Exercise sheet 4

Problem 1. Let *I* be a small category, let \mathcal{C} be a locally small category, and let \mathcal{C} admit all small colimits. Let $F: I \to \mathcal{C}$ be a functor, and define

$$G: \mathfrak{C} \to \mathbf{Set}_I; \quad c \mapsto \mathfrak{C}(F(-), c).$$

- 1. Show that the left Kan extension $Y_!F$ of F along the Yoneda embedding is left adjoint to G. Give an explicit formula for $Y_!F$. (Hint: Compare with the proof of the |-|-Sing adjunction from class.)
- 2. Show that the nerve functor $N : \mathbf{Cat} \to \mathbf{Set}_{\Delta}$ has a left adjoint τ_1 .
- 3. Consider the functor $E : \Delta \to \mathbf{Grpd}$ which sends [n] to the groupoid E([n]) with objects $0, 1, \ldots n$ and a unique isomorphism between every pair of objects. Show that the functor

$$M : \mathbf{Grpd} \to \mathbf{Set}_{\Delta}; \quad \mathcal{C} \mapsto \mathbf{Grpd} \left(E(-), \mathcal{C} \right)$$

is naturally isomorphic to the restriction of N to **Grpd**. Show that M admits a left adjoint. Is there a relation between the left adjoint of M and τ_1 ?

Problem 2. Denote by **qCat** the full subcategory of \mathbf{Set}_{Δ} on the simplicial sets which have all *inner horn fillers* (i.e. all horn fillers for $\Lambda_i^n \to \Delta^n$ where $n \ge 2$ and 0 < i < n). Denote by **Kan** the full subcategory of \mathbf{Set}_{Δ} on the Kan complexes.

1. For $X \in \mathbf{qCat}$, define a relation on the edges of X as follows. Two edges $f, g \in X_1$ with $d_0f(f) = d_0(g) = y$ and $d_1(f) = d_1(g) = x$ are said to be homotopic $(f \sim g)$ if there is a 2-simplex $\sigma \in X_2$ such that $d_0(\sigma) = s_0(y)$, $d_1(\sigma) = g$, and $d_2(\sigma) = f$. Pictorially

is the 2-simplex σ . Show that ~ is an equivalence relation.

- 2. To each $X \in \mathbf{qCat}$ associate the category $\gamma(X)$ whose objects are the 0-simplices of X, and whose morphisms from x to y are equivalence classes of 1-simplicies under the equivalence relation from part 1. Show that this construction yields a well-defined functor $\gamma : \mathbf{qCat} \to \mathbf{Cat}$.
- 3. Show that γ is left adjoint to the nerve functor $N : \mathbf{Cat} \to \mathbf{qCat}$. In particular, note that for $X \in \mathbf{qCat}$ there is a natural isomorphism $\gamma(X) \cong \tau_1(X)$.
- 4. Prove that a simplicial set X is the nerve of a category if and only if has *unique* fillers for all inner horns.
- 5. Prove that if $X \in \mathbf{Kan}$, $\gamma(X)$ is a groupoid.

Problem 3. For each standard simplex $\Delta^n \in \mathbf{Set}_{\Delta}$, define $P\Delta^n$ to be the poset of non-degenerate simplices in Δ^n .

- 1. Show that the assignment $[n] \mapsto P\Delta^n$ defines a functor $P : \Delta \to \mathbf{Cat}$.
- 2. Define sd : $\Delta \to \operatorname{Set}_{\Delta}$ by $[n] \mapsto N(P\Delta^n)$. Use problem 1 to define an adjunction

 $\operatorname{sd}:\operatorname{\mathbf{Set}}_{\Delta}\leftrightarrow\operatorname{\mathbf{Set}}_{\Delta}:\operatorname{Ex}.$

And give formulas for Ex(X) and sd(X) for any $X \in \mathbf{Set}_{\Delta}$.

3. Show that, for any $X \in \mathbf{Set}_{\Delta}$, there is homeomorphism of topological spaces

$$|X| \to |\operatorname{sd} X|.$$

4. Define a map of posets $P\Delta^n \to [n]$ given by sending a simplex $\{i_1, i_2, \ldots, i_k\}$ to $i_k \in [n]$. Show that this construction defines a map of simplicial sets g_X : sd $X \to X$ for all $X \in \mathbf{Set}_{\Delta}$. Show that pulling back along the g_{Δ^n} defines a natural transformation $\mathrm{id}_{\mathbf{Set}_{\Delta}} \Rightarrow \mathrm{Ex}$.

Problem 4. Let **2Cat** denote the category of 2-categories and strict 2-functors between them. Define a 2-category \mathbb{A}^n as follows:

- \mathbb{A}^n has one object *i* for each $i \in \{0, 1, \dots, n\}$
- if $i \leq j$, there is a morphism $\phi_{i,j} : i \to j$, with $\phi_{i,i} = \mathrm{id}_i$
- For every sequence $i < i_1 < i_2 < \cdots < i_k < j$, there is a unique 2-morphism

$$\phi_{i_k,j} \circ \phi_{i_{k-1},i_k} \circ \cdots \circ \phi_{i_1,i_2} \circ \phi_{i,i_1} \Rightarrow \phi_{i,j}.$$

1. Show that the assignment

 $[n] \mapsto \mathbb{A}^n$

defines a functor $D: \Delta \to 2\mathbf{Cat}$.

2. Passing through the Yoneda embedding, D defines a functor

$$N_2: \mathbf{2Cat} \to \mathbf{Set}_\Delta; \quad \mathfrak{C} \mapsto \mathbf{2Cat}(D(-), \mathfrak{C}).$$

Given a 2-category \mathcal{C} , what data in \mathcal{C} are needed to specify a 1-simplex of $N_2(\mathcal{C})$? What about 2- and 3-simplices?