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Let k£ be an algebraically closed field of characteristic zero and A a vector space over
k equipped with an associative multiplication m : A ®, A — A. For simplicity, ®; and

Homy(—, —) are written as ® and Hom(-,-), respectively, and A®™ means A ® --- ® A.
—_———

n copies

1 First-order deformations

Definition 1.1. A first-order deformation of (A, m) is an associative and k|t]/t*-bilinear
multiplication

F:AQK[t]/t* x A® k[t]/t* — A® k[t]/t
of the form F =m +tf, f € Hom(A%®? A).

The multiplication F' is associative if, for any a, b, c € A, the equation
F(F(a,b),c) = F(a, F(b,c))
holds. Expanding both sides and collecting the coefficient of ¢ yields the equation
f(ab,c) + f(a,b)e = f(a,be) + af(b,c) 1)
where ab := m(a, b).

Definition 1.2. Let Fy, F; be first-order deformations of m. For anya € A, g € Hom(A, A),
we define an automorphism T of A @ k[t]/t* as T'(a) = a + tg(a). First-order deformations



Fy and Fy are called equivalent if there exists g € Hom(A, A) such that, for any a,b € A, the
equation
Fi(a,b) = T(Fo(T"(a), T7(b))) (2)

holds.

From [2] if F; = m+tf1 is equivalent to F = m +tf2, then there exists g € Hom(A, A)
such that, for any a,b € A, the equation

fi(a,b) — fa(a,b) = ag(b) — g(ab) + g(a)b (3)
holds.

Observe that equivalence classes of first-order deformations of (A, m) can be expressed
as the set of morphisms f € Hom(A%?, A) satisfying modulo the equivalence relation ((3)).
Furthermore, we can describe first-order deformations in terms of the second Hochschild

cohomology.

Definition 1.3. Hochschild cohomology HH*(A) of a k-algebra A is defined as the cohomol-
ogy of the cochain complex C*(A, A)

0 y A —% Hom(A,A) —“ Hom(A® A,A) —% ...

with C™(A) := Hom(A®", A) for n > 0 and differential d : Hom(A®", A) — Hom(A®"t! A),
d =" (=1)'0" where

aof(ay, ..., ap) i =
8Zf(a0,...,an): f(CL()?...,CLi_lCLZ‘,...,an) 0<i<n
flag, ..., an_1)ay t=n+1

Remark. C°(A, A) = Homy(k, A) = A
Example 1.4. Compute HH°(A), HH'(A) and HH?(A).

For the differential d : C°(A, A) — C*(A, A), an element b € A is a O-cocycle if, for any
a€ A, db(a) =ab—ba = 0. Hence

H°(A) = {b € Al ab=ba Ya € A} = Z(A).

For a cocycle g € CY(A, A), dg = 0 is equivalent to g(ab) = ag(b) + g(a)b for any a,b € A.

Such a function is called a k-derivation and the collection of all k-derivations is denoted



by Der(A). If h € C'(A, A) is a coboundary, then there exists b € A such that, for any
a € A, we have h(a) = ab — ba. This type of functions are called inner derivations, denote
by InnDer(A). Therefore,

HH'(A) = Der(A)/InnDer(A).

Let f € C?(A, A) be a cocycle. Then, for any a,b,c € A, we have df(a,b,c) = af(b,c) —
f(ab,c)+ f(a,bc) + f(a,b)c = 0, which is equivalent to (1). Let f' € C?(A, A) be a cobound-
ary, then there exists g € C'(A, A) such that, for any a,b € A, we have f’(a,b) = dg(a,b) =
ag(b) — g(a)b. This relation is the same as (3)). Therefore, we have the following theorem.

Theorem 1.5. There is a bijection

{ﬁrst—order deformations of (A, m)} /. ~ HH?*(A A)

We observe that first-order deformations can be classified by HH?(A, A), and our next
goal is to understand the relation between higher order deformations and the Hochschild

cochain complex.

2 Higher-order deformations

Definition 2.1. A second-order deformation of (A, m) is an associative and k[t|/t3-bilinear

multiplication

F:AQK[l/t? x A® k[t]/t*? — A k[t]/t?
of the form F =m +tf) + t2fo, with fi, f» € Hom(A®?, A).

We now discuss the question of whether a first-order deformation can be extended to a

second-order deformation.

2.1 Extension to second-order

Let f; € C?(A, A) be a cocyle, so that F' = m + tf; is a first-order deformation. We want
to find a f, € Hom(A®2 A) to extend F to F = m + tf1 + t2f, such that F is associative.



The associativity condition yields two equations corresponding to the coefficients of ¢ and

t2, respectively: for any a,b,c € A,

filab,c) + fi(a,b)c = fi(a,be) + afi(b,c), (4)

fl(av fl(b’ C)) - fl(fl(avb)7c) = f2(ab7 C) + f2(a’ b)C - f2(avbc) - afZ(b7 C)' (5)

Observe that automatically holds since f; is a 2-cocycle, and the right-hand side
of is a 3-coboundary in Hom(A®3 A). In order to describe the left-hand side of , we
introduce Gerstenhaber bracket which was first defined by Murray Gerstenhaber [Ger63|.
As we will now explain, this bracket defines a differential graded Lie algebra structure on

the Hochschild cochain complex.

2.2 DGLA and Gerstenhaber bracket

Definition 2.2. A differential graded Lie algebra (DGLA) (L, [,], d) is the data of a Z-
graded vector space L = @;cz L' together with a bilinear bracket [,] : L x L — L and a linear
map d : L — L satisfying the following conditions:

(1) [] is a homogeneous skew-symmetric, i.e., [L', L7 C L' and [a,b] + (—1)*"[b,a] = 0

where |a| is the degree of a.

(2) Every a,b,c homogeneous satisfy the Jacobi identity
[a,[b, )] = [[a, 8], ] + (=1)""[b, [a, ¢

(3) d(L') € L'\, d2 = 0 and dfa, b] = [da, b]+(—1)""[a, db] the map d is called the differential
of L.

We define T' := @z to be the graded vector space with I := Hom(A®" 1 A), for
n>—1,and I'" =0 for n < —1.

Definition 2.3. (i) For f € T"™(A, A), g € I'™, m > 0, let us denote the element f o; g €
™t fori=1,...,m+ 1, defined by
foiglar® @ amint1-1)
=flap® - ®ai-1 ®g(a; @+ ® Aiyn) ® Aiynt1 @+ @ Ggnt1)
i=1,2,... m+1



(i1) For every m, n, we define a homomorphism o called circle product sending I' (A, A)®
(A, A) into T by setting for f € T™(A, A), g € T™(A, A), with m > 0,

m+1

fog=> (=1)"""fo;g (6)

i=1

and fog=0, form <0

Note that for m = n = 0, the operation is in fact the commutator. Explicitly,

fog= foig+fosg+--+fong if n even
J forg—fosg+ -+ (=1)""fong ifnodd

Remark. df = —[f,m], for f € '™

Proposition 2.4. For elements f € '™ and I' € A", we define the Gerstenhaber bracket
[f,9]=fog—(=1)""go f (7)

then (I',[,],0) where § := —d for is a differential graded Lie algebra.

Proof. The skew-symmetry follows directly from equation @ For the verification of the Ja-

cobi identity, we refer the reader to original paper [Ger63, Theorem 1&2]. The compatibility

of differential follows from the fact that the circle product we defined satisfies the graded
Leibnitz rule. ]

Corolary 2.5. If f an n-cocycle in T'™, then [f, f] is a 2n-cocycle.

Let m =n =1, for any f € I'', a,b,c € A, we have

[/, fl(a,b,¢) = 2f o f(a,b,¢) = 2(f(f(a,b),¢) = f(a, f(b,c)))- (8)

Combing it with equation , we get the formula

1
§[f1,f1]:df2- (9)

From Corollary [2.5] we see that the left-hand side of this equation is a cocycle in I'?, but the
right-hand side is a coboundary in I'>. Equation @ says that to find fy, making m-+tf, +t2f,
a second-order deformation, the left hand side has to be zero in HH?3(A, A), and therefore

we obtain the following theorem.



Theorem 2.6. Let F = m + tf; be a first-order deformation. The class in HH3(A, A)
defined by [f1, f1] is the obstruction to extend the first-order deformation F'=m +tf; to a

second-order deformation.

In particular, if HH?*(A, A) = 0, then any first-order deformation can be extended.

However, the vanishing of HH3(A, A) is not a necessary condition for unobstructedness.

Example 2.7. Let A = k[z,y, 2]/(zy — 2, 2%, y%, 2%). Then A is a 4-dimensional algebra and
we choose a basis (1,z,y,2). Consider two cocycles f,g € I''. Let f(y,z) = z and zero for
other basis vector, and g(x,z) = y and zero for the other basis vector. So, [f, f] = 0 and
lg,9] = 0, and we obtain two unobstructed first-order deformations m + tf, m + tg. But
f + g is also a cocyle in "', and defines a obstructed first-order deformation m + t(f + g).
f +9,f+9|(x,z,x) = 2f o g(x,x,x) = 2, and for any h € T, dh(z,x,x) = zh(z,x) —
h(z?, z) + h(z,2%) — h(z,z)z = 0 since A is a commutative algebra. Hence [f +g¢, f+g] # 0
in HH3(A, A).

t"t1 we want to extent it to be a deforma-

In general, given a deformation over klt]/
tion over k[t]/t""2. By expanding and collecting coefficient of t* k = 0,1,...,n + 1, the

associativity condition implies that, for any a,b,c € A, the equation

k k
> fila fib,e) = Y fifila.b).) (10)
i+j=0 i+j=0
holds, where fo = m is the multiplication of A. For k = n+ 1, equation ((10)) can be rewritten

as
n+1

5> 1 Al(@be) = ~Guia(a,bc) (11)
itj=1
1,570

by dg-Lie structure. If the left hand side of is a cocycle, then it is the obstruction class
in HH3(A, A) to extend the nth-order deformation m + tf; +--- +t"f, to a (n+1)th-order

deformation.

To prove the claim, we need to use equation for k=1,...,n which yields

1

5 Z [fj7fz]:_5fk) kzla"'an
i+j=k
1,574k



Thus, by applying the graded Lebnitz rule,

n

> 0l vl = Y 105 favikl = 56 fara] = > [fi [ i1l =0,
j=1 j=1 i+j+k=n+1
%,7,k#0

and hence a cocycle.

Definition 2.8. HH?(A, A) is called the obstruction space of A.

We conclude by noticing that any finite-order deformation problem of an associative
algebra can be interpreted by associate DGLA. Our next goal is to find the connection
between formal deformations of (A, m) and the DGLA (T, [,],0).

3 Formal deformations

Define A := A ® k[[t]]

Definition 3.1. A one-parameter formal deformation of (A,m) is an associative, k [[t]]-
bilinear multiplication
F:AxA— A

of the form F =m +tfi +t2fy + -+ with f; € Hom(A%®? A).

Denote f :=tf] +t2fo+---.

Note that I := I' @ ¢ - k[[t]] is a DGLA, with clements of degree n expressed as t1, +
t29hy + ..., ; € I'™. The dg-Lie structure of [ is obtained from T by extending [,] and §
k[[t]]-linearly. Hence, I inherits the relation between [,] and & from I’ such that

d=[—,ml.

Proposition 3.2. Let F=m+ f, f € T'. Then F is a formal deformation of m if and

only if f satisfies the Maurer-Cartan equation

5f+%[f,f] _0 (12)



Proof. [m,m] = 0 since m is associative. The associativity condition of F' yields
F(a, F(b,c)) = F(F(a,b),c)
= Y filafibo) = Y filfilab),e)n > 1

i+j=n i+j=n

< E f] fl b C fj(fi(a7b>7c) - fn(aab>c+ fn(abv C) - afn(ba C) - fn(av bC),TL > 1
i+j=n
1,770

<=>—Z ofi]+6fu=0n>1

i+j=n
1,70

= SlfA+6f=0

the last equivalence is obtained by combing all the equations for n = 1,2,..., and bringing
t back, the result follows. n

Denote by MC(T') solutions of Maurer-Cartan equation of the DGLA (T, [,],4), i.c.,
Mo = { e pos + 51701 =0}.

Definition 3.3. For every x € fl, define the automorphism ofg
22
¥ = exp(z) = exp(z )—1+ﬂf+§+
Formal deformations FF = m + f and F' = m + f" are called equivalent if there exists a

z €10 such that, for any a,b € A, the equation

(m+ f)(a,b) = ¥((m+ )Y~ a,47'b)) (13)

holds.

Note that I'® @ k[[t] is a group with normal multiplication. If we equip I with the
multiplication law given by the Baker-Campbell-Hausdorff formula,

1

(ol + s ) +

l[fv,y] +

x-y=x+y+2

then the exp map is a group homomorphism sending I to '’ ® k[[t]] such that exp(z - y) =
exp(x) exp(y). The inverse of the map exp : I'° — exp(I'Y) is the homomorphism

log : exp(I'°) — TV,

8



defined as . .
1 = — -t 4 =t — .
+r—=x 230 —|—391: ,

and hence (I, ) 2 exp ().
Definition 3.4. The group exp(fo) is called gauge group and denoted by G(f) The action
of the group G(f) on T'! is defined by the formula, for any x € I, f € T'L,

1 1
ex f=f+zm+ fl+ gl fe,m+ fl+ gl o fo,m+ A+ (14)
and this action is called gauge action. Elements f, f' in I are called gauge equivalent if

there exists © € 9 such that fl=xxf.

Remark. Equation can be rewritten as a form without m,
1 1

by 0(x) = [m, x], so that this gauge action only depends on dg-Lie structure of I.

Given equivalent formal deformations F' = m + f and F' = m + f’, there exists x € o
such that F' = ¢ F (=1, ¢~ 1), where ¢ = exp(x). By expanding the equation, we obtain

m + [ = exp(x)(m + f)(exp(—z), exp(—))

:(1+I+%+...)(m+f)(1—x+%—...,1—x+%—...)
=t bt o f 4 gl 00+ [ [ Sl 4= mbaw

So the gauge action can be obtained by expressing the right hand side of

zx [ =exp(z)(m+ f)(exp(—z), exp(—z)) —m
in terms of Lie bracket. Therefore, formal deformations F' = m+ f, F' = m+ f’ are equivalent

if and only if f, f’ are gauge equivalent. Hence, we have the following theorem.

Theorem 3.5. Let A be an associative algebra. There is a bijection
{formal deformations of (A,m)} /. ~MCT)/GT).

Remark. Solutions of Maurer-Cartan equation only depends on associate DGLA, and the

action of gauge group G (f) on MC (f) only depends on dg-Lie structure of L.

Every deformation problem of an associative algebra can be interpreted by constructing
DGLA depending on given data. We only discussed DGLA whose differential has the form
d = [—,m], more generally, one may assume a nilpotent DGLA. For further study about
DGLA and deformation theory, the reader can refer to [Man05] and [DMZ07].
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