Exercise Sheet 8

Problem 1. Let *I* be the category with two objects 0 and 1 and a unique isomorphism between any two objects. Define the set \mathfrak{C} of morphisms of **Cat** to be those which are injective on objects. Define the set \mathfrak{F} of morphisms of **Cat** to be the class of morphisms which have the right lifting property with respect to the functor $\{0\} \rightarrow I$, i.e. the isofibrations.

- 1. Let $F: C \to D$ be a functor.
 - (a) Consider the category \mathcal{L} whose objects are tuples (c, d, ϕ) , where $c \in \mathfrak{C}$, $d \in \mathcal{D}$, and $\phi : F(c) \xrightarrow{\cong} d$ in \mathcal{D} , and whose morphisms are given by

$$\mathcal{L}\left((c, d, \phi), (a, b, \psi)\right) := \mathcal{C}(c, a).$$

Show that F can be factored as $\mathfrak{C} \xrightarrow{G} \mathcal{L} \xrightarrow{H} \mathfrak{D}$, such that G is an equivalence of categories, $G \in \mathfrak{C}$, and $H \in \mathfrak{F}$.

(b) Let \mathcal{R} be the category whose objects are given by $Ob(\mathcal{C}) \coprod Ob(\mathcal{D})$, with morphisms characterized by (for $d_1, d_2 \in \mathcal{D}$, and $c_1, c_2 \in \mathcal{C}$)

$$\begin{aligned} & \mathcal{R}(c_1, c_2) & := & \mathcal{D}(F(c_1), F(c_2)) \\ & \mathcal{R}(d_1, d_2) & := & \mathcal{D}(d_1, d_2) \\ & \mathcal{R}(c_1, d_1) & := & \mathcal{D}(F(c_1), d_1)) \\ & \mathcal{R}(d_1, c_1) & := & \mathcal{D}(d_1, F(c_1)). \end{aligned}$$

Show that F can be factored as $\mathfrak{C} \xrightarrow{G} \mathfrak{R} \xrightarrow{H} \mathfrak{D}$, such that H is an equivalence of categories, $G \in \mathfrak{C}$, and $H \in \mathfrak{F}$.

 $2. \ Let$

be a diagram of categories such that the horizontal composites are identities. Show that

- (a) If G is an equivalence of categories, so is F (Hint: consider the adjoint to F.)
- (b) If G is in \mathfrak{C} , so is F (Hint: consider the forgetful functor to **Set**.)
- (c) If G is in \mathfrak{F} , so is F.
- 3. Given a diagram of categories

such that $\iota \in \mathfrak{C}$ and $P \in \mathfrak{F}$, show that

- (a) If P is an equivalence of categories, then there exists a lift $\ell : \mathbb{C} \to \mathcal{B}$. (Hint: first show that P must be surjective on objects.)
- (b) If ι is an equivalence of categories, then there exists a lift $\ell : \mathcal{C} \to \mathcal{B}$.
- 4. Deduce that there is a model structure on the category of small categories such that the weak equivalences are the equivalences of categories, the fibrations are the morphisms in \mathfrak{F} , and the cofibrations are the morphisms in \mathfrak{E} .

Problem 2. Let $(Cat, \mathfrak{W}, \mathfrak{C}, \mathfrak{F})$ be the model category from problem 1.

- 1. Identify the fibrant and cofibrant objects in $(Cat, \mathfrak{W}, \mathfrak{C}, \mathfrak{F})$.
- 2. Show that $\mathfrak{C} \amalg \mathfrak{C} \to \mathfrak{C} \times I \to \mathfrak{C}$ is a cylinder object on \mathfrak{C} in $(\mathbf{Cat}, \mathfrak{W}, \mathfrak{C}, \mathfrak{F})$.
- 3. Show that a left homotopy between $F, G : \mathfrak{C} \to \mathcal{D}$ in $(\mathbf{Cat}, \mathfrak{W}, \mathfrak{C}, \mathfrak{F})$ is the same thing as a natural isomorphism between F and G.