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Abstract. We discuss the relation between pluriharmonic maps and solutions
of the tt*-equations. The correspondence is obtained without assuming the
integrability of the almost complex structure of the base manifold. We present
examples which stem from special Kähler and nearly Kähler geometry. This
paper is based on a lecture given by the first author on the Workshop ‘From
tQFT to tt* and integrability’ (Augsburg, 2007).

Introduction

The tt*-equations were proposed by Cecotti and Vafa in 1991 [CV] as a descrip-
tion of the geometric structure on the moduli space of 2D N = 2 supersymmetric
QFTs. It was discovered by Dubrovin in 1992 [D] that solutions of the tt*-equations
correspond to pluriharmonic maps from a complex manifold M of dimension n into
GL(n, R)/O(n). This correspondence has been further developed by Simpson [Si]
and the second author [S1].

In these notes we will present a general version of the tt*-equations purely in terms
of differential geometry, explain the relation with pluriharmonic maps and discuss
some classes of solutions. A proof of the above correspondence which does not as-
sume the integrability of the almost complex structure of the base manifold is given.

1. tt*-bundles

Definition 1.1. A tt*-bundle (E,D, S) over an almost complex manifold
(M,J) is a real vector bundle E → M endowed with a connection D and a section
S ∈ Γ(T ∗M ⊗ EndE), which satisfy the tt*-equation

Rθ = 0,

for all θ ∈ R, where Rθ is the curvature of the connection

Dθ
X := DX + cos θ SX + sin θ SJX , X ∈ Γ(TM).

A metric/symplectic tt*-bundle (E,D, S, β) is a tt*-bundle (E,D, S) endowed with
a parallel non-degenerate symmetric/skew-symmetric bilinear form β on the fibers
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of E such that SX is β-symmetric for all X ∈ Γ(TM). It is called unimodular if
trSX = 0 for all X ∈ Γ(TM).

Remarks 1.2. 1) Any oriented unimodular metric/symplectic tt*-bundle car-
ries a canonical volume element1 ν ∈ Γ(ΛrE∗), r = rkE, which is Dθ-parallel for
all θ ∈ R.
2) The tt*-equation Rθ = 0 for all θ ∈ R is equivalent to the following system
(1.1-1.3):

dDS = dDSJ = 0, where(1.1)

(dDS)(X, Y ) = DX(SY )−DY (SX)− S[X,Y ],

[SX , SY ] = [SJX , SJY ], ∀X, Y ∈ Γ(TM),(1.2)

RD(X, Y ) + [SX , SY ] = 0, ∀X, Y ∈ Γ(TM).(1.3)

2. Pluriharmonic maps

Definition 2.1. A smooth map f : M → N from a complex manifold M
to a pseudo-Riemannian manifold N is called pluriharmonic if its restriction to any
complex curve is harmonic.

This is equivalent to the differential equation

(2.1) (∇df)1,1 = 0,

where ∇ is the connection on T ∗M ⊗ f∗TN induced by a torsion-free complex
connection D on M, i.e. a torsion-free connection D satisfying DJ = 0, and the
Levi-Civita connection on N . More generally, any connection D on M such that D
is complex and (TD)1,1 = 0 leads to the same equation (2.1). Here, and in the fol-
lowing, TD stands for the torsion of the connection D. Such connections D exist on
any almost complex manifold (M,J) and we can define the notion of pluriharmonic-
ity for maps with an almost complex source manifold by equation (2.1). We point
out that a pluriharmonic map f : M → N is harmonic for any almost Hermitian
metric g on M such that ∇g −D is trace-free, where ∇g is the Levi-Civita connec-
tion of g. This follows from trg∇gdf = trg∇df = trg(∇df)1,1 = 0. In particular,
any pluriharmonic map from a pseudo-Kähler manifold to a pseudo-Riemannian
manifold is harmonic, since in that case one can choose D = ∇g. It is also clear
that holomorphic maps between pseudo-Kähler manifolds are pluriharmonic. More
generally, Rawnsley [Ra] has shown that a holomorphic map between almost Her-
mitian manifolds is pluriharmonic if the fundamental 2-forms of the domain and
target manifolds satisfy (dω)1,2 = 0.

3. Correspondence between metric/symplectic tt*-bundles and
pluriharmonic maps

In [D] Dubrovin developed a correspondence between certain metric tt*-bundles
(E,D, S, g) with a positive-definite metric g over a complex manifold of complex di-
mension n and pluriharmonic maps M → GL(n, R)/O(n). In his case E = (T 1,0M)ρ

consists of the real points of the holomorphic tangent bundle with respect to a real
structure ρ. Independently, Simpson [Si] established a correspondence between
Higgs bundles of rank r on M endowed with a harmonic metric and harmonic maps

1Notice that in the symplectic case the bundle is automatically oriented. The volume element

is ν = βr

r!
.
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M → GL(r, C)/U(r). These results were generalised by the second author [S1], who
proved the next theorem under the assumption that the almost complex structure
on M is integrable. The result of Simpson, for instance, can be recovered from the
next Theorem using the totally geodesic inclusion

GL(r, C)
U(r)

⊂ GL(2r, R)
O(2r)

as was shown in [S2]. The next theorem is proven in Section 5. In the following,
Symp,q(Rr) stands for the cone of symmetric r × r-matrices of signature (p, q),
p + q = r. Similarly, for even r the symbol Skewreg(Rr) stands for the cone of
invertible skew-symmetric r × r-matrices.

Theorem 3.1. Let (E,D, S, β) be a metric/symplectic tt*-bundle over a sim-
ply connected almost complex manifold (M,J). For any θ ∈ R there exists a Dθ-
parallel frame (eθ

1, . . . , e
θ
r) of E and the correspondence

x 7→ fθ(x) := (β(eθ
i (x), eθ

j (x)))

defines a pluriharmonic map

fθ : M →

{
Symp,q(Rr) ∼= GL(r, R)/O(p, q),
Skewreg(Rr) ∼= GL(r, R)/Sp(r, R),

if β is

{
symmetric of signature (p, q), p + q = r,

skew-symmetric, respectively.

The target manifold is a pseudo-Riemannian symmetric space with the metric in-
duced from the (bi-invariant) trace form, i.e. 〈A,B〉 = tr (A B), on gl(r, R). If
(E,D, S, β) is oriented and unimodular, fθ takes values in the irreducible symmet-
ric space {

SL(r, R)/SO(p, q),
SL(r, R)/Sp(r, R), respectively.

In all cases the pluriharmonic map f = fθ has the following additional property:

(3.1) RN (df T 1,0M,df T 1,0M) = 0,

where RN is the curvature tensor of the symmetric target manifold

(3.2) N =

{
GL(r, R)/O(p, q), SL(r, R)/SO(p, q),
GL(r, R)/Sp(r, R), SL(r, R)/Sp(r, R), respectively.

Conversely, any pluriharmonic map f : M → N, into one of the symmetric target
manifolds (3.2) which has the property (3.1) and satisfies

(3.3) ∂̄f(T (Z,W )) = df(T (Z,W )0,1) = 0

for all Z,W ∈ T 1,0M, is obtained from a metric/symplectic tt*-bundle by the above
construction.

The property (3.1) is automatic if N is Riemannian, since there it holds

0 = 〈RN (Z,W )W̄ , Z̄〉 = −‖[Z,W ]‖2 ⇒ [Z,W ] = 0, ∀Z,W ∈ T 1,0N.

We remark that, in general, RN (df T 1,0M,df T 1,0M) ⊂ TN is not necessarily zero
but only isotropic.
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4. Solutions

4.1. Special complex and special Kähler manifolds.

Definition 4.1. A special complex manifold (M,J,∇) is a complex manifold
endowed with a flat torsion-free connection ∇, such that

(4.1) (∇XJ)Y = (∇Y J)X, ∀X, Y ∈ Γ(TM).

A special Kähler manifold (M,J,∇, ω) is a special complex manifold endowed with
a J-invariant ∇-parallel symplectic structure ω. The (pseudo-)Kähler metric g =
ω(J ·, ·) is called the special Kähler metric of (M,J,∇, ω).

We remark that the integrability of J follows from the properties of ∇. Hertling
has observed in section 3.3 of [He] that a special complex manifold is the same as
a variation of Hodge structure (VHS) on TM ⊗C and a special Kähler manifold is
the same as a polarized such VHS.

Let Ω be the canonical symplectic form on T ∗Cn = C2n. We recall that a
holomorphic immersion φ from a complex manifold of dimension n into T ∗Cn is
called Lagrangian if φ∗Ω = 0. Define the sesquilinear form γ := iΩ(·, ·̄). Then φ is
called non-degenerate if φ∗γ is non-degenerate.

Theorem 4.2. [ACD] Any simply connected special complex (resp. spe-
cial Kähler) manifold M admits a holomorphic immersion (resp. a non-degenerate
Lagrangian immersion) φ : M → T ∗Cn, n = dimC M, inducing the special geo-
metric structures on M. The immersion is unique up to an affine transformation
of T ∗Cn = C2n with linear part in GL(2n, R) (resp. in Sp(2n, R)).

Any special complex manifold (M,J,∇) has a canonical torsion-free complex
connection D. D is determined by S := ∇−D = 1

2J∇J. In fact, from T∇ = 0 and
the symmetry of S it follows TD = 0, and DJ = 0 is obtained from the following
calculation: DJ = ∇J − [S, J ] = ∇J − 2SJ = ∇J + 2JS = ∇J −∇J = 0. When
(M,J,∇, g) is a special Kähler manifold then D is the Levi-Civita connection of
the metric g. In fact, from the skew-symmetry of J and ∇J it follows that SX is
ω-skew-symmetric. This implies Dω = 0 and finally Dg = 0.

Definition 4.3. A tt*-bundle (TM,D, S) over a complex manifold M is
called special if for all θ the connection Dθ is torsion-free and special, i.e. DθJ is
symmetric.

The tt*-bundle (TM,D, S) is special if and only if S and SJ are symmetric,
TD = 0 and DJ = 0.

Theorem 4.4. [CS1]
(i) There exists a one-to-one correspondence

Φ :
{

special complex manifolds
(M,J,∇)

}
→

 special tt*-bundles (TM,D, S)
over complex manifolds (M,J)

satisfying a), b)


a) {SX , J} = 0, ∀X ∈ TM,
b) DJ = 0,

where Φ is given by

Φ(M,J,∇) = (TM,D := ∇− S, S =
1
2
J∇J)
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and its inverse is given by

Φ−1(TM,D, S) = (M,J,∇ := D + S).

(ii) This correspondence Φ induces a one-to-one correspondence Φ : special Kähler
manifolds

(M,J,∇, g)

 →

 special metric tt*-bundles (TM,D, S, g)
over pseudo-Hermitian manifolds (M,J, g)

satisfying a), b)

 .

Notice that the metric tt*-bundle associated to a special Kähler manifold is
automatically oriented by the complex structure J and unimodular, since ∇ω =
Dω = 0 implies tr SX = 0.

Corollary 4.5. Let (M,J,∇, g) be a special Kähler manifold. Any ∇-parallel
frame s = (s1, . . . , sn) of volume 1 defines a pluriharmonic map

G(s) = (g(si, sj)) : M → Sym1
p,q(R2n) ∼= SL(2n, R)/SO(p, q),

where (p, q) = (2k, 2l) is the signature of the metric g, 2n = p + q = dimR M ,
and Sym1

p,q(R2n) ⊂ Symp,q(R2n) stands for the subset consisting of matrices of
determinant 1.

Let us now describe the pluriharmonic map G(s) in terms of the holomorphic
data of the special Kähler geometry.

Let (M,J,∇, g) be a simply connected special Kähler manifold of complex
dimension n = k + l, where g is of signature (2k, 2l). According to Theorem 4.2 we
have a non-degenerate holomorphic Lagrangian immersion

Φ : M → V = T ∗Cn = C2n,

which is unique up to the action of the group AffSp(R2n)(C2n). This immersion
induces a map

L : M → Grk,l
0 (C2n),

p 7→ dφp TpM ⊂ V,

into the Grassmannian of complex Lagrangian subspaces W ⊂ V of signature (k, l),
i.e. such that γ|W is a Hermitian form of signature (k, l).
We call L the dual Gauß map. It is in fact dual to the Gauß map

L⊥ : M → Grl,k
0 (C2n),

p 7→ L(p)⊥ = L(p) ∼=
Ω

L(p)∗.

The map L is holomorphic, whereas L⊥ is anti-holomorphic.
The target of the dual Gauß map L is a pseudo-Hermitian symmetric space;

Grk,l
0 (C2n) ∼= Sp(R2n)/U(k, l).

Theorem 4.6. [CS1] Let (TM,D, S, g) be the metric tt*-bundle associated
to a simply connected special Kähler manifold (M,J,∇, g). Then there exists a ∇-
parallel frame s such that the pluriharmonic map

G(s) = (g(si, sj)) : M → SL(2n, R)/SO(2k, 2l),

takes values in the totally geodesic submanifold

Sp(R2n)/U(k, l) ⊂ SL(2n, R)/SO(2k, 2l)
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and coincides with the dual Gauß map L.

4.2. Nearly Kähler manifolds.

Definition 4.7. A nearly Kähler manifold (M,J, g) is an almost complex
manifold (M,J) endowed with a pseudo-Riemannian metric g such that

i) J is skew-symmetric with respect to g and
ii) (DXJ)Y = −(DY J)X, ∀X, Y ∈ TM, where D is the Levi-Civita connec-

tion of g.

By a result of Friedrich and Ivanov [FI] any nearly Kähler manifold has a unique
connection ∇ with totally skew-symmetric torsion satisfying ∇g = 0, ∇J = 0 and
T∇ = −2η with η = 1

2JDJ. The 3-form η satisfies {ηX , J} = 0 for all X ∈ TM .
It was observed by the second author [S3] that the bundle (TM,D,D −∇ =

η, ω) is a symplectic tt*-bundle provided that g (i.e. D = ∇+ η) is flat.
In joint work [CS2] the present authors have classified flat nearly Kähler

manifolds: Any such manifold is locally the product of a flat pseudo-Kähler fac-
tor of maximal dimension and a strict nearly Kähler manifold of split signature
(2m, 2m) with m ≥ 3. The geometry of the second factor is encoded in a three-
form ζ ∈ Λ3(Cm)∗; see Theorem 4.8 below. The first non-trivial example occurs in
dimR M = 2n = 4m = 12.

Any such strict nearly Kähler manifold comes with a non-trivial pluriharmonic
map [S3] (in fact, J-holomorphic map):

M → SO(2m, 2m)/U(m,m) ⊂
tot. geod.

SL(4m, R)/Sp(R4m)

from the almost complex manifold (M,J) into the pseudo-Hermitian symmetric
space SO(2m, 2m)/U(m,m).

Let Λ3
reg(Cm)∗ ⊂ Λ3(Cm)∗ denote the open subset of regular forms, that is,

ζ ∈ Λ3(Cm)∗ such that

span{ζ(X, Y, ·)|X, Y ∈ Cm} = (Cm)∗.

Theorem 4.8. [CS2] There exists a one-to-one correspondence between
GL(m, C)-orbits on Λ3

reg(Cm)∗ ⊂ Λ3(Cm)∗ and isomorphism classes of complete
flat simply connected nearly Kähler manifolds of real dimension 4m ≥ 12 and with-
out pseudo-Kähler de Rham factor.

In dimension 12, 16, 20 (i.e. m = 3, 4, 5) one has Λ3
reg(Cm)∗/GL(m, C) = {pt}. In

dimension 24 (i.e. m = 6) one has the inclusion Λ3
stab(C6)∗ ⊂ Λ3

reg(C6)∗, where
Λ3

stab(C6)∗ = {φ ∈ Λ3(C6)∗ |Q(φ) 6= 0} are the stable three-forms in the sense
of Hitchin [Hi]. Here Q is the quartic SL(6, C)-invariant. Λ3

stab(C6)∗ is an open
GL(6, C)-orbit. The complement of Λ3

stab(C6)∗ ⊂ Λ3
reg(C6)∗, is also an orbit. For

the discussion of the orbit space we refer to [Re]. The real classification is given in
appendix A of [B].

5. Proof of Theorem 3.1

5.1. Integrability conditions for maps into symmetric spaces. Let N =
G/K be a pseudo-Riemannian symmetric space and ∇N be its Levi-Civita connec-
tion. Let M be a second smooth manifold and f : M → N be a smooth map.
We put F = df : TM → B = f∗TN . The vector bundle B is endowed with the
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pull-back connection ∇̂ = f∗∇N . The data (B, ∇̂, F ) satisfy the following structure
equations:

∇̂V F (W )− ∇̂W F (V )− F ([V,W ]) = 0,(5.1)

R̂(V,W )ζ = ∇̂V ∇̂W ζ − ∇̂W ∇̂V ζ − ∇̂[V,W ]ζ = RN (FV, FW )ζ,(5.2)

for any vector fields V,W on M and any section ζ of B.

Conversely, let B → M be an abstract vector bundle which carries a connection
∇̂ and let N be a pseudo-Riemannian symmetric space. We say that B has the
algebraic structure of N if it is endowed with a parallel bundle homomorphism
RB : Λ2B → EndB and a linear isomorphism Φo : Bpo → ToN for some fixed
po ∈ M and o ∈ N, which maps RB

po
to RN

o . Then one has the following integration
result for a bundle homomorphism F : TM → B, which is a special case of a result
proven by Eschenburg and Tribuzy.

Theorem 5.1. [ET1] Let M be a simply connected manifold and B be a
vector bundle over M endowed with a connection ∇̂ having the algebraic structure
of N and F : TM → B a vector bundle homomorphism satisfying the integrability
conditions (5.1) and

(5.3) R̂(V,W )ζ = ∇̂V ∇̂W ζ − ∇̂W ∇̂V ζ − ∇̂[V,W ]ζ = RB(FV, FW )ζ,

cf. (5.2). Then there exists a smooth map f : M → N and a parallel bundle
isomorphism Φ : B → f∗TN with the initial value Φ|Bpo

= Φo mapping RB
p to

RN
f(p) for all p ∈ M and such that df = Φ ◦ F.

5.2. Relation between associated families and pluriharmonic maps.
Now we consider an almost complex manifold (M,J). We put Rθ := exp θJ ∈
Γ(EndTM). An associated family for f is a family of maps fθ : M → N, θ ∈ R,
such that

(5.4) Ψθ ◦ dfθ = df ◦ Rθ, ∀θ ∈ R,

for some bundle isomorphism Ψθ : f∗θ TN → f∗TN, θ ∈ R, which is parallel with
respect to ∇N in the sense that

Ψθ ◦ (f∗θ∇N ) = (f∗∇N ) ◦Ψθ.

Remarks 5.2. 1) Notice that we are not making any assumption on the de-
pendence of the associated family on the parameter θ. We can always modify the
family θ such that f0 = f .
2) One observes that each member fθ0 of an associated family fθ itself admits an
associated family gθ = fθ0+θ.
3) Note that given an associated family fθ one can always suppose that fθ(po) = o
by left-multiplication Lg(θ) with an element g(θ) ∈ G, satisfying Lg(θ) fθ(po) = o.

The map Ψθ is then replaced by Ψθ ◦ dL−1
g(θ). One can then choose the initial value

Ψθ|p0 = Id : (f∗θ TN)p0 = ToN → (f∗TN)p0 = ToN for all θ ∈ R.

The next theorem generalizes a result of Eschenburg and Tribuzy [ET2]:

Theorem 5.3. Let (M,J) be an almost complex manifold endowed with a
complex connection ∇ such that the (1, 1)-part of its torsion T vanishes and let N
be a pseudo-Riemannian symmetric space. A smooth map f : M → N admits an
associated family fθ if and only if it is pluriharmonic and satisfies (3.1) and (3.3).
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Proof. Let f : M → N be a pluriharmonic map which satisfies (3.1), (3.3).
To show that f admits an associated family we put B = f∗TN , ∇̂ = f∗∇N , F = df ,
Fθ := F ◦ Rθ : TM → B. We check that Fθ satisfies the integrability conditions
of Theorem 5.1. First we observe that B has the algebraic structure of N . In fact,
without loss of generality we can assume that f(po) = o for some point po ∈ M .
Then we define Φo : Bpo = (f∗TN)po → ToN as the canonical identification and
RB : Λ2B → EndB as the map which corresponds to RN : Λ2TN → EndTN
under the canonical identification Bp

∼= Tf(p)N .
Next we analyse (5.1) for the family Fθ:

∇̂V Fθ(W )− ∇̂W Fθ(V )− Fθ([V,W ])

= ∇̂V F (RθW )− ∇̂W F (RθV )− F (Rθ[V,W ])

= e+iθ
[
∇̂V F (W 1,0)− ∇̂W F (V 1,0)− F ([V,W ]1,0)

]
+ e−iθ

[
∇̂V F (W 0,1)− ∇̂W F (V 0,1)− F ([V,W ]0,1)

]
= e+iθ

[
(∇̂V F )W 1,0 − (∇̂W F )V 1,0 + F

(
T (V,W )1,0

)]
+ e−iθ

[
(∇̂V F )W 0,1 − (∇̂W F )V 0,1 + F

(
T (V,W )0,1

)]
.

For the last equality we have extended the connection ∇̂ on B to a connection on
T ∗M ⊗B using the connection ∇ on M .

If V,W have different type the pluriharmonic map equation, i.e. (∇̂F )1,1 = 0,
and the condition T 1,1 = 0 yield that this expression vanishes identically.

If V,W have type (1, 0), one obtains the following expression:

e+iθ
[
(∇̂V F )W 1,0 − (∇̂W F )V 1,0 + F

(
T (V,W )1,0

)]
+ e−iθF

(
T (V,W )0,1

)
= −e+iθF

(
T (V,W )0,1

)
+ e−iθF

(
T (V,W )0,1

)
= −2i sin(θ) F

(
T (V,W )0,1

)
,

where we used the integrability condition (5.1) for F . This vanishes for all θ if and
only if F

(
T (V,W )0,1

)
= 0.

If V,W have type (0, 1) it follows by the same line of arguments that condition
(5.1) holds for all θ if and only if F

(
T (V,W )1,0

)
= 0. The last equation is equiva-

lent to (3.3) by complex conjugation.

Now we check equation (5.3) for the family Fθ. If V,W have different type then
the two factors e±iθ on the right-hand side cancel each other and the left-hand side
does not depend on θ. Therefore, the equation (5.3) for the family Fθ follows from
that for F if V,W have different type.
Let now V,W be of the same type. From (3.1) and (5.3) for F we have

R̂(V,W ) = RN (FV, FW ) = 0

and, hence,

RN (FθV, FθW ) = e±2iθRN (FV, FW ) = 0,
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which implies R̂(V,W ) = RN (FθV, FθW ) = 0 for all V,W of same type. This shows
the integrability condition (5.3) for Fθ.

Now Theorem 5.1 ensures the existence of a map fθ : M → N with dfθ =
Φθ ◦Fθ where Φθ is a parallel isomorphism which identifies B = f∗TN and f∗θ TN.

This shows that f admits an associated family with Ψθ = Φ−1
θ .

Conversely, consider a smooth map f : M → N which admits an associated
family fθ. As above, we put Fθ = F ◦Rθ. We use the integrability constraint (5.1)
for F = df and the vanishing of T (V,W ) for V ∈ Γ(T 1,0M) and W ∈ Γ(T 0,1M) to
get that

(5.5) 0 = ∇̂V F (W )− ∇̂W F (V )− F ([V,W ]) = (∇̂W F )V − (∇̂W F )V.

Similarly, since Ψθ is parallel the integrability constraint (5.1) for dfθ yields

(5.6) 0 = Ψθ[f∗θ∇N
V dfθ(W )−f∗θ∇N

W dfθ(V )−dfθ([V,W ])] = (∇̂W Fθ)V −(∇̂W Fθ)V.

Using the fact that Rθ is parallel we obtain (∇̂V Fθ)W = e−iθ(∇̂V F )W and
(∇̂W Fθ)V = eiθ(∇̂W F )V for all θ. In view of (5.5) and (5.6), this is possible only
if (∇̂V F )W = (∇̂W F )V = 0. This means that the map f is pluriharmonic. �

In particular, we learn from Theorem 5.3 that, for maps from an almost com-
plex manifold, the pluriharmonic map equation is weaker than the existence of an
associated family. Therefore we introduce the following notion.

Definition 5.4. A map f from an almost complex manifold M into a pseudo-
Riemannian manifold N is called S1-pluriharmonic if it admits an associated family;
see (5.4).

Consider a map

f : M → N :=

{
GL(r, R)/O(p, q), p + q = r,

GL(r, R)/Sp(r, R).

Denote the map which is induced by f by

f̂ : M → N̂ :=

{
Symp,q(Rr),
Skewreg(Rr).

We shall identify the tangent space Tp̂N̂ at p̂ ∈ N̂ with the (ambient) vector space
of symmetric/skew-symmetric matrices in gl(r, R). The tangent space TpN of N

at a point p ∈ N which corresponds to p̂ ∈ N̂ will be identified with the space of
p̂-symmetric matrices in gl(r, R).

A careful analysis shows that there it holds

(5.7) −2df = f̂−1df̂ .

The previous theorem reduces Theorem 3.1 to the following statement:

Theorem 5.5. Let (E,D, S, β) be a metric/symplectic tt*-bundle over a sim-
ply connected almost complex manifold (M,J). For any θ ∈ R there exists a Dθ-
parallel frame (eθ

1, . . . , e
θ
r) of E and the correspondence

x 7→ f̂θ(x) := (β(eθ
i (x), eθ

j (x))) ∈ N̂
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defines an S1-pluriharmonic map

fθ : M → N =

{
GL(r, R)/O(p, q),
GL(r, R)/Sp(r, R),

if β is

{
symmetric of signature (p, q), p + q = r,

skew-symmetric, respectively.

If (E,D, S, β) is oriented and unimodular fθ takes values in the irreducible sym-
metric space {

SL(r, R)/SO(p, q),
SL(r, R)/Sp(r, R), respectively.

Conversely, any S1-pluriharmonic map f : M → N, with

N =

{
GL(r, R)/O(p, q), SL(r, R)/SO(p, q),
GL(r, R)/Sp(r, R), SL(r, R)/Sp(r, R), respectively,

is obtained from a metric/symplectic tt*-bundle by the above construction.

Proof. Let us consider a metric/symplectic tt*-bundle (E,D, S, β). The con-
nection Dθ = D + Sθ, Sθ

X := cos(θ)SX + sin(θ)SJX , is flat and M is simply
connected. Therefore, there exists a Dθ-parallel frame eθ := (eθ

1, . . . , e
θ
r). Since Sθ

X

is symmetric with respect to β and Dβ = 0, there it follows

Xβ(eθ
i , e

θ
j ) = β(DXeθ

i , e
θ
j ) + β(eθ

i , DXeθ
j )

= −β(Sθ
Xeθ

i , e
θ
j )− β(eθ

i , S
θ
Xeθ

j )

= −2β(Sθ
Xeθ

i , e
θ
j ).

Let Ŝθ = e−1
θ ◦ Sθ ◦ eθ and f̂θ : M → N̂ be the matrix representation of Sθ and β

in the frame eθ : M × Rr → E. Denote by fθ : M → N the map induced by f̂θ;
then the above equation reads

−2dfθ
(5.7)
= (f̂θ)−1df̂θ = −2Ŝθ

or, equivalently,

(5.8) dfθ = e−1
θ ◦ Sθ ◦ eθ.

This shows for X ∈ Γ(TM)

dfθ(X)
(5.8)
= e−1

θ ◦ Sθ
X ◦ eθ = e−1

θ ◦ SRθX ◦ eθ

(5.8)
= (e−1

θ e0) ◦ df0(RθX) ◦ (e−1
0 eθ)

= Ad−1
αθ

◦ df0(RθX) = Ψ−1
θ ◦ df0(RθX),

where αθ = e−1
θ e0 is the frame change from eθ to e0 and Ψθ = Adαθ

, which is
parallel with respect to the Levi-Civita connection on N. In other words fθ is an
associated family for f0 and the maps fθ are S1-pluriharmonic.

Conversely, let us consider an associated family fθ : M → N for a plurihar-
monic map f = f0 (see Remarks 5.2) and denote the induced maps by f̂θ : M → N̂ .
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We define a metric/symplectic form β on the vector bundle E = M × Rr by
β(·, ·) = 〈f̂0·, ·〉 and set Sθ = df ◦Rθ and S = S0. Here 〈·, ·〉 stands for the standard
scalar product on Rr. Denote by ∂ the canonical flat connection on E and define
the connection D on E by

DXs := ∂Xs− SXs, s ∈ Γ(E).

A direct calculation using equation (5.7) and the identification of TpN with the
vector space of p̂-symmetric matrices yield that Dβ = 0 and that S is β-symmetric
(see Lemma 1 [S1]).

Since f is S1-pluriharmonic we have

Fθ := dfθ = Ψ−1
θ ◦ df ◦ Rθ,

where Ψθ is parallel. Recall the first integrability condition (5.1) for the family fθ :

∇̂θ
V Fθ(W )− ∇̂θ

W Fθ(V )− Fθ([V,W ]) = 0, ∇̂θ := f∗θ∇N .

Evaluating this equation for θ = 0, π/2 we obtain

0 = ∇̂V F0(W )− ∇̂W F0(V )− F0([V,W ])

= Ψ−1
0

(
∇̂V df(W )− ∇̂W df(V )− df([V,W ])

)
,

0 = ∇̂
π
2
V Fπ

2
(W )− ∇̂

π
2
W Fπ

2
(V )− Fπ

2
([V,W ])

= Ψ−1
π
2

(
∇̂V df(JW )− ∇̂W df(JV )− df(J [V,W ])

)
.

Next we use the embedding (f∗TN, ∇̂) ⊂ (End(E), D = ∂ − S) as a parallel sub-
bundle by (f∗TN)p = Tf(p)N = sym(f̂(p)) ⊂ End(Rr). Here sym(f̂(p)) stands for
the vector space of f̂(p)-symmetric matrices. (We refer to [S1] Proposition 2 and
5 for the calculation of the connection.)

Now we check that (E,D, S = df, β = 〈f̂ ·, ·〉) is a metric/symplectic tt*-bundle.
We already know that S is symmetric with respect to β and that Dβ = 0. It remains
to check the tt*-equations for the data (D,S) on (M,J). In order to show that the
tt*-equations are satisfied at the point p0 ∈ M , we choose the associated family for
f in such a way that fθ(p0) = o and Ψθ(p0) = Id, see Remarks 5.2. Using S = df
we can rewrite the above integrability constraint as

0 = DV (SW )−DW (SV )− S[V,W ] = dDS(X, Y ),

0 = DV (SJW )−DW (SJV )− SJ[V,W ] = dDSJ(X, Y ).

Since D + S = ∂ is flat and dDS = 0, we obtain

RD + S ∧ S = RD + dDS + S ∧ S = RD+S = 0.

In order to verify the tt*-equations (see Remarks 1.2) it only remains to show

(5.9) [SJX , SJY ] = [SX , SY ].

The second integrability condition for the map fθ can be brought to the form

R̂(V,W ) = Ψθ ◦RN (FθV, FθW ) ◦Ψ−1
θ

= Ψθ ◦RN
(
Ψ−1

θ (df(RθV )),Ψ−1
θ (df(RθW ))

)
◦Ψ−1

θ ,

where R̂ is the curvature of ∇̂ and V,W are vector fields on M . The left-hand side
does not depend on the parameter θ. Setting θ = 0, π/2 and evaluating the equation
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at the point p0 we obtain RN (df(JV ), df(JW )) = RN (df(V ), df(W )), V, W ∈
Tp0M. Since S = df and RN (A,B), A,B ∈ ToN = sym(f̂(p0)), is proportional
to ad[A,B] we get (5.9). Notice that A,B are matrices which are symmetric with
respect to f̂(p0) = ô, the standard scalar product of signature (p, q) on Rr (r =
p+q), respectively, the standard symplectic form on Rr, in which case r is necessarily
even. �
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