Exercise Sheet 11

Problem 1. Let \mathcal{D} be a small category.

1. Explicitly define a "contravariant" version of the Grothendieck construction which associates to a diagram

$$\chi: \mathcal{D}^{\mathrm{op}} \to \mathbf{Grp}$$

a functor $\pi: \mathfrak{C}^{\chi} \to \mathfrak{D}$ that exhibits \mathfrak{C}^{χ} as fibered in groupoids over \mathfrak{D} .

- 2. Express the contravariant Grothendieck construction in terms of the covariant Grothendieck construction from class.
- 3. Let $X : \mathcal{D}^{\mathrm{op}} \to \mathbf{Set}$ be a diagram of sets which we interpret as discrete groupoids. Show that there is an equivalence of categories between the contravariant Grothendieck construction of X and the slice category \mathcal{D}/X with respect to the Yoneda embedding $\mathcal{D} \to \mathbf{Set}_{\mathcal{D}}$.

Problem 2. Let $F : \mathcal{C} \to \mathcal{D}$ be a functor of small categories. A morphism $f : c \to c'$ in \mathcal{C} is called *F*-coCartesian if, for every object c'' of \mathcal{C} , the natural map

$$\mathfrak{C}(c',c'') \longrightarrow \mathfrak{C}(c,c'') \times_{\mathfrak{D}(F(c),F(c''))} \mathfrak{D}(F(c'),F(c''))$$

is bijective. The functor F is called a *coCartesian fibration* if, for every $x \in \mathbb{C}$, and every morphism $\overline{f}: F(x) \to y$ in \mathcal{D} , there exists an F-coCartesian morphism $f: x \to \tilde{y}$ such that $F(f) = \overline{f}$.

- 1. Show that F exhibits C as cofibered in groupoids over D if and only if every morphism in C is F-coCartesian.
- 2. Modify the construction of the functor $\pi : \underline{\text{Vect}} \to \text{Top}$ from class so that
 - (i) Its fiber over a space Y is isomorphic to the category of (say real) vector bundles over Y and a morphism is a morphism $E \to E'$ of bundles over Y.
 - (ii) The functor π^{op} is a coCartesian fibration (we say π is a Cartesian fibration).
- 3. Let \mathcal{D} be a small category and let

$$\chi: \mathcal{D} \to \mathbf{Cat}$$

be a diagram of categories. Introduce a category \mathcal{C}_{χ} with objects given by pairs (d, x) with $d \in \mathcal{D}$ and $x \in \chi(d)$ and a morphism from (d, x) to (d', x') given by a morphism $f : d \to d'$ together with a morphism $\alpha : \chi(f)(x) \to x'$ in $\chi(d')$. Show that the natural forgetful functor

$$F: \mathfrak{C}_{\chi} \longrightarrow \mathfrak{D}$$

is a coCartesian fibration.

- 4. Given a coCartesian fibration F, construct a pseudo-functor $\chi_F : \mathcal{D} \to \mathbf{Cat}$ which, in the case $F : \mathfrak{C}_{\chi} \to \mathcal{D}$ recovers χ up to natural isomorphism.
- 5. Provide a definition of a coCartesian fibration of ∞ -categories such that, when applied to the nerve of a functor of categories, it recovers the above notion.

Problem 3. Complete the arguments from class to show that, given a small category \mathcal{D} , there is an equivalence between suitably defined categories of functors $F : \mathcal{C} \to \mathcal{D}$ that exhibit \mathcal{C} as cofibered in groupoids over \mathcal{D} and pseudo-functors $\chi : \mathcal{D} \to \mathbf{Grp}$.