
Models for (∞, n)-categories
Walker H. Stern

These notes were prepared for a seminar talk on 27. May, 2019 at
Universität Hamburg, given as part of the Research seminar on higher
categories overseen by Prof. Dr. Tobias Dyckerhoff. The aim is to give
a brief exposition of two models for (∞, n)-categories: Θn-spaces, and
n-fold complete Segal spaces.

The naïve perspective: enrichment

One heuristic idea of what an (∞, n)-category should be is a cat-
egory enriched1 in (∞, n − 1)-categories. This thinking has the 1 We’ll leave aside what we really mean

by this for the time being.advantage of mirroring the construction we perform in the strict
case:

Cat1 := Set - Cat

Cat2 := Cat1 - Cat

...

Catn := Catn−1 - Cat

and so on. In many applications, however, we have to weaken our
notion of enrichment as soon as we get to the case of 2-categories.

But, the process of successive enrichments works. We have the
Kan model structure on Set∆, which gives us a good notion for
what the ∞-category Cat(∞,0) = S should be2. What’s more, the 2 To some degree, this is putting

the cart before the horse, because it
assumes we already know what an
∞-category is.

ample appendices of Higher Topos Theory provide the following
theorem:

Theorem 1. Let C be a "nice enough"3 monoidal model category, then 3 A combinatorial monoidal model
category in which every object is
cofibrant, and weak equivalences are
stable under filtered colimits.

there is a model structure on C -Cat whose weak equivalences are the "ho-
motopy essential surjective" functors such that F : B(x, y) → C(Fx, Fy)
is a weak equivalence in C.

This is, in fact, how we construct the model structure on Cat∆

modeling (∞, 1)-categories.

Problem 1: This construction doesn’t iterate well – the hypotheses
on C are stronger than the conclusions we can draw about C -Cat.

Problem 2: "Categories enriched in categories enriched in ...." are
a terribly messy model to work with.

The first of these problems is not insurmountable, but the second
makes the method undesirable in all but the simplest cases. No-
tably, even when working in the non-∞ setting, we often as not
have to consider bicategories rather than strict 2-categories.
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The less-naïve perspective: internalization

Both of the problems with enriching categories in (∞, n − 1)-
categories come from the superfluous strictness of the enrichment
process. We can try and relax this requirement by thinking of cate-
gories internal to (∞, n)-categories.

Definition 2. Let C be a 1-category with enough limits. A category
internal to C consists of a functor

X : ∆op → C

such that the canonical map

Xn → X1 ×X0 X1 ×X0 · · · ×X0 X1︸ ︷︷ ︸
×n

(1)

is an isomorphism4. 4 In this 1-categorical setting, this is far
too much data. Indeed, all one really
needs are objects X0 and X1, units
σ0 : X0 → X1, source and target maps
∂1, ∂0 : X1 → X0, and a composition
X1 ×X0 X1 → X1 satisfying the usual
unitality and associativity relations.
These data are enough to uniquely
determine the simplicial object X up
to isomorphism. We think of X0 as
the "object of objects" in the internal
category, and X1 as the "object of
morphisms."

Example 3. If we take C = Set, then the condition eq. (1) is nothing
more or less than the requirement that the simplicial set X be the
nerve of a category. As a result, we can identify categories internal
to Set with 1-categories.

Example 4 (Motivation). Suppose we have a category C internal to
Grpd. Then C consists of two groupoids, C0 and C1, together with
maps

C1 C0

s

t

id

and
m : C1 ×C0 C1 → C1.

Satisfying compatibility conditions. Applying the forgetful functor
to Set which forgets the morphisms, we get a category J(C) with

• objects: Obj(C0)

• morphisms: Obj(C1).

We might reasonably ask if we can go the other way, and con-
struct an internal category in Grpd from a category D. The answer
is yes, and in fact, there are multiple ways to do so:

1. We can simply pass through the inclusion i : Set → Grpd of sets
as discrete groupoids to obtain an internal category min(D).

2. We can define max(D) to be the internal category with

max(D)0 := core(D)

and
max(D)1 := core(D[1]).

Note that
J(min(D)) ∼= D ∼= J(max(D1)).
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The upshot of this is that categories internal to groupoids pro-
vide some way of modeling 1-categories. However, there could be
multiple inequivalent categories internal to groupoids that give
the same 1-category. As a result, we need to provide some addi-
tional criterion to restrict which internal categories we consider. We
could simply require that the category C0 is discrete — this actually
leads to a sensible notion of (∞, 1)-categories called Segal categories.
However, we would prefer to consider the model max(D) from the
example.

To characterize those categories internal to Grpd which come
from this construction, consider the set of objects f ∈ Obj(max(D)1)

corresponding to the isomorphisms in D. Denote the full sub-
category of max(D)1 on these objects by max(D)E, and note that
id : max(D)0 → max(D)1 factors through max(D)E.

Claim 5. The functor I : max(D)0 → max(D)E is an equivalence of
categories.

Proof. Note first that, if f : x → y is an isomorphism in D, then
there is a commutative square

x y

y y

f

f

idy

idy

displaying an equivalence between f and idy. So I is essentially
surjective. It is obvious that I is faithful, so we need only check that
I is full. However, any morphism idx → idy in core(D[1]) must be
given by a commutative diagram

x x

y y

idx

f g

idy

and so, f = g, meaning that morphism in question is I( f ).

Once we have shaken off the spurious strictness of this example,
the higher-categorical analogue of this condition will be called the
completeness condition on an internal category.

Segal spaces

We now want to use this process of internalization to define an
∞-category of (∞, n)-categories starting from an ∞-category of
(∞, n− 1)-categories. Since we already have a good model for the
∞-category S of spaces, we will start here.

Definition 6. A category object in an ∞-category C is a simplicial
object

X• : N(∆op)→ C
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such that the induced map

Xn → X{0,1} ×X{1} X{1,2} ×X{2} · · · ×X{n−1} X{n−1,n}

is an equivalence in C.5 5 There are other, equivalent, formu-
lations of the Segal condition. For
instance, one can require that the
squares

Xm //

��

Xk

��
Xm−k // X0

are pullback in S.

We call a category object in S a Segal space.

Given a category object X : ∆op → S, we can extract a homotopy
1-category Ho(X) as follows.

Construction 7. We set Obj(Ho(X)) := X0,0, the 0-simplices of the
image of 0th space of X. For a pair of objects x, y ∈ X0,0, we define a
mapping space X(x, y) to be the (∞-categorical) pullback.

X(x, y) X1

{x, y} X0 × X0

(∂1,∂0)

Choosing an inverse to the equivalence X2 → X1 ×X0 X1 (unique up
to contractible choice), we obtain:

X1 X2 X1 ×X0 X1 X1 ×X0 X1

X(x, z) Q P X(x, y)× X(y, z)

X0 × X0 X0 × X0 X0 × X0 X0 × X0 × X0

{x, y} {x, z} {x, z} {x, y, z}

(∂1,∂0)

∂1

(∂1,∂0)

'

(∂1,∂0) (∂1,∂0=∂1,∂0)

d

(p1,p3)

Where the ‘transverse slice’ squares are pullback. We call the in-
duced morphism X(x, y)× X(y, z) → X(x, y) the composition. The
Segal conditions imply that it will be associative and unital up to
homotopy.

The homotopy category Ho(X) then has hom-sets π0X(x, y). We
call the elements f ∈ X(x, y) that become isomorphisms in Ho(X)

the equivalences of X, and denote the full sub- Kan complex of X1

on the equivalences by XWE. Note that, since every identity is an
equivalence, the canonical morphism

s0 : X0 → X1

factors through XWE

Definition 8. A Segal space is called complete if the canonical mor-
phism X0 → XWE is an equivalence.

Example 9 (Quasi-categories and complete Segal spaces). Let X :
∆op → S be a complete Segal space. We can view X as a bisimplicial
set X : ∆op × ∆op → Set. Then we can extract a simplicial set
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Xn,0 : ∆op → Set from X. By work of Joyal-Tierney, this is, in fact a
quasi-category.

In the other direction, we do not have to directly resort to simpli-
cial sets. Let X ∈ Cat(∞,1) and consider the cosimplicial object

∆→ Cat(∞,1), [n] 7→ ∆n.

We can then define the composite:

∆op → Catop
(∞,1)

YX−→ Cat(∞,1)
(−)'−→ S.

Which sends [n] 7→ Fun(∆n, X)'. This is a complete Segal space.6 6 See Joyal-Tierney

We denote this composite by CN(X).

Theorem 1 (Joyal-Tierney). The full sub-∞-category CSS1 ⊂ Fun(∆op, S)
on the complete Segal spaces is equivalent to Cat(∞,1).

To identity the sub-∞-category of spaces in the higher Segal
spaces, we take the following intuition: In a complete Segal space
X, the space X0 is the underlying ∞-groupoid of X, i.e. the ‘space
of objects’7. As a result, a complete Segal space representing an 7 In some sense, this is precisely what

the completeness condition says(∞, 0)-category should be completely determined by X0.

Definition 10. A complete Segal space is said to be essentially con-
stant if the functor X : ∆op → S factors through S'.

Since ∆op is contractible, we see that there is an equivalence of
∞-categories

S ' CSSEC

We thus identify S ⊂ CSS1 as a full sub-∞-category.

Remark 11. Note that here, we have defined only an (∞, 1)-category
of complete Segal spaces rather than an (∞, 2)-category. As we con-
tinue to higher categories, we will continue to follow this approach.
It is, however, possible to define (∞, n)-categories of functors be-
tween (∞, n)-categories in general. See, for example, Rezk’s ‘A
Cartesian presentation of weak n-categories’.

Remark 12 (An alternate characterization of completeness). Let E
be the nerve of the category which has two objects and a unique
isomorphism between them. Then there is a unique morphism
E→ ∆0 in Cat(∞,1). This gives us a morphism

f : CN(E)→ CN(∆0),

of complete Segal spaces. A Segal space X is then complete if and
only if the morphism

X0 ' Map(CN(∆0), X)→ Map(CN(E), X) ∼= XWE

induced by pulling back along f is an equivalence.



models for (∞, n)-categories 6

Iterating

Now that we have defined an internalization procedure for ∞-
categories, we wish to iterate it to obtain models for (∞, n)-categories.

Definition 13. An n-fold Segal space is a category object in (n− 1)-
fold Segal spaces.

Note that an n-fold Segal space can be viewed as a functor

X : ∆×n → S.

Definition 14. We call a n-fold Segal space X complete if

1. X is a category object in (n− 1)-fold complete Segal spaces.

2. The (n − 1)-fold simplicial space X0 := X0,•,...,• is essentially
constant.8 8 In this context, essentially constant

once again means simply that X0 :
∆×(n−1) → S factors through S'. This
condition guarantees that we will have
a space of objects.

3. The simplicial space Y• := X•,0,...,0 is a complete Segal space.

We denote the (∞, 1)-category of n-fold complete Segal spaces by
CSSn ⊂ Fun(∆×n, S).

Remark 15. It is worth briefly teasing out what, precisely condition
3. means. We can see the space Y• := X•,0,...,0 as the underlying
(∞, 1)-category of X. The third condition is therefore simply guar-
anteeing that it will, indeed, be an (∞, 1)-category.

Theorem 16 (Barwick-Schommer-Pries). The (∞, 1)-category CSSn is
a model for the ∞-category of (∞, n)-categories.

Notation 17. When we do not wish to specify a particular model,
we will write Cat(∞,n) for the ∞-category of (∞, n)-categories.

Interlude: Monoidal and symmetric monoidal (∞, n)-categories.

While, for the most part, the details of monoidal-ness won’t come
into play in the sequel, let us briefly consider what a monoidal
(∞, n)-category might be.

Example 18 (Motivation). A 2-category with a single object is a
monoidal 1-category.

Following this definition, we might then say

Definition 19. A monoidal (∞, n)-category is an (∞, n + 1)-category
with a contractible space of objects.

Remark 20. While this definition has the great benefit of being con-
cise, it presents a number of problems. Most notably, it is quite dif-
ficult to see, in this formalism, how or when a monoidal structure
on an (∞, n)-category can be promoted to a symmetric monoidal
structure.

However, there is another way to define monoidal (∞, n)-categories.
A monoidal structure should be a coherently associative and unital
multiplication law on an (∞, n)-category C. We can therefore make
the definition
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Definition 21. A monoidal (∞, n)-category is an associative algebra
in the ∞-category of (∞, n)-categories. A symmetric monoidal (∞, n)-
category is a commutative9 algebra in the ∞-category of (∞, n)- 9 More precisely, E∞

categories.10 10 When we say an algebra in the ∞-
category of (∞, n)-categories, we mean
in the Cartesian monoidal structure on
this ∞-category. We have not proved,
nor do we essay to prove here, that
Cat∞,n has a sufficient supply of limits
for this task. This is, however, true.
See Lurie’s (∞, 2)-categories and the
Goodwillie Calculus I for details.

This definition has the advantage of encoding both monoidal-
ness and symmetric monoidalness. All that remains to us is to try
and relate the two definitions.

Theorem 22 (Lurie, HA 4.1.2.10). For every ∞-category with finite
products, There is an equivalence of ∞-categories

FunMon(∆op , C) ' AlgA ss(C)

Where the ∞-category on the left is the full sub-∞-category on those
functors X which are category objects with X0 ' ∗.

Consequently, we have equivalences{
n-fold

Segal spaces
with X0'∗

}
' FunMon(∆op , CSSn−1) ' AlgA ss(CSSn−1)

giving us the equivalence of our two definitions.

Θn-spaces

We now turn our attention to a second model of (∞, n)-categories,
that used in Ayala-Francis-Rozenblyum.

Definition 23. Let C be a 1-category. We define the wreath product

∆ o C

to have objects given by ([n], (c1, . . . , cn)), ci ∈ C, and morphisms
([n], (c1, . . . , cn))→ ([m], (d1, . . . , dn)) given by

• A morphism φ : [n]→ [m] in ∆.

• For every 0 < i ≤ n and every φ(i− 1) < j ≤ φ(i), a morphism

fi,j : ci → dj

in C.

We define Θn := ∆on to be the n-fold wreath product of ∆ with
itself.

Construction 24. There is a functor

δC : ∆× C→ ∆ o C

constructed as follows.

• On objects, we map

([n], c) 7→ ([n], (c, . . . , c︸ ︷︷ ︸
×n

))
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• On morphisms, we send ([n], c)
f ,g→ ([m], d) to the morphism

( f , {g}i,j).

Iterating this procedure and composing, we get a functor

δn : ∆×n → Θn.

Note that this functor is not full, faithful, or essentially surjective.

We want to think of the objects in Θn as parameterizing ‘n-
categorical diagrams of a certain shape’. To get a feel for this, it
is useful to restrict to the case where n = 2.11 11 Mostly so we can draw the diagrams

in question.
Example 25. Consider the object ([3], ([2], [0], [3])) ∈ Θ2. We think
of the first object, [3], as specifying which objects we consider as
well as the homotopy type of the hom-categories, i.e. we get objects
0, 1, 2, 3, and one homotopy type of morphisms i→ j for i ≤ j.

We think of the list [2], [0], [3] as giving (as posets) the hom-
categories. Diagrammatically, this means that our chosen object
looks like

0 1 2 3

So now, what do morphisms do? Lets consider the morphism

([3], ([2], [0], [3]))→ ([2], ([3], [2])

given by σ1 : [3] → [2] and δ1 : [2] → [3] and σ0 : [3] → [2] . We can
visualize this as

0 1 2 3

0 1 2

i.e. the morphism acts on the hom-categories as δ1 and σ0.

Remark 26. The functor δ2 admits a nice pictorial intuition. An ob-
ject in ∆2, can be viewed as a grid. The functor δ2 merely collapses
this grid. Take, for example, the object ([2], [3]). Then we have that
the grid

• • •

• • •

• • •

• • •
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is sent to the diagram

• • •

Definition 27. A Θn-space is a functor Θop
n → S.

We would like to impose conditions on Θn-spaces analogous
to the Segal conditions, so that we have a natural notion of com-
position/pasting of diagrams. To see how this can be achieved, we
reformulate the Segal conditions:

Definition 28. The inert subcategory ∆in ⊂ ∆ contains all objects of
∆, but only those morphisms which are the inclusions of subinter-
vals. A colimit diagram F : [1]× [1]→ ∆, visualized as

F00 F01

F10 F11

is called a Segal diagram if it factors through ∆in.

Claim 29. A simplicial space X : ∆op → S is a Segal space if and only if
it sends Segal diagrams to limit diagrams.

Proof. Since the diagrams defining the Segal conditions are Segal
diagrams, ‘if’ follows immediately. In the other direction, the claim
is the same as saying that in a Segal space the diagrams

X
×X0 n+`+k
1 X

×X0 `+k
1

X
×X0 n+`

1 X
×X0 `

1

are pullback.

Definition 30. We define the inert subcategory Θn,in ⊂ Θn induc-
tively. We set Θ1,in := ∆in, and then define

Θn,in := ∆in oΘn−1,in ⊂ Θn.

A colimit diagram [1] × [1] → Θn is called a Segal diagram if it
factors through Θn,in.

A Θn-space X : Θop
n → S is called a Segal Θn-space if it sends all

Segal diagrams to limit diagrams.

Remark 31. We note that, given a Segal Θn-space X : Θop
n → S, we

get a n-fold simplicial space (δn)∗(X) : ∆×n → S by pulling back
along the canonical morphism

δn : ∆×n → Θn.

Since the image of an inert diagram in any factor of ∆×n is an inert
diagram in Θn, the fact that X is Segal implies that (δn)∗(X) is
n-fold Segal.
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Completeness

Construction 32 (Pushing forward). Let C be a 1-category, and
define a functor12 12 The notation here is a modification

of that used by Rezk. T is defined
as the Kan extension of a functor
T : ∆ → Fun((∆ o C)op, S) given by
[n] 7→ (([m], (c1, . . . , cm)) 7→ ∆([n], [m])
along the Yoneda embedding.

TC
! : Fun(∆op , C) → Fun((∆ o C)op , S)

Given on objects by

TC
! (X)([m], (c1 , . . . , cm)) = X([m]).

In particular, we get functors

Tn : Fun((∆×n)op , C) → Fun(Θop
n , S)

given by applying this construction.

Notation 33. Let E be the nerve of the walking isomorphism, we
denote by

fn : En → ∗n

the image of the morphism f : E → ∆0 under Tn ◦ CN.

Construction 34. Define functors

σn : Θn−1 → Θn

by sending c 7→ ([1], (c)).

Definition 35. We say that a Segal Θn-space X is complete if

1. The morphism

Map(∗n , X) → Map(En , X)

induced by fn is an equivalence.

2. The Θn−1-space σ∗n (X) is complete.

This definition is, once again, inductive. We first define a Segal Θ1-
space to be complete if it is a complete Segal space, and then apply
the definition above.

We denote the full subcategory of Fun(Θop
n , S) on the complete

Segal Θn spaces by Θn CSS.

Theorem 36 (Barwick-Schommer-Pries, Bergner-Rezk). The functor
δn defines an equivalence

Θn CSS ' CSSn

of ∞-categories.
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