Exercise sheet 7

Problem 1. Let $K \in \mathbf{Kan}$ and $v \in K_0$. Recall from exercise 4.2.5 that there is a functor $\pi_{\leq 1}$: **Kan** \rightarrow **Grpd** left adjoint to the nerve (denoted by γ in exercise 4.2.5).

- 1. Show that there is an isomorphism $\pi_0(K) \simeq \pi_0(|K|)$.
- 2. Show that there is an isomorphism

$$\operatorname{Hom}_{\pi_{<1}(K)}(v,v) \cong \pi_1(K,v).$$

Conclude that if K is connected (i.e., $\pi_0(K) = *$), there is an equivalence of categories

$$B\pi_1(K, v) \simeq \pi_{<1}(K)$$

Problem 2. A simplicial group is an object $G \in \mathbf{Grp}_{\Delta} := \mathrm{Fun}(\Delta^{\mathrm{op}}, \mathbf{Grp})$. The forgetful functor $\iota : \mathbf{Grp} \to \mathbf{Set}$ induces a functor

$$\operatorname{\mathbf{Grp}}_{\Delta} \to \operatorname{\mathbf{Set}}_{\Delta}, \quad G \mapsto \widehat{G} := \iota \circ G.$$

- 1. Let G be a simplicial group. Given a horn $(g_1, g_2, \ldots, g_{k-1}, -, g_{k+1}, \cdots, g_n)$ with $g_i \in G_{n-1}$, define an element inductively as follows:
 - Set $h_0 := s_0(g_0)$
 - Define h_i for i < k by $h_i := h_{i-1} \cdot (s_i d_i(h_{i-1})) \cdot s_i(g_i)$
 - Set $h_n := h_{k-1} \cdot (s_{n-1}d_n(h_{k-1}))^{-1} \cdot s_{n-1}(g_n).$
 - Define h_i for i > k by $h_i := h_{i+1} \cdot (s_{i-1}d_i(h_{i+1}))^{-1} \cdot s_{i-1}(g_i)$.

Show that:

- if k < n, then $d_i(h_{k+1}) = g_i;$
- if k = n, then $d_i(h_{n-1}) = g_i$.

Conclude that \hat{G} is a Kan complex.

2. For a simplicial set $X \in \mathbf{Set}_{\Delta}$, an *action* of G on X consists of an action of G_n on X_n for every $n \ge 0$ such that, for every morphism $f : [m] \to [n]$ in Δ , the induced map $f^* : X_n \to X_m$ is G-equivariant in the sense that for $(g, x) \in G_n \times X_n$, we have

$$f^*(g \cdot x) = f^*(g) \cdot f^*(x)$$

Given an action of G on X, show that there is a simplicial set X/G with

$$(X/G)_n = X_n/G_n$$

Such that there is a well defined quotient map

$$p_G: X \to X/G$$

3. Suppose given an action of G on X such that X_n is a free G_n set for all $n \ge 0$. Let $\sigma : \Delta^n \to X/G$ be an *n*-simplex and define the *fiber* F_{σ} of X over σ to be the pullback.

$$\begin{array}{ccc} F_{\sigma} & \longrightarrow X \\ \downarrow & & \downarrow^{p_G} \\ \Delta^n & \xrightarrow[]{\sigma} & X/G \end{array}$$

Show that there is an isomorphism $F_{\sigma} \stackrel{\cong}{\to} G \times \Delta^n$ such that the diagram

$$F_{\sigma} \longrightarrow G \times \Delta^{r}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\Delta^{n} \longrightarrow \Delta^{n}$$

commutes. Conclude that $p_G: X \to X/G$ is a Kan fibration.

Problem 3. Let $G \in \mathbf{Grp}_{\Delta}$ be a simplicial group. Define a simplicial set EG by

 $EG_n := G_n \times G_{n-1} \times \cdots G_0$

with face maps

$$d_i(g_n, \dots, g_0) = \begin{cases} (d_i(g_n), d_{i-1}(g_{n-1}), \dots, d_0(g_{n-i})g_{n-i-1}, g_{n-i-2}, \dots, g_0) & i < n \\ (d_n(g_n), \dots, d_1(g_1)) & i = n \end{cases}$$

and degeneracy maps

$$s_i(g_n,\ldots,g_0) = (s_i(g_n), s_{i-1}(g_{n-1}),\ldots,s_0(g_{n-i}), e, g_{n-i-1},\ldots,g_0)$$

where e is the unit of G_{n-i} .

1. Show that the maps

$$g \cdot (g_n, \ldots, g_0) \mapsto (gg_n, \ldots, g_0)$$

equip EG with a free G-action, yielding a simplicial BG := EG/G and a Kan fibration

$$\pi: EG \to BG$$

- 2. Let $e \in BG_0$ be the vertex represented by the identity in G_0 . Show that the fiber of EG over e is isomorphic to G.
- 3. Consider the functor

$$\kappa_n: [n] \times [1] \to [n+1], \quad (i,j) \mapsto \begin{cases} 0 & j=0\\ i+1 & j=1. \end{cases}$$

Show that given a morphism $f:[n] \to [m]$ in Δ , the diagram

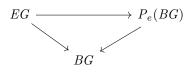
commutes, where $\tilde{f}: [n+1] \to [m+1]$ is defined by

$$\tilde{f}(i) = \begin{cases} f(i-1) + 1 & i \neq 0\\ 0 & i = 0. \end{cases}$$

4. Show that the map $EG_n \to P_e(BG)_n$ given by

$$(g_n,\ldots,g_0)\mapsto\kappa_n^*(\pi(e,g_n,\ldots,g_0))$$

defines a map of simplicial sets such that the diagram



commutes. Conclude that there is a commutative diagram

$$\begin{array}{cccc} G & \longrightarrow EG & \longrightarrow BG \\ & \downarrow & & \downarrow^{\mathrm{id}} \\ \Omega_e(BG) & \longrightarrow P_e(BG) & \longrightarrow BG \end{array}$$