ∈ R such that f ↾ (−∞, a) is constant and f ↾ (a,∞) = id(a,∞);

(3) there is b ∈ R such that f ↾ (b,∞) is constant and f ↾ (−∞, b) = id(−∞,b);

(4) there are a, b ∈ R such that a < b, f ↾ (−∞, a) and f ↾ (b,∞) are constant,

and f ↾ (a, b) = id(a,b).

Lemma 2.2. Suppose f : R → R is continuous and not in F . Then there is an

open interval I ⊆ R such that f ↾ I is not constant and for all x ∈ I, f(x) 6= x.

Proof. The set D = {x ∈ R : f(x) = x} is closed. Suppose there exists a finite

maximal open interval I contained in the complement of D. Then by continuity, f

is not constant on I.

Now suppose every maximal open interval contained in the complement of D is

infinite. Then, since f 6∈ F , there is one such interval I such that f is not constant

on I. �
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Theorem 2.3. R can be partitioned into two sets X0 and X1 such that for every

i ∈ 2 and every continuous function f : R → R, if f [Xi] ⊆ Xi, then f ∈ F .

Proof. Let (iα, fα)α<2ℵ0 be an enumeration of all pairs (i, f) where i ∈ 2 and

f : R → R is a continuous function not in F . Inductively we construct sequences

(xα
0 )α<2ℵ0 and (xα

1 )α<2ℵ0 of real numbers such that for all α < 2ℵ0 the following

hold:

(1) xα
0 and xα

1 are distinct and not contained in {xβ
i : β < α ∧ i ∈ 2};

(2) fα(xα
i ) = xα

1−i.

Suppose we can find (xα
0 )α<2ℵ0 and (xα

1 )α<2ℵ0 as above. Let X0 = {xα
0 : α < 2ℵ0}

and X1 = R \ X0. By (1), {xα
1 : α < 2ℵ0} ⊆ X1.

If a continuous function f : R → R is not in F and if i ∈ 2, then there is α < 2ℵ0

such that f = fα and i = iα. Now xα
i ∈ Xi, xα

1−i ∈ X1−i, and

f(xα
i ) = fα(xα

iα

) = xα
1−iα

= xα
1−i.

In particular, f [Xi] 6⊆ Xi.

It remains to construct the sequences (xα
0 )α<2ℵ0 and (xα

1 )α<2ℵ0 . Supposed we

have constructed (xβ
0 )β<α and (xβ

1 )β<α for some α < 2ℵ0 . Let i = iα and f = fα.

Since f 6∈ F , by Lemma 2.2, there is a nonempty open interval I such that f ↾ I is

not constant f(x) 6= x for all x ∈ I.

Since f ↾ I is not constant, there is a nonempty open interval J ⊆ f [I]. The set

A = (I ∩ f−1[J \ {xβ
j : β < α ∧ j ∈ 2}]) \ {xβ

j : β < α ∧ j ∈ 2}

is of size 2ℵ0 . Pick xα
i ∈ A and let xα

1−i = f(xα
i ). It is easily checked that xα

i and

xα
1−i have the desired properties. �

3. A set without nontrivial contractions

We show that the sets X0 and X1 have no non trivial contractive selfmaps.

In order to prove this, we need some facts about the extendibility of Lipschitz

functions.

Lemma 3.1. Let X be a nonempty closed subset of R, f : X → R, and c ≥ 0 such

that for all x, y ∈ X with x 6= y,

|f(x) − f(y)| ≤ c · |x − y|.

In other words, suppose that f is Lipschitz of constant c. Then there is f : R → R

such that for all x, y ∈ R with x 6= y,

|f(x) − f(y)| ≤ c · |x − y|.

Proof. Since X is closed, every point in the complement of X is contained in an

unique open interval which is maximal with the property that it is disjoint from X .

Let I be such an interval.

I can be infinite, but since X is nonempty, I has at least one endpoint a. Note

that a ∈ X by the maximality of I. If I is infinite, then for each x ∈ I let
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f(x) = f(a). If I is finite, then I has another endpoint b ∈ X . We may assume

a < b. For x ∈ I let

f(x) = f(a) +
f(b) − f(a)

b − a
· (x − a).

It is easily checked that f has the desired properties. �

Lemma 3.2. Let X ⊆ R be a set. Let f : X → R a Lipschitz function of constant

c. Then f can be continuously extended to the closure of X, with the same Lipschitz

constant.

Proof. Since f is Lipschitz, it maps every Cauchy sequence in X to a Cauchy

sequence in R. This implies that f extends to a continuous function f : cl(X) → R.

The computation of the Lipschtz constant of f is straight forward. �

Combining these two lemmas we get

Corollary 3.3. Let X ⊆ R be a set. If f : X → R is Lipschitz of constant c ≥ 0,

then f can be extended to a function f : R → R which is Lipschitz of constant c.

Using Theorem 2.3 we obtain

Theorem 3.4. R can be partitioned into two sets X0 and X1 such that for every

i ∈ 2 every contraction f : Xi → Xi is constant.

Proof. Let X0 and X1 be as in Theorem 2.3. Let i ∈ 2. Let f : Xi → Xi be a

contraction. Then f can be extended to a contraction f : R → R by Corollary 3.3.

Since f [Xi] ⊆ Xi, by the choice of Xi, f ∈ F . But a contraction is in F only if it

is constant. �

It it worth pointing out that X0 and X1 actually have the following stronger

property:

For every i ∈ 2, if f : Xi → Xi is such that for all x, y ∈ Xi with x 6= y we have

|f(x) − f(y)| < |x − y|,

then f is constant.

For suppose f : Xi → Xi is such that for all x, y ∈ Xi with x 6= y,

|f(x) − f(y)| ≤ |x − y|.

Then f extends to a function f : R → R which is Lipschitz of constant 1. Since

f [Xi] ⊆ Xi, f ∈ F . If f is not constant, then there are a, b ∈ f [Xi] ⊆ Xi with

a 6= b. Since f ∈ F , f(a) = a and f(b) = b. In particular

|a − b| = |f(a) − f(b)|.

This shows the strengthening of Theorem 3.4
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Moreover, it is unneccesary to use Lemma 3.2 in the proof of Theorem 3.4 since

it is easily checked that the sets X0 and X1 are dense.
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