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1 Introduction

The preceding talks presented examples for deformation problems and intro-
duced a framework to talk about them in a unified manner. We learned about
deformations of associative algebras and complex structures and about the clas-
sical approach of deformation theory, which aims to associate to each deforma-
tion problem a deformation functor. However, a lot of information is lost by this
procedure. Instead, we can first associate to a deformation problem a differen-
tial graded Lie algebra (dgla) (in general only unique up to quasiisomorphism).
The dgla contains more structure and preserves more information about the
initial deformation problem. From there there is a well defined and functorial
procedure to associate to each dgla a deformation functor, whose description is
today’s task.

The slogan is: Over a field of characteristic zero, every deformation problem is
governed by a dgla via solutions of the Maurer-Cartan equation modulo gauge
action. - [Man99]

2 DGLAs and Maurer-Cartan Elements

Let’s fix some notation: We work over a field k of characteristic zero. Tensor
products are always taken over k : ® = Q.

This section introduces dglas and auxiliary structures, as well as the Maurer-
Cartan equation, which is central to constructing deformation functors.



Definition 2.0.1. A differential graded vector space (dg-vector space) is a
cochain complex in k-vector spaces. That is, it is a Z-graded vector space
V = ®iezV*? together with a linear map d : V. — V of degree +1, i.e. d(V?*) C
Vitl called differential, that satisfies d? = 0.

A morphism of dg-vector spaces f : V — W is a cochain map, i.e. a linear map
of degree 0 that satisfies dy f = fdy

Assembled together they form the category of dg-vector spaces, denoted DG.

Definition 2.0.2. DG is equipped with a monoidal structure, given by ten-
sor product of dg-vector spaces, which is the usual tensor product of cochain
complexes. For V. W € DG, the tensor product V ® W is defined as follows:

(VW) =@prg=n VP @ W1
dV®W(U & w) =dyvQw + (—1)5 ® dww

Definition 2.0.3. A commutative differential graded algebra (cdga) is a dg-
vector space (A, d) together with a morphism

ARA— A
a®b— ab
called product, that satisfies
1. Associativity: (ab)c = a(be)
2. Graded commutativity: ab = (—1)%ba
3. Graded Leibniz: d(ab) = (da)b + (—1)%a(db)
Example 2.0.1. e cdgas are just monoids in Ch(Vecty,)

e Commutative algebras are the same as cdgas concentrated in degree zero
and vice versa

e The de Rham complex Q*(M) of a smooth manifold M with wedge prod-
uct A is a cdga

e Denote the de Rham complex of algebraic differential forms on the affine
line by klt, dt]. The underlying dg-vector space is concentrated in degree
zero and one:

k[t] @ k[t]dt

The differential on a general element p(t) + g(¢)dt is defined as
d(p(t) + q(t)dt) = p(t)dt
Multiplication is multiplication of polynomials. There are evaluation maps
es : klt,dt] = k

p(t) + q(t)dt — k(s),s € k



Definition 2.0.4. A differential graded Lie algebra (dgla) is a dg-vector space
(L, d) together with a bilinear bracket [—, —] : L x L — L satisfying

1. Graded skewsymmetry: [a,b] + (—1)%[b,a] = 0
2. Graded Jacobi: [a, [b,c]] = [[a,b],c] + (—=1)[b, [a, c]]
3. Graded Leibniz: dla,b] = [da,b] + (—1)%[a, db]

A morphism f : L — L' of dglas is a morphism of dg-vector spaces that com-
mutes with brackets, i.e. f([l,k]r) = [f(1), f(k)]r,. They assemble into a cate-
gory called DGLA.

Remark 2.0.1. Due to the grading of the bracket, [a,a] = 0 is only true for
a € L even. For a € L odd, it holds that [a, [a, a]] = 0.

Example 2.0.2. e Lie algebras are dglas concentrated in degree 0 and vice
versa

e As introduced in talk 2, the dgla that governs the deformation theory of
associative algebras, is the Hochschild cocomplex with the Gerstenhaber
bracket

e The Kodaira-Spencer dgla of a compact, complex manifold X, defined by
KS(X)? =T(X, A% (Tw))

with Dolbeaut differential @ and bracket given by wedge of forms and
bracket of vector fields.

We can tensor cdgas with dglas:

Lemma 2.0.1. Let L : dgla, A : cdga, z,y € L, a,b € A. The tensor product
of dg-vector spaces L ® A equipped with the bracket

[z ®a,y@b] = (-1)"[z,y] © ab
s a dlga and the tensor product is functorial in both arguments.
Example 2.0.3. e Let L :dgla. Then
(L@ k[t,dt])" = L" @ k[t] & L™ @ k[t]dt
Think of elements as polynomials with values in L:
Ly @ p(t) + L1 @ q(t)dt =: Ly (t) + L (t)dt
e Let M: smooth manifold, g: Lie algebra. Then Q*(M) ® g is a dgla.

After this preparatory work, we can define



Definition 2.0.5. The Maurer-Cartan equation of a dgla L is
1
da+ —[a,a] =0
2
for a € L'. Solutions to the Maurer-Cartan equation are called Maurer-Cartan

elements of L. They assemble into a set denoted MC(L) C L?.

Lemma 2.0.2. Morphisms of dlgas f : L — L' commute with the Maurer-
Cartan equation, i.e. f(MC(L)) C MC(L’)

Proof. Let a € L', so that dra+ %[a, alp = 0. Then f(dra+ %[a7 al) =0. The
LHS can be expanded:

f(dza+ 5lasale) = f(dra) + 37 (aale) = duf(a) + 31f(@), J@)]
which shows that f(a) is a Maurer-Cartan element in L’. O

Example 2.0.4. Gauge theory on a trivial G-bundle: Connections on M x G are
in one-to-one correspondence with elements of Q'(M;g). The curvature/field
strength of A € Q'(M;g) is defined by the Maurer-Cartan equation

1
Fa = dA+ 5[A,A]

It follows that flat connections on M x G are in bijection with MC(Q! (M) ® g))

3 The Maurer-Cartan and Gauge Group Func-
tor

Now we define the two functors that make up the deformation functor associated
to a dgla.

Warning: we need the change the category Art; from last talk: Its objects
are now commutative local Artinian k-algebras with residue field k. Otherwise
the tensor product L ® m4 would not be defined.

Definition 3.0.1. Let L be a dgla. The Maurer-Cartan functor of L is defined
as
MCL : Artk — Set

MCp(A) = MC(L ® my)

Remark 3.0.1. MCy, is well defined. m 4 is the maximal ideal of the commutative
Artinian algebra A and as such a cdga concentrated in degree zero. By 2.0.1
L®my is a dgla. Since morphisms of Artin algebras preserve the maximal ideal,
L ®my is functorial in A by 2.0.1: Let f: A — A’, then

Loma 220 Loma



is a morphism of dglas. By 2.0.2, this means that

MCr(f)

MCpr(A) MCp(A)

is a morphism of sets. By the same reasoning, MCyp,(A) is functorial in L.

Remark 3.0.2. Recall from talk 2 that the exponential exp(g) of a nilpotent Lie
algebra g can be viewed as a group with the same underlying set as g equipped
with the Baker-Campell-Hausdorff product

1
moy:x+y+§[as7y] + ..
Since g is nilpotent, the BCH-product is a finite sum and thus well-defined.
The maximal ideal m4 of an Artin algebra is nilpotent. By 2.0.1, L® m4 is a
nilpotent dgla. In particular, L° ® m4 is a nilpotent Lie algebra.

Definition 3.0.2. Let L be a nilpotent dgla. The gauge action of exp(L°) on
L' is defined as:

ada)™
ea*x:x—k;((n_'_)l)!([a,x]—da)

where z € L', a € LY.
Lemma 3.0.1. The set of Maurer-Cartan elements is stable under gauge action.
Proof. see [Man], Lemma 7.5.3 O

Definition 3.0.3. Let L be a dgla. Define the gauge group functor
expr : Artp — Grp

expr(A) = exp(L° @ my)
By 3.0.2, this construction is well-defined.

4 Deformation Functors from DGLASs

Definition 4.0.1. Define the deformation functor associated to a dgla L as

Def;, : Art, — Set

MCp(4)
Defr,(A) = ————=
ef(4) expr(A)
Let’s look briefly at some of the properties of these functors. We use axioms
as introduced by Manetti in chapter 3 of [Man06], which differ from the classical
ones of Schlessinger.

Lemma 4.0.1. MCy, and expy, are local in the sense of talk 4, i.e. they map k
to the one-point set.



Proof. As Artin algebra k has the maximal ideal 0.
MCr(k) =MCL(L ®0) = {0} = {«}
expr (k) = exp(L® ® 0) = {e°} = {+}
O

Definition 4.0.2. A local functor F' : Arty — Set is homogenous if B — A
surjective implies 1 : F(B x4 C) — F(B) X p(ay F/(C) is an isomorphism.

Definition 4.0.3. A local functor F': Arty — Set is called deformation functor,
using the same setting as in the definition of homogeneity, if B — A surjective
implies 7 is surjective and if A = k implies 7 is an isomorphism.

Remark 4.0.1. Homogeneity implies deformation functor.

Proposition 4.0.1. Both MCy and expr are homogenous deformation func-
tors. Def; is a deformation functor.

Proof. see [Man] section 7.6. O
Let’s do a concrete calculation.

Proposition 4.0.2. The tangent space of a deformation functor Def; is
T Def; = Def; (ke) = H (L) ® ke = H' (L)
Proof.
1
MCyp (ke) = MC(L ® ke) = {l ® ae € L' ® ke|d(l ® ce) + 5[5 ® ae,l ® ae] = 0}
71
_ 1 it 2.2 _
={l®ae e L' @ ke|ldl ® ae+ ( 1)2[l,l]®a_e 0}
=ZL) ® ke

Let a € LY ® ke, x € L' ® ke.

(ada)™ 1
e“*x:erZ ([a,x] —=da) = x + da + = [a,da] +... = = — da
"0 (’I’L—l—l)' \;,0./ 2\:,0_/
So T Defy, = Z/8ke~ = H'(L) ® ke = H'(L) O

We achieved our goal.
Proposition 4.0.3. There is a functor
DGLA — DefFun
L — Def;,

where DefFun is the category of deformation functors, as defined above, and
natural transformations.



Proof. As noted above, MCy, is functorial in L and so is expy,. Together they
establish the functoriality of Defy, in L. O

There is a different notion of equivalence on Maurer-Cartan elements, which
is equivalent to the one induced by gauge action.

Definition 4.0.4. Let L be a dgla and z,y € MC(L). We say = and y are
homotopy equivalent if there exists & € MC(L[t,dt]) such that eyp(§) = x and
e1(¢§) = y. Denote by mo(MC, (L)) the quotient of MC(L) under homotopy
equivalence.

Proposition 4.0.4. MCr, — m(MC.(L)) factors through Def; and Def; —
mo(MCy (L)) is an isomorphism of deformation functors.

Proof. see [Man] Corollary 7.9.8 O

The notation suggests that £ can be thought of as an edge in a simplicial
set.

Remark 4.0.2. Quasiisomorphisms of dglas induce isomorphisms on deformation
functors.
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