Exercise sheet 3

Problem 1. Recall that a groupoid is a category in which all morphisms are invertible. A (2,1)-category is a 2-category \mathcal{C} such that, for all $x, y \in \mathcal{C}$, the category $\mathcal{C}(x, y)$ is a groupoid.

1. Given a groupoid \mathcal{G} , let

$$\pi_0(\mathcal{G}) := \mathrm{ob}(\mathcal{G})/_{\sim}$$

be the set of equivalence classes of objects under the relation $x \sim y$ if there exists $g: x \to y$ in \mathcal{G} . Show that the assignment

$$\pi_0: \mathbf{Grpd} \to \mathbf{Set}; \quad \mathfrak{G} \mapsto \pi_0(\mathfrak{G})$$

on objects defines a functor.

- 2. Show that, given a (2,1)-category \mathcal{C} , there is a 1-category h \mathcal{C} such that
 - $ob(h\mathcal{C}) = ob(\mathcal{C})$
 - for all $x, y \in \mathcal{C}$, $h\mathcal{C}(x, y) = \pi_0(\mathcal{C}(x, y))$.

Problem 2. An *equalizer* in a category \mathcal{C} is a limit over a diagram of the form

$$x \Longrightarrow y \tag{1}$$

A product is a limit over a diagram $F: I \to \mathbb{C}$, where I has only identity morphisms, written as $\prod_{i \in I} F(i)$. A category \mathbb{C} is said to have equalizers (resp. have products) if any diagram of the form 1 (resp. any diagram $F: I \to \mathbb{C}$, where I has only identity morphisms) has a limit.

1. Let \mathcal{C} be a category with equalizers and small products. Let I be a small category and $F \in \mathcal{C}^{I}$. Show that the equalizer of

$$\prod_{i \in ob(I)} F(i) \Longrightarrow \prod_{i \in morph(I)} t(f),$$

where t(f) denotes the target of the morphism f, is a limit of F. Conclude that \mathcal{C} has small limits.

2. Show that the categories Set, Grp, Cat, and Vect_K have small limits and colimits.

Problem 3. Let $\varphi : I \to J$ be a fully faithful functor between small categories, and \mathcal{C} a category with all small limits. Show that the counit

$$\varphi^* \circ \varphi_* \Rightarrow \mathrm{id}_{\mathcal{C}^I}$$

is a natural isomorphism. Conclude that the right Kan extension functor φ_* is fully faithful.

Problem 4. Let \mathcal{C} be a small category and let \mathcal{D} be a category which has small colimits. Let $Y : \mathcal{C} \to \mathbf{Set}_{\mathcal{C}}, x \mapsto \mathcal{C}(-, x)$ denote the Yoneda embedding.

- 1. Show that $\mathbf{Set}_{\mathcal{C}}$ has small colimits, in particular, show that, given a diagram $F: I \to \mathbf{Set}_{\mathcal{C}}$ a cone under F is a colimit cone, if and only if, for every $x \in \mathcal{C}$, the induced cone obtained by evaluating at x is a colimit cone in **Set**.
- 2. Show that a functor $F : \mathbf{Set}_{\mathfrak{C}} \to \mathfrak{D}$ is a left Kan extension along Y of its restriction Y^*F if and only if F preserves colimits, i.e., F maps colimit cones in $\mathbf{Set}_{\mathfrak{C}}$ to colimit cones in \mathfrak{D} .
- 3. Deduce that the functor

$$Y^* : \operatorname{Fun}(\operatorname{\mathbf{Set}}_{\operatorname{\mathfrak{C}}}, \operatorname{\mathcal{D}}) \to \operatorname{Fun}(\operatorname{\mathfrak{C}}, \operatorname{\mathcal{D}})$$

restricts to an equivalence between the full subcategory of $\operatorname{Fun}(\operatorname{\mathbf{Set}}_{\mathfrak{C}}, \mathcal{D})$ given by the colimit preserving functors and the category $\operatorname{Fun}(\mathfrak{C}, \mathcal{D})$.

Problem 5. Let $f : H \to G$ be an arbitrary homomorphism between small groups and $\phi : BH \to BG$ the corresponding functor of groupoids. For a small field K and a representation $F : BH \to \operatorname{Vect}_K$, describe the right Kan extension ϕ_*F .