Matroid theory: exercise sheet 10

1. Prove that the matroid with the following geometric presentation is not representable over any field:

- 2. Let V be a subspace of k^E of dimension r, and let $\varphi \colon V^r \to k$ be an antisymmetric multilinear map with $\varphi \neq 0$. For $x_1 \dots x_r \in E$, let $\varphi_{x_1, \dots x_r}$ be the antisymmetric multilinear map sending $v_1 \dots v_r$ to $\det(v_i(x_j)|i,j \leq r)$. Let $\lambda(x_1, \dots x_r)$ be the unique element of k with $\varphi_{x_1 \dots x_r} = \lambda(x_1, \dots x_r)\varphi$. Prove that λ is a Grassmann-Plücker function.
- 3. Let k be the finite field with q elements. Up to rescaling by $\mu \in (k^{\times})^{\{1,2,3,4\}}$, how many subspaces V of $k^{\{1,2,3,4\}}$ are there with $M(V) = U_{2,4}$?
- 4^* Show that for any s there is some n such that in any connected matroid with at least n elements there is a subset X of the ground set of size s with $M \setminus X$ or M/X connected.