Exercise sheet 10

Problem 1. Let $\mathcal{C} \in \mathbf{Set}_{\Delta}$ be an ∞ -category.

- 1. Let $x \in \mathcal{C}$ be an initial object. Show that x is an initial object in $\tau_1(\mathcal{C})$.
- 2. Find a counterexample that shows that if x is an initial object in $\tau_1(\mathcal{C})$, x is not necessarily initial in \mathcal{C} .
- 3. For $y, z \in \mathbb{C}$, define $\operatorname{Map}_{\mathbb{C}}^{L}(y, z)$ to be the simplicial set whose *n*-simplices are n + 1-simplices $\sigma : \Delta^{n+1} \to \mathbb{C}$ such that $\sigma(0) = y$ and $d_0\sigma = z$. Show that if $x \in \mathbb{C}$ is an initial object, then for any $y \in \mathbb{C}$, $\operatorname{Map}_{\mathbb{C}}^{L}(x, y)$ is a contractible Kan complex.
- 4. Suppose C is a Kan complex. Show that C has an initial object if and only if C is contractible.

Problem 2. Recall that there is a equivalence of categories $O : \Delta \to \Delta$, which sends each ordered set $\{0 < 1 < \cdots < n\}$ to the ordered set $\{n < n - 1 < \cdots < 1 < 0\}$. Given a simplicial set $X : \Delta \to \mathbf{Set}$, define the *opposite simplicial set* X^{op} of X to be the simplicial set $X \circ A^{\mathrm{op}}$. Let C be an ∞ -category.

- 1. Let $X, Y \in \mathbf{Set}_{\Delta}$. Show that $(X \star Y)^{\mathrm{op}} \cong X^{\mathrm{op}} \star Y^{\mathrm{op}}$.
- 2. Suppose $K \in \mathbf{Set}_{\Delta}$ and $p: K \to \mathfrak{C}$. Show that $(\mathfrak{C}_{/p})^{\mathrm{op}} \cong (\mathfrak{C}^{\mathrm{op}})_{p/p}$
- 3. Suppose $K \in \mathbf{Set}_{\Delta}$ and $p: K \to \mathbb{C}$. Show that a colimit of p^{op} in \mathbb{C}^{op} is a limit of p in \mathbb{C} .

Problem 3. Let K be a simplicial set.

1. Show that

 $K \star - : \mathbf{Set}_{\Delta} \to (\mathbf{Set}_{\Delta})_{K/}, \quad X \mapsto (K \to K \star X)$

defines a functor. Show that this functor preserves colimits.

- 2. Show that $-\star K : \mathbf{Set}_{\Delta} \to (\mathbf{Set}_{\Delta})_{K/}$ likewise preserves colimits.
- 3. Conclude that the join \star , is uniquely determined by the properties (1) and (2), together with the fact that $\Delta^n \star \Delta^m \cong \Delta^{n+m+1}$. (Hint: See exercise sheet 3, problem 4.)

Problem 4. A *dg-category* \mathcal{D} over a small field k is defined to be a category enriched in chain complexes over k, i.e.:

- A set $ob(\mathcal{D})$ of objects.
- For every $x, y \in ob(\mathcal{D})$, a chain complex $\mathcal{D}(x, y)_{\bullet}$ over k.

• For every triple of objects $x, y, z \in ob(\mathcal{D})$, a composition morphism

$$\circ: \mathcal{D}(x,y)_{\bullet} \otimes_k \mathcal{D}(y,z)_{\bullet} \to \mathcal{D}(x,z)$$

(i.e. a collection of bilinear maps $\circ : \mathcal{D}(x, y)_n \times \mathcal{D}(y, z)_m \to \mathcal{D}(x, z)_{n+m}$ such that $d(f \circ g) = df \circ g + (-1)^m f \circ dg$, such that $(f \circ g) \circ h = f \circ (g \circ h)$ for all composable morphisms.

• For each $x \in ob(\mathcal{D})$ an element $id_x \in \mathcal{D}(x, x)_0$ such that for all $f \in \mathcal{D}(y, x)_n$ and $g \in \mathcal{D}(x, z)_m$ $id_x \circ f = f$ and $g \circ id_x = g$.

Given a dg-category \mathcal{D} , define the *dg-nerve* of \mathcal{D} to be the simplicial set $N_{dg}(\mathcal{D})$ whose *n*-simplices given by

- A set $\{x_i\}_{0 \le i \le n}$ of objects of \mathcal{D} .
- For each ordered subset $I = \{i_{-} < i_{m} < i_{m-1} < \cdots < i_{1} < i_{+}\} \subset [n]$ with $m \ge 0$, an element $f_{I} \in \mathcal{D}(x_{i_{-}}, x_{i_{+}})_{m}$, such that

$$df_I = \sum_{1 \le j \le m} (-1)^j \left(f_{I \setminus \{i_j\}} - f_{i_j < i_{j-1} < \dots < i_+} \circ f_{i_- < i_m < \dots < i_j} \right)$$

1. Let \mathcal{D} be a dg-category. Given a map $\alpha : [m] \to [m]$ in Δ and $(\{x_i\}_{0 \le i \le n}, \{f_I\}) \in N_{dg}(\mathcal{D})_n$, define $\alpha^*(\{x_i\}_{0 \le i \le n}, \{f_I\})$ to be the object $(\{x_{\alpha(j)}\}, \{g_J\})$ where

$$g_J = \begin{cases} f_{\alpha(J)} & \alpha|_J \text{ injective} \\ \mathrm{id}_{x_i} & J = \{j, j'\} \text{ with } \alpha(j) = \alpha(j') = i \\ 0 & \text{otherwise.} \end{cases}$$

Show that the maps α^* equip $N_{dg}(\mathcal{D})$ with the structure of a simplicial set.

2. Show that $N_{dq}(\mathcal{D})$ is an ∞ -category.