Exercise Sheet 12

Problem 1. Let $p : \mathcal{C} \to \mathcal{D}$ be a left fibration of ∞ -categories.

- (1) Let f and g be homotopic 1-simplices of f, show that $\chi(f)$ and $\chi(g)$ are homotopic 1-simplices of S. Conclude that there is a functor $h\mathcal{D} \to hS$ which sends $y \in \mathcal{D}$ to the fiber of p over y.
- (2) Suppose p is a Kan fibration. Show that, for every $f : x \to y$ in \mathcal{D} , there is an induced map $\chi(y) \to \chi(x)$ which is homotopy inverse to $\chi(f)$.

Problem 2. For a simplicial set X, define $\mathcal{M}_X := \mathfrak{C} [X^{\triangleleft} \coprod_X \Delta^0].$

(1) Let $x \in X^{\triangleleft}$ denote the cone point, and $y \in \Delta^0$ be the unique 0-simplex. Show that

$$\operatorname{St}_* : \operatorname{\mathbf{Set}}_\Delta \to \operatorname{\mathbf{Set}}_\Delta; \quad X \mapsto \operatorname{Map}_{\mathcal{M}_X}(x, y)$$

is a functor.

- (2) Show that St_* preserves colimits.
- (3) Conclude that there is a functor $Q_{\bullet} : \Delta \to \mathbf{Set}_{\Delta}$ such that St_* is the left Kan extension of Q_{\bullet} along the Yoneda embedding and that St_* has a right adjoint. (Hint: See Sheet 3, problem 4.) Give a description of Q_{\bullet} .

Problem 3. Let \mathcal{C} be a small category, and $F : \mathcal{C} \to \mathbf{Set}_{\Delta}$ a functor. We define a simplicial set $N_F(\mathcal{C})$ as follows. An *n*-simplex $\Delta^n \to N_F(\mathcal{C})$ consists of the data of:

- a functor $\sigma: [n] \to \mathcal{C}$
- for every nonempty $J \subset \{0, 1, ..., n\}$ with maximal element j, a morphism $\tau_J : \Delta^J \to F(\sigma(j))$ in \mathbf{Set}_{Δ} .

Subject to the condition that, for every nonempty $J \subset K \subset \{0, 1, ..., n\}$, with maximal elements j and k respectively, the diagram

$$\begin{array}{ccc} \Delta^J & \longrightarrow & F(\sigma(j)) \\ \downarrow & & \downarrow \\ \Delta^k & \longrightarrow & F(\sigma(k)) \end{array}$$

commutes.

- (1) Show that, for the constant functor $*: \mathcal{C} \to \mathbf{Set}_{\Delta}$ with value Δ^0 , we have $N_*(\mathcal{C}) \cong N(\mathcal{C})$.
- (2) Let $F, G: \mathcal{C} \to \mathbf{Set}_{\Delta}$ be two functors, and let $\eta: F \to G$ be a natural transformation. Show that η induces a map of simplicial sets $N_F(\mathcal{C}) \to N_G(\mathcal{C})$.
- (3) Show that if for all $c \in \mathbb{C}$ the morphism $\eta_c : F(c) \to G(c)$ is a Kan fibration then the induced morphism $N_F(\mathbb{C}) \to N_G(\mathbb{C})$ is a left fibration.
- (4) Deduce that if, for every $c \in \mathcal{C}$, the simplicial set F(c) is a Kan complex, then the induced map $N_F(\mathcal{C}) \to N_*(\mathcal{C}) = N(\mathcal{C})$ is a left fibration. Show that the functor $\mathcal{C} \to hS$ associated to this left fibration is isomorphic to the functor $\overline{F} : \mathcal{C} \to hS$ obtained from F by postcomposing with the localization functor from the category of Kan complexes to its homotopy category.

Remark. In the case where \mathcal{C} is a 1-category, the construction which sends $F : \mathcal{C} \to \mathbf{Set}_{\Delta}$ to $N_F(\mathcal{C}) \to N(\mathcal{C})$ is a model for the ∞ -categorical Grothendieck construction.