Exercise sheet 6

Problem 1. Let *I* be the groupoid with two objects 0 and 1 and a unique isomorphism between them. Call a functor $F : \mathcal{C} \to \mathcal{D}$ an *isofibration* if it has the right lifting property with respect to the functor

$$\{0\} \hookrightarrow I.$$

- 1. Show that for any functor $F : \mathcal{C} \to \mathcal{D}$ between categories, the nerve $N(F) : N(\mathcal{C}) \to N(\mathcal{D})$ is an inner fibration, i.e., it has the right lifting property with respect to all horn inclusions $\Lambda_i^n \subset \Delta^n$ with 0 < i < n.
- 2. Let $F : \mathfrak{C} \to \mathfrak{D}$ be an isofibration between two groupoids. Show that $N(F) : N(\mathfrak{C}) \to N(\mathfrak{D})$ is a Kan fibration.

Problem 2. Let G be a discrete group, let BG be the associated category.

- 1. Show that the nerve N(BG) of BG is a Kan complex.
- 2. Show that $\pi_1(\mathcal{N}(BG)) \cong G$.
- 3. Show that $\pi_n(\mathcal{N}(BG)) \cong 0$ for n > 1.

Problem 3. A compactly generated Hausdorff space is a Hausdorff space X such that a subset $U \subset X$ is closed if and only if, for every compact subset $C \subset X$, $U \cap C$ is closed. Let **CGHaus** denote the full subcategory of **Top** on the compactly generated Hausdorff spaces.

1. For a Hausdorff space X with topology τ , define a space $X_C = (X, \tau_C)$, whose underlying set is the same as that of X, and where τ_C has as its closed sets precisely those $U \subset X$ such that, if $C \subset X$ is compact in τ , then $U \cap C$ is closed in C (with the topology induced by τ). Show that $X_C \in \mathbf{CGHaus}$, and show that the assignment $X \mapsto X_C$ defines a functor

$F : \mathbf{Haus} \to \mathbf{CGHaus},$

where Haus is the full subcategory of Top on the Hausdorff spaces.

- 2. Show that F is right adjoint to the inclusion $i : \mathbf{CGHaus} \to \mathbf{Haus}$. Conclude that \mathbf{CGHaus} has all limits and colimits, and that if a colimit of compactly generated Hausdorff spaces in **Top** is Hausdorff, then it is the colimit in **CGHaus**.
- 3. For $X \in \mathbf{CGHaus}$, let $\mathcal{C}(X)$ be the poset of compact subsets of X. Let $F_{X,Y} : \mathcal{C}(X) \times \mathcal{C}(Y) \to \mathbf{Top}$ be the functor that sends $C, D \mapsto C \times D$. Show that

$$(X \times Y)_C \cong \operatorname{colim}_{\mathcal{C}(X) \times \mathcal{C}(Y)} F_{X,Y} \cong \operatorname{colim}_{\mathcal{C}(X)} \operatorname{colim}_{\mathcal{C}(Y)} F_{X,Y}.$$

4. Let Map(X, Y) be the set of continuous maps $X \to Y$ equipped with the compact-open topology. Show that

 $\mathbf{CGHaus}((X \times Y)_C, Z) \cong \mathbf{CGHaus}(X, (\operatorname{Map}(Y, Z))_C)$

Conclude that $X, Y \mapsto (X \times Y)_C$ preserves colimits in each variable.

5. Show that $|\Delta^n| \in \mathbf{CGHaus}$, and consequently that the adjuction $|-| \dashv \text{Sing}$ descends to an adjunction

 $|-|: \mathbf{Set}_{\Delta} \leftrightarrow \mathbf{CGHaus} : \mathrm{Sing}.$

Show that there is a natural isomorphism $(|\Delta^n| \times |\Delta^m|)_C \cong |\Delta^n \times \Delta^m|$ in **CGHaus**.

- 6. Expressing X as $\operatorname{colim}_{\Delta/X} \Delta^n$, show that $|-| : \operatorname{Set}_{\Delta} \to \operatorname{CGHaus}$ preserves products.
- **Problem 4.** 1. Let $F, G : \mathcal{C} \to \mathcal{D}$ be functors between small categories and let $\eta : F \Rightarrow G$ be a natural transformation. Denote by $f, g : |\mathcal{N}(\mathcal{C})| \to |\mathcal{N}(\mathcal{D})|$ the maps induced by F and G respectively. Show that η induces a homotopy between f and g. (Hint: view η as a functor on $[1] \times \mathcal{C}$.)
 - 2. Show that an adjunction $F : \mathfrak{C} \leftrightarrow \mathfrak{D} : G$ induces a homotopy equivalence $|\mathcal{N}(\mathfrak{C})| \simeq |\mathcal{N}(\mathfrak{D})|.$
 - 3. Show that if \mathcal{C} has an initial or a final object, then $|N(\mathcal{C})|$ is contractible.