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Let k be an algebraically closed field of characteristic zero and A a vector space over

k equipped with an associative multiplication m : A ⊗k A → A. For simplicity, ⊗k and

Homk(−,−) are written as ⊗ and Hom(-,-), respectively, and A⊗n means A⊗ · · · ⊗ A︸ ︷︷ ︸
n copies

.

1 First-order deformations

Definition 1.1. A first-order deformation of (A,m) is an associative and k[t]/t2-bilinear

multiplication

F : A⊗ k[t]/t2 × A⊗ k[t]/t2 → A⊗ k[t]/t2

of the form F = m+ tf , f ∈ Hom(A⊗2, A).

The multiplication F is associative if, for any a, b, c ∈ A, the equation

F (F (a, b), c) = F (a, F (b, c))

holds. Expanding both sides and collecting the coefficient of t yields the equation

f(ab, c) + f(a, b)c = f(a, bc) + af(b, c) (1)

where ab := m(a, b).

Definition 1.2. Let F1, F2 be first-order deformations of m. For any a ∈ A, g ∈ Hom(A,A),

we define an automorphism T of A⊗ k[t]/t2 as T (a) = a + tg(a). First-order deformations
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F1 and F2 are called equivalent if there exists g ∈ Hom(A,A) such that, for any a, b ∈ A, the

equation

F1(a, b) = T (F2(T
−1(a), T−1(b))) (2)

holds.

From 2, if F1 = m+ tf1 is equivalent to F2 = m+ tf2, then there exists g ∈ Hom(A,A)

such that, for any a, b ∈ A, the equation

f1(a, b)− f2(a, b) = ag(b)− g(ab) + g(a)b (3)

holds.

Observe that equivalence classes of first-order deformations of (A,m) can be expressed

as the set of morphisms f ∈ Hom(A⊗2, A) satisfying (1) modulo the equivalence relation (3).

Furthermore, we can describe first-order deformations in terms of the second Hochschild

cohomology.

Definition 1.3. Hochschild cohomology HH∗(A) of a k-algebra A is defined as the cohomol-

ogy of the cochain complex C∗(A,A)

0 A Hom(A,A) Hom(A⊗ A,A) · · ·d d d

with Cn(A) := Hom(A⊗n, A) for n ≥ 0 and differential d : Hom(A⊗n, A)→ Hom(A⊗n+1, A),

d =
∑n+1

i=0 (−1)i∂i where

∂if(a0, . . . , an) =


a0f(a1, . . . , an) i = 0

f(a0, . . . , ai−1ai, . . . , an) 0 < i ≤ n

f(a0, . . . , an−1)an i = n+ 1

Remark. C0(A,A) = Homk(k,A) ∼= A

Example 1.4. Compute HH0(A), HH1(A) and HH2(A).

For the differential d : C0(A,A)→ C1(A,A), an element b ∈ A is a 0-cocycle if, for any

a ∈ A, db(a) = ab− ba = 0. Hence

H0(A) = {b ∈ A| ab = ba ∀a ∈ A} = Z(A).

For a cocycle g ∈ C1(A,A), dg = 0 is equivalent to g(ab) = ag(b) + g(a)b for any a, b ∈ A.

Such a function is called a k-derivation and the collection of all k-derivations is denoted
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by Der(A). If h ∈ C1(A,A) is a coboundary, then there exists b ∈ A such that, for any

a ∈ A, we have h(a) = ab − ba. This type of functions are called inner derivations, denote

by InnDer(A). Therefore,

HH1(A) = Der(A)/InnDer(A).

Let f ∈ C2(A,A) be a cocycle. Then, for any a, b, c ∈ A, we have df(a, b, c) = af(b, c) −
f(ab, c)+f(a, bc)+f(a, b)c = 0, which is equivalent to (1). Let f ′ ∈ C2(A,A) be a cobound-

ary, then there exists g ∈ C1(A,A) such that, for any a, b ∈ A, we have f ′(a, b) = dg(a, b) =

ag(b)− g(a)b. This relation is the same as (3). Therefore, we have the following theorem.

Theorem 1.5. There is a bijection{
first-order deformations of (A,m)

}
/∼ ' HH2(A,A)

We observe that first-order deformations can be classified by HH2(A,A), and our next

goal is to understand the relation between higher order deformations and the Hochschild

cochain complex.

2 Higher-order deformations

Definition 2.1. A second-order deformation of (A,m) is an associative and k[t]/t3-bilinear

multiplication

F : A⊗ k[t]/t3 × A⊗ k[t]/t3 → A⊗ k[t]/t3

of the form F = m+ tf1 + t2f2, with f1, f2 ∈ Hom(A⊗2, A).

We now discuss the question of whether a first-order deformation can be extended to a

second-order deformation.

2.1 Extension to second-order

Let f1 ∈ C2(A,A) be a cocyle, so that F = m + tf1 is a first-order deformation. We want

to find a f2 ∈ Hom(A⊗2, A) to extend F to F̃ = m + tf1 + t2f2 such that F̃ is associative.
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The associativity condition yields two equations corresponding to the coefficients of t and

t2, respectively: for any a, b, c ∈ A,

f1(ab, c) + f1(a, b)c = f1(a, bc) + af1(b, c), (4)

f1(a, f1(b, c))− f1(f1(a, b), c) = f2(ab, c) + f2(a, b)c− f2(a, bc)− af2(b, c). (5)

Observe that (4) automatically holds since f1 is a 2-cocycle, and the right-hand side

of (5) is a 3-coboundary in Hom(A⊗3, A). In order to describe the left-hand side of (5), we

introduce Gerstenhaber bracket which was first defined by Murray Gerstenhaber [Ger63].

As we will now explain, this bracket defines a differential graded Lie algebra structure on

the Hochschild cochain complex.

2.2 DGLA and Gerstenhaber bracket

Definition 2.2. A differential graded Lie algebra (DGLA) (L, [,], d) is the data of a Z-

graded vector space L = ⊕i∈ZL
i together with a bilinear bracket [, ] : L×L→ L and a linear

map d : L→ L satisfying the following conditions:

(1) [, ] is a homogeneous skew-symmetric, i.e., [Li, Lj] ⊂ Li+j and [a, b] + (−1)|a||b|[b, a] = 0

where |a| is the degree of a.

(2) Every a, b, c homogeneous satisfy the Jacobi identity

[a, [b, c]] = [[a, b], c] + (−1)|a||b|[b, [a, c]]

(3) d(Li) ⊂ Li+1, d2 = 0 and d[a, b] = [da, b]+(−1)|a|[a, db] the map d is called the differential

of L.

We define Γ := ⊕i∈ZΓi to be the graded vector space with Γn := Hom(A⊗n+1, A), for

n ≥ −1, and Γn = 0 for n < −1.

Definition 2.3. (i) For f ∈ Γm(A,A), g ∈ Γn, m ≥ 0, let us denote the element f ◦i g ∈
Γm+n, for i = 1, . . . ,m+ 1, defined by

f ◦i g(a1 ⊗ · · · ⊗ am+n+1−1)

= f(a0 ⊗ · · · ⊗ ai−1 ⊗ g(ai ⊗ · · · ⊗ ai+n)⊗ ai+n+1 ⊗ · · · ⊗ am+n+1)

i = 1, 2, . . . ,m+ 1
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(ii) For every m,n, we define a homomorphism ◦ called circle product sending Γm(A,A)⊗
Γn(A,A) into Γm+n by setting for f ∈ Γm(A,A), g ∈ Γn(A,A), with m ≥ 0,

f ◦ g =
m+1∑
i=1

(−1)(i+1)nf ◦i g (6)

and f ◦ g = 0, for m < 0

Note that for m = n = 0, the operation is in fact the commutator. Explicitly,

f ◦ g =

{
f ◦1 g + f ◦2 g + · · ·+ f ◦m g if n even

f ◦1 g − f ◦2 g + · · ·+ (−1)m+1f ◦m g if n odd

Remark. df = −[f,m], for f ∈ Γm.

Proposition 2.4. For elements f ∈ Γm and Γ ∈ An, we define the Gerstenhaber bracket

[f, g] = f ◦ g − (−1)mng ◦ f (7)

then (Γ, [, ], δ) where δ := −d for is a differential graded Lie algebra.

Proof. The skew-symmetry follows directly from equation (6). For the verification of the Ja-

cobi identity, we refer the reader to original paper [Ger63, Theorem 1&2]. The compatibility

of differential follows from the fact that the circle product we defined satisfies the graded

Leibnitz rule.

Corolary 2.5. If f an n-cocycle in Γn, then [f, f ] is a 2n-cocycle.

Let m = n = 1, for any f ∈ Γ1, a, b, c ∈ A, we have

[f, f ](a, b, c) = 2f ◦ f(a, b, c) = 2(f(f(a, b), c)− f(a, f(b, c))). (8)

Combing it with equation (4), we get the formula

1

2
[f1, f1] = df2. (9)

From Corollary 2.5, we see that the left-hand side of this equation is a cocycle in Γ2, but the

right-hand side is a coboundary in Γ2. Equation (9) says that to find f2, making m+tf1+t2f2

a second-order deformation, the left hand side has to be zero in HH3(A,A), and therefore

we obtain the following theorem.
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Theorem 2.6. Let F = m + tf1 be a first-order deformation. The class in HH3(A,A)

defined by [f1, f1] is the obstruction to extend the first-order deformation F = m + tf1 to a

second-order deformation.

In particular, if HH3(A,A) = 0, then any first-order deformation can be extended.

However, the vanishing of HH3(A,A) is not a necessary condition for unobstructedness.

Example 2.7. Let A = k[x, y, z]/(xy− z, x2, y2, z2). Then A is a 4-dimensional algebra and

we choose a basis (1, x, y, z). Consider two cocycles f, g ∈ Γ1. Let f(y, x) = z and zero for

other basis vector, and g(x, x) = y and zero for the other basis vector. So, [f, f ] = 0 and

[g, g] = 0, and we obtain two unobstructed first-order deformations m + tf , m + tg. But

f + g is also a cocyle in Γ1, and defines a obstructed first-order deformation m + t(f + g).

[f + g, f + g](x, x, x) = 2f ◦ g(x, x, x) = z, and for any h ∈ Γ1, dh(x, x, x) = xh(x, x) −
h(x2, x) + h(x, x2)− h(x, x)x = 0 since A is a commutative algebra. Hence [f + g, f + g] 6= 0

in HH3(A,A).

In general, given a deformation over k[t]/tn+1, we want to extent it to be a deforma-

tion over k[t]/tn+2. By expanding and collecting coefficient of tk, k = 0, 1, . . . , n + 1, the

associativity condition implies that, for any a, b, c ∈ A, the equation

k∑
i+j=0

fj(a, fi(b, c)) =
k∑

i+j=0

fj(fi(a, b), c) (10)

holds, where f0 = m is the multiplication of A. For k = n+1, equation (10) can be rewritten

as
1

2

n+1∑
i+j=1
i,j 6=0

[fj, fi](a, b, c) = −δfn+1(a, b, c) (11)

by dg-Lie structure. If the left hand side of (11) is a cocycle, then it is the obstruction class

in HH3(A,A) to extend the nth-order deformation m+ tf1 + · · ·+ tnfn to a (n+1)th-order

deformation.

To prove the claim, we need to use equation (10) for k = 1, . . . , n which yields

1

2

∑
i+j=k
i,j 6=k

[fj, fi] = −δfk, k = 1, . . . , n
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Thus, by applying the graded Lebnitz rule,

n∑
j=1

δ[fj, fn+1−j] =
n∑

j=1

[δfj, fn+1−k]− [fj, δfn+1−j] =
∑

i+j+k=n+1
i,j,k 6=0

[fi, [fk, fj]] = 0,

and hence a cocycle.

Definition 2.8. HH3(A,A) is called the obstruction space of A.

We conclude by noticing that any finite-order deformation problem of an associative

algebra can be interpreted by associate DGLA. Our next goal is to find the connection

between formal deformations of (A,m) and the DGLA (Γ, [, ], δ).

3 Formal deformations

Define Ã := A⊗ k[[t]]

Definition 3.1. A one-parameter formal deformation of (A,m) is an associative, k [[t]]-

bilinear multiplication

F : Ã× Ã→ Ã

of the form F = m+ tf1 + t2f2 + · · · with fi ∈ Hom(A⊗2, A).

Denote f := tf1 + t2f2 + · · · .

Note that Γ̃ := Γ ⊗ t · k[[t]] is a DGLA, with elements of degree n expressed as tψ1 +

t2ψ2 + . . . , ψi ∈ Γn. The dg-Lie structure of Γ̃ is obtained from Γ by extending [, ] and δ

k[[t]]-linearly. Hence, Γ̃ inherits the relation between [, ] and δ from Γ such that

δ = [−,m].

Proposition 3.2. Let F = m + f , f ∈ Γ̃1. Then F is a formal deformation of m if and

only if f satisfies the Maurer-Cartan equation

δf +
1

2
[f, f ] = 0 (12)
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Proof. [m,m] = 0 since m is associative. The associativity condition of F yields

F (a, F (b, c)) = F (F (a, b), c)

⇐⇒
∑
i+j=n

fj(a, fi(b, c)) =
∑
i+j=n

fj(fi(a, b), c), n ≥ 1

⇐⇒
∑
i+j=n
i,j 6=0

fj(a, fi(b, c))− fj(fi(a, b), c) = fn(a, b)c+ fn(ab, c)− afn(b, c)− fn(a, bc), n ≥ 1

⇐⇒ 1

2

∑
i+j=n
i,j 6=0

[fj ◦ fi] + δfn = 0, n ≥ 1

⇐⇒ 1

2
[f, f ] + δf = 0

the last equivalence is obtained by combing all the equations for n = 1, 2, . . . , and bringing

t back, the result follows.

Denote by MC(Γ̃) solutions of Maurer-Cartan equation of the DGLA (Γ̃, [, ], δ), i.e.,

MC(Γ̃) :=

{
f ∈ Γ̃1 |δf +

1

2
[f, f ] = 0

}
.

Definition 3.3. For every x ∈ Γ̃1, define the automorphism of Ã

ψ = exp(x) = exp(x) = 1 + x+
x2

2!
+ · · · .

Formal deformations F = m + f and F ′ = m + f ′ are called equivalent if there exists a

x ∈ Γ̃0 such that, for any a, b ∈ A, the equation

(m+ f ′)(a, b) = ψ((m+ f)(ψ−1a, ψ−1b)) (13)

holds.

Note that Γ0 ⊗ k[[t]] is a group with normal multiplication. If we equip Γ̃0 with the

multiplication law given by the Baker-Campbell-Hausdorff formula,

x · y = x+ y +
1

2
[x, y] +

1

12
([x, [x, y]] + [y, [y, x]]) + . . . ,

then the exp map is a group homomorphism sending Γ̃0 to Γ0 ⊗ k[[t]] such that exp(x · y) =

exp(x) exp(y). The inverse of the map exp : Γ̃0 → exp(Γ̃0) is the homomorphism

log : exp(Γ̃0)→ Γ̃0,
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defined as

1 + x 7→ x− 1

2
x2 +

1

3
x3 − . . . ,

and hence (Γ̃0, ·) ∼= exp(Γ̃0).

Definition 3.4. The group exp(Γ̃0) is called gauge group and denoted by G(Γ̃). The action

of the group G(Γ̃) on Γ̃1 is defined by the formula, for any x ∈ Γ̃0, f ∈ Γ̃1,

x ? f = f + [x,m+ f ] +
1

2!
[x, [x,m+ f ]] +

1

3!
[x, [x, [x,m+ f ]]] + . . . , (14)

and this action is called gauge action. Elements f, f ′ in Γ̃1 are called gauge equivalent if

there exists x ∈ Γ̃0 such that f ′ = x ? f .

Remark. Equation (14) can be rewritten as a form without m,

x? f = f + δx+ [x+ f ] +
1

2!
{[x, δx] + [x, [x, f ]]}+

1

3!
{[x, [x, δx]] + [x, [x, [x, f ]]]}+ · · · , (15)

by δ(x) = [m,x], so that this gauge action only depends on dg-Lie structure of Γ̃.

Given equivalent formal deformations F = m+ f and F ′ = m+ f ′, there exists x ∈ Γ̃0

such that F ′ = ψF (ψ−1, ψ−1), where ψ = exp(x). By expanding the equation, we obtain

m+ f ′ = exp(x)(m+ f)(exp(−x), exp(−x))

= (1 + x+
x2

2!
+ . . . )(m+ f)(1− x+

x2

2!
− . . . , 1− x+

x2

2!
− . . . )

= m+ f + δx+ [x, f ] +
1

2!
{[x, δx] + [x, [x, f ]]}+ · · · = m+ x ? f.

So the gauge action can be obtained by expressing the right hand side of

x ? f = exp(x)(m+ f)(exp(−x), exp(−x))−m

in terms of Lie bracket. Therefore, formal deformations F = m+f, F ′ = m+f ′ are equivalent

if and only if f , f ′ are gauge equivalent. Hence, we have the following theorem.

Theorem 3.5. Let A be an associative algebra. There is a bijection{
formal deformations of (A,m)

}
/∼ 'MC(Γ̃)/G(Γ̃).

Remark. Solutions of Maurer-Cartan equation only depends on associate DGLA, and the

action of gauge group G(Γ̃) on MC(Γ̃) only depends on dg-Lie structure of Γ̃.

Every deformation problem of an associative algebra can be interpreted by constructing

DGLA depending on given data. We only discussed DGLA whose differential has the form

δ = [−,m], more generally, one may assume a nilpotent DGLA. For further study about

DGLA and deformation theory, the reader can refer to [Man05] and [DMZ07].
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