

FAKULTÄT

FÜR MATHEMATIK, INFORMATIK UND NATURWISSENSCHAFTEN

WISE 2018/19 | GRAPHENTHEORIE II

ÜBUNGSBLATT 7

Die Besprechung der Aufgaben findet in den Übungen am 6. Dezember statt.

AUFGABE 1. Beweise das Counting-Lemma für Dreiecke: Für jedes $\delta > 0$ existieren c > 0 und $\epsilon_0 > 0$, sodass für jedes $0 < \epsilon < \epsilon_0$ jeder Graph, dessen Regularitätsgraph mit Parametern ϵ , δ und irgendeinem l ein Dreieck enthält, mindestens cl^3 Dreiecke enthält.

AUFGABE 2. Folgere aus dem Counting-Lemma für Dreiecke das Removal-Lemma für Dreiecke: Für jedes $\epsilon > 0$ existiert ein $\delta > 0$, sodass jeder genügend große Graph G durch Löschen von $\epsilon |G|^2$ Kanten dreiecksfrei gemacht werden kann oder bereits $\delta |G|^3$ Dreiecke enthält.

Eine arithmetrische Progression der Länge n ist eine Folge a_1, \ldots, a_n , sodass $a_{k+1} - a_k = a_{l+1} - a_l > 0$ für k, l < n.

AUFGABE 3. Folgere aus dem Removal-Lemma für Dreiecke den Satz von Roth: Für jedes $\delta > 0$ enthält für genügend großes n jede Teilmenge A von $\{1, \ldots, n\}$ mit $|A| \ge \delta n$ eine arithmetische Progression der Länge 3.