Exercise sheet 1

Problem 1. By construction, categories that arise from posets have the following property: between any given pair of objects, there is at most one morphism. Does every category with this property arise from a poset? What additional properties are needed to characterize those categories that arise from posets?

Problem 2. Let $Y \subset \mathbb{R}^3$ be a simplicial complex, and define $\Delta(Y)$ to be the poset of subsimplices of Y ordered by inclusion.

- 1. For n = 0, 1, 2, 3, draw the category $\Delta(Y)$, where Y is the standard *n*-simplex in \mathbb{R}^3 .
- 2. Draw the category $\Delta(Y)$ when Y is your favorite simplicial complex in \mathbb{R}^3 .

Problem 3. Show that, as a consequence of the axiomatic properties from Definition 1.1.8 in the lecture notes, any universe \mathcal{U} has the following further properties:

- 1. If $x \in \mathcal{U}$ then $x \subset \mathcal{U}$.
- 2. If $y \in \mathcal{U}$ and $x \subset y$ then $x \in \mathcal{U}$.
- 3. $\emptyset \in \mathfrak{U}$.
- 4. If $x, y \in U$ then $(x, y) := \{x, \{x, y\}\} \in U$.
- 5. If $x, y \in \mathcal{U}$ then $x \cup y$ and $x \times y \in \mathcal{U}$.
- 6. If $x, y \in \mathcal{U}$ then $\operatorname{Map}(x, y) \in \mathcal{U}$.
- 7. If $I \in \mathcal{U}$ and $\{x_i\}_{i \in I}$ is a family of elements $x_i \in \mathcal{U}$ then $\prod_{i \in I} x_i$, $\prod_{i \in I} x_i$, and $\bigcap_{i \in I} x_i$ are elements of \mathcal{U} .
- 8. If $x \in \mathcal{U}$ then $x \cup \{x\} \in \mathcal{U}$.
- 9. $\mathbb{N} \subset \mathcal{U}$.

Problem 4. We make the following recursive definition: A set X is called *hereditarily* finite if X is finite and all subsets of X are hereditarily finite. More explicitly, define $V_0 = \emptyset, V_1 = \mathcal{P}(V_0), V_2 = \mathcal{P}(V_1), \ldots$ so that $V_0 \subset V_1 \subset V_2 \ldots$ and set

$$V_{\omega} := \bigcup_{k \ge 0} V_k.$$

Then the elements of the set V_{ω} are precisely the hereditarily finite sets. Show that V_{ω} is a universe.

Problem 5. Let \mathcal{U} be an infinite universe. Show that $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$, and \mathbb{C} are elements of \mathcal{U} .