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1 Introduction to large deviations principles

1.1 Motivation

Large deviation theory is concerned with the study of probabilities of rare events.
We will be asymptotically computing these probabilities on an exponential scale.
When we say “rare” we do not mean P[A] ≈ 0, rather we mean events for which
1
n

logPn[A] is moderately sized for large n, where the family of probability mea-
sures {Pn}n≥1 converges (perhaps to a point mass).

Suppose we have n stocks S1, . . . , Sn and we own $1 of each at the beginning
of the day. Assume the one day rates of return ri are i.i.d. with mean zero. What is
the probability your portfolio loss exceeds some given percentage, say 50%? Our
wealth at the end of the day is W1 =

∑n
i=1

1
S0

i
S1

i , so the portfolio rate of return
is 1

n

∑

i ri (recall W0 = $n). We wish to compute P[ 1
n

∑

i ri ≤ 0.5]. This is an
example of a ruin probability.

Why 1
n

logPn[A] and not, say, 1
n2 logPn[A] or n2 logPn[A]? The answer is be-

cause it works for empirical averages of i.i.d. N(0,1) random variables. It is well
know that 1

n

∑n
i=1 Zi ∼ N(0, 1

n
). It can be shown (see K&S p. 112)

a
p

2πn

1+ na2 e−na2/2 ≤ P
�

1

n

n
∑

i=1

Zi ≥ a
�

=

∫ ∞

a

Ç

n

2π
e−nx2/2d x ≤

r

2π

na
e−na2/2.

so 1
n

logPn[(a,∞)] → −a2/2. Since 1
n

logPn[A] converges to something mean-
ingful for averages of N(0,1), it makes sense to think it is the correct scaling for
averages of other i.i.d. random variables, random walks, Brownian motion, some
diffusions, some Markov processes, etc.

Suppose we may write Pn[A] = gn(A)e−nI(A), where 1
n

log gn(A)→ 0 uniformly
for all A. What should I(A) look like? What properties should it have? Assume for
now that all Pn are absolutely continuous with respect to some reference measure
P. By taking “A= d x” we get pn(x) = gn(x)e−nI(x), so

1

n
logPn[A] =

1

n
log

∫

A

e−nI(x) P[d x] + o(1)

If f is a non-negative, bounded, measurable function then
�
∫

A

f (x)n P[d x]
�1/n

n→∞−−→ esssup
P
{ f (x) : x ∈ A}

Let f (x) := e−I(x) and combine the previous two equations to get

lim
n→∞

1

n
logPn[A] = log esssup

P
{e−I(x) : x ∈ A}=−essinf

P
{I(x) : x ∈ A}.

This is telling us that we should look for I such that we can write statements of
the form

lim
n→∞

1

n
logPn[A] =− inf

x∈A
I(x).
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The basic properties I should have include non-negativity, infx∈X I(x) = 0, and
there should exist x ∈ A which minimizes I over A whenever A is compact. In
particular, I should be lower semicontinuous, i.e. the set {I ≤ α} is closed for each
α≥ 0.

1.1.1 Exercise. Show that, in a metric space, I is lower semicontinuous if and
only if lim infn I(xn)≥ I(x) whenever xn→ x .

SOLUTION: Assume that I is lower semicontinuous and let xn → x be given. Let
α := lim infn I(xn). If α = ∞ then there is nothing to prove. Assume that α is a
finite number. Define n1 := 1 and for each k > 1 define nk to be the smallest index
greater than nk−1 such that I(xnk

) ≤ infm>nk−1
I(xm) + 2−k. Then xnk

→ x , since it
is a subsequence of a convergent sequence, and by construction I(xnk

)→ α. For
each ε > 0, eventually I(xk)≤ α+ε, so since {I ≤ α+ε} is a closed set, it follows
that I(x) ≤ α+ ε. Since ε > 0 was arbitrary, I(x) ≤ α. If α = −∞ then it is easy
to show that I(x) =−∞.

Suppose I has the property that lim infn I(xn)≥ I(x) for all x and all sequences
xn → x . Let α > 0 be given and assume for contradiction that the set {I ≤ α} is
not closed. Then there is a sequence {xn}∞n=1 ⊆ {I ≤ α} such that xn → x and
x /∈ {I ≤ α}. But then α≥ lim infn I(xn)≥ I(x)> α, a contradiction. ú

1.2 Definition and basic properties

1.2.1 Definition. Let (X ,τ) be a topological space. I : X → [0,∞] is a rate
function if it is lower semicontinuous. I is a good rate function if {I ≤ α} is compact
for all α≥ 0.

Remark. Some authors take only good rate functions to be rate functions.

Let I be a rate function. It seems as though it would be nice if

lim
n→∞

1

n
logPn[A] =− inf

x∈A
I(x)

for all measurable A, but this is too restrictive for reasonable applications. For
example, it is quite reasonable to have Pn[{x}] = 0 for all n, for all x ∈ X . But
this implies that I(x) = ∞ everywhere, which is incompatible with the fact that
infx∈X I(x) = 0 since Pn[X ] = 1.

Recall that Pn
(w)−→ P does not mean limn→∞ Pn[A] = P[A] for all A. Rather, it is

equivalent to the pair of inequalities

lim sup
n
Pn[F]≤ P[F] for all F closed, and

lim inf
n
Pn[G]≥ P[G] for all G open.
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1.2.2 Definition. Let (X ,B) be a measure space and {Pε}ε>0 be a family of prob-
ability measures. We say that {Pε}ε>0 satisfies a large deviations principle or LDP
with (good) rate function I if, for all Γ ∈B ,

− inf
x∈Γ◦

I(x)≤ lim inf
ε→0

ε logPε(Γ)≤ lim sup
ε→0

ε logPε(Γ)≤− inf
x∈Γ

I(x)

Remark.
(i) There is no reason to assume thatB is the Borel σ-algebra of X .

(ii) In most instances, but not all, X is a Polish space (i.e. a complete separable
metric space) and the Pε are Borel measures.

(iii) If all the open sets are measurable then we can write the LDP as

lim sup
ε→0

ε logPε(F)≤− inf
x∈F

I(x) for all F closed, and

lim inf
ε→0

ε logPε(G)≥− inf
x∈G

I(x) for all G open.

The full LDP is the one stated in the definition (or equivalently, the one in the
remark when we are in the Borel case). The weak LDP in the Borel case is a slight
relaxation,

limsup
ε→0

ε logPε(F)≤− inf
x∈F

I(x) for all F compact, and

lim inf
ε→0

ε logPε(G)≥− inf
x∈G

I(x) for all G open.

That is to say, “closed” changes to “compact” for the weak LDP.

1.2.3 Exercise. Find a family satisfying a weak LDP but no full LDP.

SOLUTION: From D&Z, page 7, let Pε := δ1/ε. Then the family {Pε}ε>0 satisfies
the weak LDP for the good rate function I ≡ ∞. (The lower bound for open
sets is trivial and the upper bound for compact sets follows because eventually
1/ε escapes any fixed compact set. We define log0 := −∞.) This family does
not satisfy a full LDP for any rate function because Pε[{x}] is eventually zero for
every x , so the only possible choice of rate function is I ≡ ∞, but Pε[R] = 1
implies infx∈R I(x) = 0, a contradiction.

This example also shows that having a weak LDP with a good rate function
does not imply a full LDP. ú

1.2.4 Definition. A family {Pε}ε>0 is exponentially tight if, for every α > 0, there
is a compact set Kα such that lim supε→0 ε logPε[Kc

α]<−α.

Recall that {Pε}ε>0 is a tight family if for all α > 0 there is a compact set Kα
such that supε>0 Pε[Kc

α]≤ α.

1.2.5 Exercises.
(i) Show that tightness does not imply exponential tightness.
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(ii) Show that, for sequences, exponential tightness implies tightness.

SOLUTION:
(i) Let Pε := δε for 0< ε ≤ 1 and δ1/(1−ε) for ε > 1. Then the family {Pε}ε>0 is

not tight (because 1/(1− ε) escapes any fixed compact set for some ε > 1)
but is exponentially tight (taking Kα = [0,1] for all α > 0 suffices). This
example feels cheap.

(ii) Suppose the family {Pn}n≥1 is exponentially tight. Let K be the compact
set corresponding to α = 2 in the definition of exponential tightness. Then
limsupn

1
n

logPn[Kc] < −2. It follows that there is N such that, for n ≥ N ,
1
n

logPn[Kc] < −1, i.e. Pn[Kc] < e−n. Let α > 0 be given. Choose M ≥
N such that e−M < α and a compact set K ′ such that the (finitely many)
probability measures {Pn}M−1

n=1 all satisfy Pn[K ′
c] ≤ α. The set Kα := K ′ ∪ K

witnesses tightness. ú

Warning: Goodness of I and an LDP do not together imply exponential tight-
ness. It is tempting to note that Kα := {I ≤ α} is compact and write

limsup
ε→0

ε logPε[Kc
α]≤− inf

x∈Kc
α

I(x),

but there is no good reason to assume that the right hand side is at most −α,
because the closure may introduce some undesirables.

1.2.6 Exercise (4.1.10 in D&Z). Show that if X is Polish, the Pε are all Borel,
and they satisfy an LDP with a good rate function I then, {Pε}ε>0 is exponential
tight.

1.2.7 Lemma. Let αi
ε > 0 for i = 1, . . . , N and ε > 0 be real numbers. Then

lim sup
ε→0

ε log
� N
∑

i=1

ai
ε

�

=
N

max
i=1

limsup
ε→0

ε log ai
ε

PROOF: This follows from the observation that

N
max
i=1

ai
ε ≤

N
∑

i=1

ai
ε ≤ N

N
max
i=1

ai
ε

and because the max is being taken over finitely many terms. �

1.2.8 Proposition. If an exponentially tight family {Pε}ε>0 satisfies a weak LDP
then it satisfies a full LDP.
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PROOF: There is nothing to prove for open sets since the statements of the weak
and full LDP agree. Let a closed set F be given. Let α > 0 and Kα be the cor-
responding compact set from exponential tightness. By well-known properties of
measures,

Pε[F] = Pε[F ∩ Kα] + Pε[F ∩ Kc
α]≤ Pε[F ∩ Kα] + Pε[Kc

α].

Now, F ∩ Kα is compact, so by the weak LDP,

lim sup
ε→0

ε logPε[F ∩ Kα]≤− inf
x∈F∩Kα

I(x)≤− inf
x∈F

I(x),

and limsupε→0 ε logPε[Kc
α]<−α by definition of Kα. From this and from 1.2.7,

limsup
ε→0

ε log(Pε[F ∩ Kα] + Pε[K
c
α])≤max(− inf

x∈F
I(x),−α)

Taking α→∞ completes the proof. �

Remark. By 1.2.8, the family given in the solution to 1.2.3 is not exponentially
tight.

1.2.9 Lemma. If an exponentially tight family {Pε}ε>0 satisfies the LDP lower
bound for open sets, for a rate function I , then I is a good rate function.

PROOF: Let α > 0 be given and Kα be the corresponding set from exponential
tightness. Note that Kc

α is open, so

−α > lim sup
ε→0

ε logPε[Kc
α]≥ lim inf

ε→0
ε logPε[Kc

α]≥− inf
x∈Kc

α

I(x)

so infx∈Kc
α

I(x) > α. Therefore {I ≤ α} ⊆ Kα. Since I is a rate function, {I ≤ α}
is closed, and a closed subset of a compact set is compact, so I is a good rate
function. �

1.3 Analogy with weak convergence

1.3.1 Example (Parametric statistics).
Let {ξn}∞n=1 be a sequence of i.i.d. random variables with mean µ and variance σ2.
We have the Weak Law of Large Numbers (Bernoulli, 1713),

ηn :=
1

n

n
∑

i=1

ξi
(p)
−→ µ.

A long while later the Strong Law of Large Numbers was proved, which shows
that the convergence is P-a.s. Parametric statistics is concerned with estimating µ.
Knowing that the estimators converge to µ is important, but obtaining bounds on
the error is also very important.



8 Large Deviation Principles

(i) Confidence intervals are one way of quantifying the error. For given n, how
large is P[|ηn −µ| ≥ a]?

(ii) Loss functions are another way of quantifying error. A loss function is a non-
negative radially symmetric measurable function, e.g. L(x) = x2, |x |,1|x |≥a,
etc. The error can be taken to be E[L(ηn−µ)]. Note that this approach ex-
tends the confidence interval approach by considering functions other than
indicator functions.

The Central Limit Theorem states that
p

n(ηn − µ)
(w)−→ η ∼ N(0,σ2). It allows us

now to make more precise statements about the convergence.
(i) P[|ηn −µ| ≥ a/

p
n]→ P[|η| ≥ a]

(ii) E[L(
p

n(ηn −µ))]→ E[L(η)].

1.3.2 Definition. A function Π : E→ [0, 1] is said to be an idempotent probability
if supx∈E Π(x) = 1. Define Π[A] := supx∈AΠ(A) for A ⊆ E. Π is good, or l.s.c., if
Π(Fn)→ Π(

⋂

n≥1 Fn) whenever {Fn}∞n=1 is a decreasing sequence of closed sets.

In the theory of large deviations, we make statements of the form

Law(ηn −µ)
LD−→ I or Π,

where I is a rate function and Π is an idempotent probability related according
to the relation Π(x) = exp(−I(x)). The corresponding statements of convergence
may be stated as follows.

(i) (P[|ηn −µ| ≥ a])1/n→ exp(− inf|x |≥a I(x)) = Π[|x | ≥ a]
(ii) (E[(L(ηn −µ))n])1/n→ supx∈R L(x)Π(x).

1.3.3 Example (Empirical distributions).
Let {ξn}∞n=1 be a sequence of i.i.d. random variables distributed as Lebesgue mea-
sure on [0,1]. The empirical distribution function is

Fn(x) =
1

n

n
∑

k=1

1ξk≤x .

There is a Law of Large Numbers for this setting, proved by Cantelli,

sup
x∈[0,1]

|Fn(x)− F(x)|
(p)
−→ 0.

A strong version, that the convergence is a.s., was proved soon after by Glivenko.
A Central Limit Theorem was proved by Kolmogorov, in the form

p
n sup

x∈[0,1]
|Fn(x)− F(x)| (w)−→ max

t∈[0,1]
|X t |,

where X is Brownian bridge, the solution to the SDE dX t =−
X t

1−t
d t+dBt , X0 = 0.

There are other central limit theorems, but their application is more delicate.

p
n

∫ 1

0

|Fn(x)− F(x)|2d x
(w)−→
∫ 1

0

|Xs|2ds.
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Doob observed that as stochastic processes (with x as “time”)

p
n(Fn − F)

(w)−→ X .

The analog in Large Deviations will be Sanov’s theorem. Vapnik-Chervonenkis
theory gives conditions under which

sup
A∈A
|Pn[A]− P[A]| → 0

in terms of the “information content” of the family of setsA .

Let (E, d) be a Polish space, e.g. Rn, C[0,1], or D[0, 1]. Recall that D[0,1] is
the collection of càdlàg functions with domain [0, 1], equipped with the metric

ρ(X , Y ) = inf
λ∈Λ

�

sup
x∈[0,1]

|(X (λ(t))− Y (t)|+ sup
s,t

�

�

�

�

log
|λ(t)−λ(s)
|t − s|

�

�

�

�

�

where Λ is the collection of increasing functions λ : [0,1]→ [0,1] with λ(0) = 0
and λ(1) = 1. This is the Skorokhod metric. Under the more natural looking,
equivalent, metric

ρ′(X , Y ) = inf
λ∈Λ

�

sup
x∈[0,1]

|(X (λ(t))− Y (t)|+ sup
t∈[0,1]

|λ(t)− t|
�

the space fails to be complete. Another important space is Cb(E), the space of
bounded continuous functions on a Polish space (E, d).

1.3.4 Definition. A sequence of measures {Pn}∞n=1 on (E, d) converges weakly to
P if En[ f ]→ E[ f ] for all f ∈ Cb(E).

Remark. The function f : D[0, 1] → R defined by f (X ) := X (t0) is not a con-
tinuous function for the Skorokhod topology. It is, of course, continuous for the
uniform metric, but with this topology D[0, 1] is not separable. We will see that
there is a way to get around this, depending on the limiting measure.

1.3.5 Definition. A function f is l.s.c. (resp. u.s.c.) if there is a sequence { fn}∞n=1
of continuous functions such that, for all x ∈ E, f (x) = supn fn(x) (resp. f (x) =
infn fn(x)).

Remark. The sequences in the definition may be taken to be increasing (resp. de-
creasing) since the max of finitely many continuous functions is itself continuous.

1.3.6 Lemma. Suppose Pn
(w)−→ P.

(i) For all bounded l.s.c. functions f , lim infn→∞En[ f ]≥ E[ f ].
(ii) For all open sets G, lim infn→∞ Pn[G]≥ P[G].

(iii) For all bounded u.s.c. functions f , limsupn→∞En[ f ]≤ E[ f ].
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(iv) For all closed sets F , limsupn→∞ Pn[F]≤ P[F].

PROOF: Let f be a l.s.c. function and let { fm}∞m=1 be an increasing sequence of
continuous functions such that, for all x ∈ E,

f (x) = sup
m

fm(x) = lim
m→∞

fm(x).

For each n and m, En[ f ]≥ En[ fm], so

lim inf
n→∞
En[ f ]≥ lim inf

n→∞
En[ fm] = E[ fm].

Therefore, by Fatou’s Lemma,

lim inf
n→∞
En[ f ]≥ lim inf

m→∞
E[ fm]≥ E[ f ].

The proof for u.s.c. functions is similar. The last two parts follow because 1G is
l.s.c. when G is open and 1F is u.s.c when F is closed. �

1.3.7 Definition. Let f be a function on (E, d) and define

f (x) := sup{g(x) : g ≤ f , g ∈ C(E)} and f (x) := sup{g(x) : g ≥ f , g ∈ C(E)}.

Then f is said to be P-continuous if E[| f − f |] = 0, or equivalently,

P[{x : f is continuous at x}] = 1.

1.3.8 Lemma. If Pn
(w)−→ P and f is a bounded and P-continuous function on (E, d)

then En[ f ]→ E[ f ].

PROOF: Note that f and f are u.s.c. and l.s.c., respectively, and they are equal
P-a.s., so

lim inf
n→∞
En[ f ]≥ lim inf

n→∞
En[ f ]≥ E[ f ] = E[ f ]≥ lim sup

n→∞
En[ f ]≥ limsup

n→∞
En[ f ].

�

1.3.9 Definition. A sequence of measures {Pn}∞n=1 on (E, d) converges in the
sense of large deviations to Π if (En[ f n])1/n→ supx∈E f (x)Π(x) for all f ∈ C+b (E).
Analogously, a function f is Π-continuous if

sup
x∈E

�

f (x)− f (x)
�

Π(x) = 0.

1.3.10 Exercise. Look up Ulam’s theorem, that probability measures on Polish
spaces are (individually) tight, and come up with an LDP analog. Then try for an
analog of Prohorov’s theorem. Here sequentially precompactness corresponds to
exponential tightness.
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2 Cramér’s Theorem

2.1 Cramér’s theorem in Rd

Cramér’s theorem gives conditions under which the empirical average of i.i.d. ran-
dom variables satisfy an LDP. Let {X i}∞i=1 be Rd -valued i.i.d. random vectors with
common distribution µ, and let Sn := 1

n

∑n
i=1 X i be the empirical average. Let µn

be the distribution of Sn, a probability measure on (Rd ,B(Rd)). The question is
whether the family {µn}∞n=1 satisfies an LDP, and if so, what is the rate function?

We expect some sort of converge in many situations. Letting x := E[X1] and
σ2 := Var(X1), if both of these quantities are finite then E[|Sn − x |2] → 0 as
n→∞, (this is a version of the law of large numbers) so Sn

(p)
−→ x . Yet otherwise

said, µn
(w)−→ δx .

2.1.1 Definition. The cumulant generating function is the logarithm of the mo-
ment generating function,

Λ(λ) := logE[exp(λ, X1))].

Define DΛ := {λ ∈ Rd : Λ(λ) < ∞}, the domain of Λ. The Fenchel-Legendre
transform of Λ is

Λ∗(x) := sup
λ∈Rd
{(λ, x)−Λ(λ)}.

Define DΛ∗ := {x ∈ Rd : Λ∗(x)<∞}, the domain of Λ∗.

2.1.2 Examples.
(i) If X1 ∼ δx0

then Λ(λ) = (λ, x0) so Λ∗(x) = 0 if x = x0 and∞ otherwise.
(ii) If X1 ∼ N(0,1) then Λ(λ) = 1

2
|λ|2 and Λ∗(x) = 1

2
|x |2. As usual, the normal

distribution is amazingly well-behaved.
(iii) If X1 ∼ Bernoulli(p) then Λ(λ) = log(peλ + (1− p)) and

Λ∗(x) =

(

x log x
p
+ (1− x) log 1−x

1−p
x ∈ [0,1]

∞ otherwise

Note that limx→0+ Λ∗(x) and limx→1− Λ∗(x) are both finite, so Λ∗ jumps up
to∞ at those points.

2.1.3 Proposition (Properties of Λ).
Suppose that Λ is the cumulant generating function of a random variable X .

(i) Λ(0) = 0.
(ii) Λ(λ)>−∞ for all λ.

(iii) Hölder’s inequality implies that Λ is convex.
(iv) The dominated convergence theorem implies that Λ ∈ C∞(D◦Λ).
(v) ∇Λ(λ) = e−Λ(λ)E[X e(λ,X )] for λ ∈ D◦Λ.
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2.1.4 Proposition (Properties of Λ∗).
Suppose that Λ∗ is the Fenchel-Legendre transform of the cumulant generating
function of a random variable X .

(i) Λ∗(x)≥ 0 for all x .
(ii) Λ∗(E[X ]) = 0.

(iii) Λ∗ is convex.
(iv) Λ∗ is lower semicontinuous, i.e. Λ∗ is a rate function.

(Properties (iii) and (iv) hold for all Fenchel-Legendre transforms.)

PROOF:
(i) Consider λ= 0.

(ii) By Jensen’s inequality, logE[e(λ,X )]≥ log e(λ,E[X ]) = (λ,E[X ]) for all λ, so

0≤ Λ∗(E[X ]) = sup
λ∈Rd
{(λ, x)−Λ(λ)} ≤ 0.

(iii) Λ∗ is a supremum of affine (hence convex) functions.
(iv) Let xn→ x . For all λ ∈ Rd and all n≥ 1, Λ∗(xn)≥ (λ, xn)−Λ(λ), so

lim inf
n→∞

Λ∗(xn)≥ sup
λ∈Rd
{lim inf

n→∞
(λ, xn)−Λ(λ)}

= sup
λ∈Rd
{(λ, x)−Λ(λ)}= Λ∗(x). �

2.1.5 Exercise. Show that if 0 ∈ D◦Λ then Λ∗ is a good rate function.
(Hint: consider Λ∗(x)/|x |.)

SOLUTION: If 0 ∈ D◦λ then there is a small r > 0 such that Λ(λ) < ∞ for all
λ ∈ B(0, 2r). Since Λ ∈ C∞(D◦Λ), M :=maxλ∈B(0,r)Λ(λ)<∞. For all x ∈ Rd ,

Λ∗(x) = sup
λ∈Rd
(λ, x)−Λ(λ)≥

�

r

|x |
x , x
�

−Λ
�

r

|x |
x
�

≥ r|x | −M .

It follows that the closed set {Λ∗ ≤ α} is contained within the ball B(0, 1
r
(α+M)),

so it is compact. Therefore Λ∗ is a good rate function. ú

2.1.6 Theorem (Cramér).
If 0 ∈ D◦Λ then {µn}∞n=1 satisfies the LDP with good rate function Λ∗.

Remark. If D◦Λ 6=∅ then 0 ∈ D◦Λ.

PROOF: To simplify the proof we make the following assumptions.
(A1) DΛ = Rd .
(A2) If Λ∗(x) <∞ then there is λx which maximizes (λ, x)−Λ(λ) over λ ∈ Rd ,

and in particular x = ∇Λ(λx). (Note that this assumption fails for the
Bernoulli distribution at x = 0 and at x = 1.)
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The first step in the proof is to prove the upper bound for compact sets,

lim sup
n

1

n
logµn(Γ)≤− inf

x∈Γ
Λ∗(x).

This step will not use either assumption. To this end, let Γ⊆ Rd be a compact set.
Let δ > 0 be a small number and define Iδ(x) :=min{Λ∗(x)−δ, 1/δ}.

2.1.7 Exercise. Show limδ→0 infx∈Γ Iδ(x) = infx∈ΓΛ∗(x).

Let x ∈ Γ be given. For any r > 0 and λ ∈ Rd , by Chebyshev’s inequality,

E[enΛ(λ)] = E[en(λ,Sn)] by independence

≥ E[en(λ,Sn)1B(x ,r)(Sn)]

≥ einfy∈B(x ,r) n(λ,y)µn(B(x , r)) by Chebyshev

Λ(λ)− inf
y∈B(x ,r)

(λ, y)≥
1

n
logµn(B(x , r))

Choose λx ∈ Rd such that (λx , x)− Λ(λx) ≥ Iδ(x). Since (λx , ·) is continuous,
we can take rx small enough so that infy∈B(x ,rx )(λx , y) ≥ (λx , x) − δ, namely,
rx < δ/|λx |. Therefore

1

n
logµn(B(x , rx))≤ Λ(λx)− (λx , x) +δ ≤ δ− Iδ(x).

Now, Γ ⊆
⋃

x∈Γ B(x , rx), so there are x1, . . . , xN such that Γ ⊆
⋃N

i=1 B(x i , ri).
Therefore

1

n
logµn(Γ)≤

1

n
log

N
∑

i=1

µn(B(x i , ri))

limsup
n

1

n
logµn(Γ)≤

N
max
i=1

limsup
n

1

n
logµn(B(x i , ri)) 1.2.7

≤ δ−
N

min
i=1

Iδ(x i)≤ δ− inf
x∈Γ

Iδ(x)

Take δ→ 0 to complete the proof of the upper bound.
The second step in the proof is the lower bound for open sets,

lim inf
n

1

n
logµn(G)≥− inf

x∈G
Λ∗(x).

This step will use both assumptions. To this end, let G ⊆ Rd be an open set. The
basic idea is to put x into G so that µn(G) → 1, i.e. change measure so that the
event G is not rare.

Since G is open it suffices to prove, for all x ∈ Rd and for all δ > 0 small, that

lim inf
n

1

n
logµn(B(x ,δ))≥−Λ∗(x).
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Indeed, for all x ∈ G, there is δ > 0 such that B(x ,δ)⊆ G, so if we have the above
inequality then

lim inf
n

1

n
logµn(G)≥ lim inf

n

1

n
logµn(B(x ,δ))≥−Λ∗(x)

for each x ∈ G, so lim infn
1
n

logµn(G)≥− infx∈G Λ∗(x).
Let x ∈ Rd be given. If Λ∗(x) =∞ then there is nothing to prove, so assume

that Λ∗(x) < ∞. By assumption (A2) there is λx such that x = ∇Λ(λx) and
Λ∗(x) = (λx , x) − Λ(λx). Define a probability measure µ̃ on Rd via its Radon-
Nikodym derivative with respect to µ,

dµ̃

dµ
(z) := e(λx ,z)−Λ(λx ).

By (A1), µ̃ is a probability measure since λx ∈ D◦Λ, i.e. Λ(λx)<∞ and

∫

Rd

µ̃(dz) =

∫

Rd

e(λx ,z)−Λ(λx )µ(dz) = e−Λ(λx )

∫

Rd

e(λx ,z)µ(dz) = 1.

We have

Eµ̃[X ] =
∫

Rd

ze(λx ,z)−Λ(λx )µ(dz)

= e−Λ(λx )

∫

Rd

ze(λx ,z)µ(dz) =∇Λ(λx) = x

by the formula for the gradient of Λ. The law µ̃n of Sn may be transformed in a
compatible way, so that

dµ̃n

dµn
= en(λ,z)−nΛ(λ),

via the formula

Pµ̃n(Sn ∈ A) :=

∫

1
n

∑n
i=1 x i∈A

µ̃(d x1) · · · µ̃(d xn).

Therefore, for any δ > 0 and any η with δ > η > 0,

1

n
logµn(B(x ,δ)) =

1

n
log

∫

B(x ,η)

e−n(λx ,z)+nΛ(λx )µ̃n(dz)

= Λ(λ)− (λx , x) +
1

n
log

∫

B(x ,η)

en(λx ,x−z)µ̃n(dz)

≥−Λ∗(x)−η|λ|+
1

n
log µ̃n(B(x ,η))
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since (λ, x − z) ≥ −η|λ| over B(x ,η) by Cauchy-Schwarz. By the law of large
numbers, limn→∞µn(B(x ,δ)) = 1, so limn→∞ µ̃n(B(x ,δ)) = 1 by construction.
Therefore

lim inf
n

1

n
logµn(B(x ,δ))≥−Λ∗(x)−η|λ|.

Taking η→ 0 completes the proof of the lower bound.
We have now shown that {µn}∞n=1 satisfies the weak LDP with good rate func-

tion Λ∗. The third step is the proof is to show that {µn}∞n=1 is exponentially tight.
The fact that 0 ∈ D◦Λ is used here. (To be added.) �

2.2 Sanov’s theorem

Let {Yi}∞i=1 be real-valued i.i.d. random variables with common distribution func-
tion F . The empirical distribution function is defined for t ∈ R to be

Fn(t) :=
1

n

n
∑

i=1

1(−∞,t](Yi).

The theorem we will prove today is as follows. Assume that the Yi ’s take values
in a finite state space Σ = {a1, . . . , aN}, with common probability mass function µ.
Assume without loss of generality that µ(a j)> 0 for j = 1, . . . , N . Set

LY
n :=

1

n

n
∑

i=1

δYi
,

the empirical probability mass function. By the Strong Law of Large Numbers,

LY
n [{a j}] =

1

n

n
∑

i=1

1{a j}(Yi)
a.s.−→ µ(a j)

Let X i = (1{a1}(Yi), . . . ,1{aN }(Yi)), the natural embedding of δYi
into the probability

simplex, so that

1

n

n
∑

i=1

X i =
1

n

n
∑

i=1

(1{a1}(Yi), . . . ,1{aN }(Yi)) = (L
Y
n [{a1}], . . . , LY

n [{an}])

Note that {X i}∞i=1 is a sequence of i.i.d., bounded, RN -valued random vectors, so
the cumulant generating function exists for all λ and

Λ(λ) = logE[e(λ,X 1)] = log
N
∑

j=1

eλ jµ(a j).

Calculating Λ∗ is an exercise in calculus, and is on the homework.

Λ∗(x) = sup
λ∈RN
(λ, x)− log

N
∑

j=1

eλ jµ(a j).
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If x /∈ ∆N := {x ∈ RN
+ :

∑

i x i = 1} then we can appeal to the LDP to show
that Λ∗(x) = ∞. There is r > 0 such that B(x , r) ∩ ∆N = ∅. By the LDP,
− infB(x ,r)Λ∗(x) ≤ −∞ (so Λ∗(x) = ∞) since µn(B(x , r)) = 0. If x ∈ ∆N then
the first order conditions require

x` =
eλ`µ(a`)

∑N
j=1 eλ jµ(a j)

.

If x` > 0 then λ∗` = log(x`/µ(a`)) is the optimizer. If x` = 0 then taking λ`→−∞
gives a sequence converging to the optimum. Therefore

Λ∗(x) =
N
∑

j=1

x j log
x j

µ(a j)
= H(x |µ).

2.3 Sampling a Brownian motion

Let W be a Brownian motion on [0, T] and {0= t0 < · · ·< tN = T} be a partition
of the interval. Define X := (Wt1

, . . . , WtN
), an RN -valued random variable. Let

{X i}∞i=1 be independent samples of X , and let

Sn :=
1

n

n
∑

i=1

X i ∼
1
p

n
(Wt1

, . . . , WtN
).

(Show this, and think of an LDP for Zn =
1p
n
W .) Then the cumulant generating

function exists,

Λ(λ) = logE[e(λ,X 1)]

= logE[e
∑N

j=1 λ jWt j ]

= logE[e
∑N

j=1 θ j(Wt j
−Wt j−1

)] where θ j :=
N
∑

i= j

λi

=
1

2

N
∑

j=1

θ 2
j (t j − t j−1).

Finding Λ∗ is a problem in quadratic programming.

Λ∗(x) = sup
θ

N
∑

j=1

x j(θ j − θ j+1) + xNθN −
1

2

N
∑

j=1

θ 2
j (t j − t j−1)

=
1

2

N
∑

j=1

(x j − x j−1)2

t j − t j−1

=
1

2

N
∑

j=1

(x j − x j−1)2

(t j − t j−1)2
(t j − t j−1)
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optimized at θ ∗j = (x j− x j−1)/(t j− t j−1) (with x0 := 0). The reason for writing Λ∗

in the form of the last line will become clear in a moment. We would like to take
the limit over partitions. If it is mathematically justifiable to do this then notice
the following.

(i) X corresponds to a random path x ∈ R[0,T].
(ii) Λ∗(x) =∞ if x(0) 6= 0 (taking t1→ 0).

(iii) If x /∈ AC[0, T] then Λ∗(x)→∞ (by definition of absolutely continuous).

(iv) If x ∈ AC[0, T] then Λ∗(x)→ 1
2

∫ T

0
ẋ2

t d t.
But what does it all mean?

3 Gärtner-Ellis theorem

The idea now is to forget how Sn was constructed, but keep some of the nice
properties and asymptotic conclusions of the cumulant generating function that
independence allowed us to make, and see where that gets us. Recall that inde-
pendence and Chebyshev’s inequality applied to x 7→ en(λ,x) give

µn(B(x , r))≤ e−n infy (λ,y)E[en(λ,Sn)]

= e−n infy (λ,y)+Λ(nλ)

= e−n(infy (λ,y)− 1
n
Λn(nλ))

where Λn(nλ) := logE[en(λ,Sn)] = nΛ(λ). This would seem to suggest that if
{Λn}∞n=1 is a sequence of functions such that Λ(λ) := limn→∞

1
n
Λn(nλ) exists then

there should be an LDP, probability with rate function Λ∗.
Let {Zn}∞n=1 be a sequence of random variables, where for each n, Zn is dis-

tributed as µn, with cumulant generating function Λn. Assume that, for all λ ∈ Rd ,
Λ(λ) := limn→∞

1
n
Λn(λ) exists as an extended real number, and 0 ∈ D◦Λ. This in-

cludes the setting for Cramér’s theorem as a special case.
Are these assumptions enough on their own for an LDP? No, because we will

not be able to obtain the lower bound. In Cramér’s theorem we controlled the
means of the X i by changing the measure and then invoked the WLLN. We have
neither of these tools in this setting.

3.1 The upper bound

What does carry over?
1) Properties of Λ and Λ∗:

a) Λ is convex since it is a limit of convex functions.
b) Λ(λ)>−∞ for all λ ∈ Rd , because 0 ∈ D◦Λ.
c) Λ∗ is non-negative, convex, and l.s.c. since it is a Fenchel-Legendre

transform.
d) Λ∗ is a good rate function because 0 ∈ D◦Λ.
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2) The LDP upper bound for compact sets holds by the same proof as in Cramér’s
theorem, by applying Chebyshev’s inequality to x 7→ en(λ,x) and Zn. Indeed,

µn(B(x , r))≤ e−n(infy∈B(x ,r)(λ,y)− 1
n
Λn(nλ))

limsup
n→∞

1

n
logµn(B(x , r))≤−(λ, x) + r|λ|+Λ(λ)

≤min{Λ∗(x)−δ, 1/δ}+δ

and then take δ→ 0.
3) It can be shown that {µn}∞n=1 is exponentially tight by the same method as

in Cramér’s theorem. On R, for ρ > 0,

µn([ρ,∞))≤ e−n(λρ− 1
n
Λn(nλ)) for λ > 0

µn((−∞,−ρ])≤ e−n(λρ− 1
n
Λn(nλ)) for λ < 0

So if ρ > limsupn→∞E[Zn] then Λ∗(ρ) = supλ>0(λρ−Λ(λ)), etc. This with
the previous point proves the LDP upper bound for closed sets.

3.2 The lower bound

Recall that, in proving the lower bound, it suffices to show that

1

n
logµn(B(y,δ))≥−Λ∗(y)

for all y ∈ D◦Λ∗ and δ > 0 small. In Cramér’s theorem we changed the mean of
X1 to y via the change of measure dµ̃

dµ
(z) := exp((λy , z)−Λ(λy)), where λy ∈ Rd

was such that y = ∇Λ(λy). We cannot choose such a nice representative in this
setting, but we proceed anyways.

Fix λ∗ ∈ D◦Λ and set dµ̃n

dµ
(z) := exp(n((λ∗, z)− 1

n
Λn(nλ∗))) for large enough n

that Λn(nλ) is finite valued. Note that Ẽ[Zn] =
1
n
∇Λn(nλ∗), but this is immaterial.

Λ̃n(λ) = log

∫

Rd

en(λ,z)+n(λ∗,z)−Λn(nλ∗)µn(dz)

= Λn(n(λ+λ
∗))−Λn(nλ

∗)

so
1

n
Λ̃n(λ)→ Λ(λ+λ∗)−Λ(λ∗) =: Λ̃(λ)

It can be seen that Λ̃(0) = 0 and 0 ∈ D◦
Λ̃

because λ∗ ∈ D◦Λ. Therefore we may
apply the LDP upper bound to the measures {µ̃n}∞n=1.

limsup
n→∞

1

n
log µ̃n(B(y,δ)c)≤− inf

z∈B(y,δ)c
Λ̃∗(z).
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We assume for simplicity that the infimum is attained for some z0 ∈ B(y,δ)c . If
Λ̃∗(z0)> 0 then it can easily be seen that µn(B(y,δ)c)→ 0 as n→∞. To this end,
note that z0 6= y . Further,

Λ̃∗(z0) = sup
θ∈Rd
((θ , z0)−Λ(θ +λ∗) +Λ(λ∗))

=−(λ∗, z0) +Λ(λ
∗) + sup

θ∈Rd
((θ +λ∗, z0)−Λ(θ +λ∗))

=−(λ∗, z0) +Λ(λ
∗) +Λ∗(z0)

≥−(λ∗, z0) + ((λ
∗, y)−Λ∗(y)) +Λ∗(z0)

= ((λ∗, y)−Λ∗(y))− ((λ∗, z0)−Λ∗(z0))
??
> 0

If we can find λ∗ =: λy such that this last line is strictly positive then y is said to
be an exposed point of Λ∗, with exposing hyperplane λy . Define Y := {y : y is an
exposed point with an exposing hyperplane λy and λy ∈ D◦Λ}. Note

(i) If there is λ such that y =∇Λ(λ) then y ∈ Y .
(ii) It can be seen that Y ⊆ DΛ∗ .

If y ∈ Y then there is λy such that µ̃n(B(y,δ))→ 1 for all δ > 0. Let 0< η < δ.

logµn(B(y,δ)) = log

∫

B(y,δ)

e−n((λy ,z)+ 1
n
Λn(nλy ))µ̃n(dz)

≥ log

∫

B(y,η)

e−n((λy ,z)+ 1
n
Λn(nλy ))µ̃n(dz)

=
1

n
Λn(nλy)− (λy , y) + log

∫

B(y,η)

e−n(λy ,z−y)µ̃n(dz)

≥
1

n
Λn(nλy)− (λy , y)− |λ|η+

1

n
log µ̃n(B(y,η))

limsup
n→∞

1

n
logµn(B(y,δ))≥ Λ(λy)− (λy , y)− |λ|η

Taking η→ 0 proves what needed to be proved to get the lower bound. What we
have is that, for any open set G,

lim inf
n→∞

1

n
logµn(G)≥− inf

y∈G∩Y
Λ∗(y).

This is not quite the LDP lower bound if Y 6= Rd , but there are a variety of
conditions that may be placed on Λ that guarantee this, discussed in the textbook.

4 Varadhan’s Integral Lemma

Varadhan’s integral lemma leverages an LDP to provide approximations to the
expected value of certain continuous functions.
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4.0.1 Theorem. Let {Zε}ε>0 be a family of random variables taking values in a
space X satisfying an LDP with good rate function I . Let φ :X → R be a contin-
uous function and suppose there is γ > 1 such that

limsup
ε→0

ε logE[eγφ(Zε)/ε]<∞.

Then
lim sup
ε→0

ε logE[e
1
ε
φ(Zε)] = sup

x∈X
{φ(x)− I(x)}.

Remark. The requirement involving γ > 1 is a UI-type criterion, and will hold in
particular if φ is bounded.

As an example of how the lemma is motivated, suppose Zε is real valued and
dµε
dµ
= e−I(x)/ε defines a family {µε}ε>0 absolutely continuous with respect to some

reference measure. Then

E[e
1
ε
φ(Zε))] =

∫

R
e

1
ε
(φ(x)−I(x))d x .

Suppose further that (φ−I) is a smooth concave function with a unique maximizer
x̂ . Then by Taylor’s theorem,

φ(x)− I(x)≈ φ( x̂)− I( x̂)−
1

2
(x − x̂)2G(x),

so plugging this into the expression above,

E[e
1
ε
φ(Zε)]≈ e

1
ε
(φ( x̂)−I( x̂))

∫

R
e

1
2ε
(x− x̂)2G(x)d x .

The lemma says that ε log
∫

R e
1
2ε
(x− x̂)2G(x)d x → 0.

4.1 Lower bound for l.s.c. functions

4.1.1 Lemma. If φ : X → R is l.s.c. and {Zε}ε>0 satisfy the LDP lower bound
with (not necessarily good) rate function I then

lim inf
n→∞

ε logE[e
1
ε
φ(Zε)]≥ sup

x∈X
{φ(x)− I(x)}.

PROOF: Let x ∈ X and δ > 0 small be given. Since φ is l.s.c. there is r > 0 such
that infy∈B(x ,r)φ(y)≥ φ(x)−δ.

lim inf
ε→0

ε logE[e
1
ε
φ(Zε)]≥ lim inf

ε→0
ε logE[e

1
ε
φ(Zε)1B(x ,r)(Zε)]

≥ (φ(x)−δ)− inf
y∈B(x ,r)

I(y)

≥ (φ(x)− I(x))−δ

Take δ→ 0 and the supremum over x . �
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4.2 Upper bound for u.s.c. functions

4.2.1 Lemma. If φ : X → R is u.s.c. and {Zε}ε>0 satisfy the LDP upper bound
(for closed sets) with good rate function I , and if there is γ > 1 such that

lim sup
ε→0

ε logE[eγφ(Zε/ε)]<∞,

then
lim inf

n→∞
ε logE[e

1
ε
φ(Zε)]≤ sup

x∈X
{φ(x)− I(x)}.

PROOF: Assume for now that φ is bounded above by a constant M . Let α > 0 big
and δ > 0 small be given. For each x ∈ {I ≤ α}, there is rx > 0 such that both

sup
B(x ,rx )

φ(y)≤ φ(x) +δ and inf
B(x ,rx )

I(y)≥ I(x)−δ

since φ is u.s.c. and I is l.s.c. Then

limsup
ε→0

ε logE[e
1
ε
φ(Zε)1B(x ,rx )(Zε)]≤ (φ(x) +δ)− inf

y∈B(x ,rx )
I(y)

≤ (φ(x)− I(x)) + 2δ

Cover {I ≤ α} with balls B(x1, rx1
), . . . , B(xn, rxn

), which can be done since I is a
good rate function, and let C =

⋂n
i=1 B(x i , rx i

)c.

limsup
ε→0

ε logE[e
1
ε
φ(Zε)]≤ limsup

ε→0
ε log

� n
∑

i=1

E[e
1
ε
φ(Zε)1B(x i ,rxi

)(Zε)]

+E[e
1
ε
φ(Zε)1C(Zε)]

�

≤max
�

n
max
i=1
{φ(x i)− I(x i) + 2δ}, M −α

�

≤max
�

sup
x∈X
{φ(x)− I(x)}, M −α

�

+ 2δ

Send δ → 0 and α → ∞ to complete the proof of the case when φ is bounded
above. Now assume that, for some γ > 1,

lim sup
ε→0

ε logE[eγφ(Zε)/ε]<∞.

The remainder of the proof is a series of tedious calculations.

E[e
1
ε
φ(Zε)1[M ,∞)(Zε)] = eM/ε E[e

1
ε
(φ(Zε)−M)1[1,∞)(e

1
ε
φ(Zε−M))]

≤ eM/ε E[e
1
ε
(φ(Zε)−M)]

≤ e−(γ−1)M/ε E[e
γ

ε
φ(Zε)]

limsup
ε→0

ε logE[e
1
ε
φ(Zε)1[M ,∞)(Zε)]≤−(γ− 1)M + lim sup

ε→0
ε logE[e

γ

ε
φ(Zε)]
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In particular,

lim
M→∞

lim sup
ε→0

ε logE[e
1
ε
φ(Zε)1[M ,∞)(Zε)] =−∞.

Finally, letting φM denote φ ∧M ,

lim sup
ε→0

ε logE[e
1
ε
φ(Zε)]

≤ lim sup
ε→0

ε log
�

E[e
1
ε
φM (Zε)] +E[e

1
ε
φ(Zε)1[M ,∞)(Zε)]

�

≤max{sup
x∈X
{φM (x)− I(x)}, limsup

ε→0
ε logE[e

1
ε
φ(Zε)1[M ,∞)(Zε)]}

≤max{sup
x∈X

φ(x)− I(x), lim sup
ε→0

ε logE[e
1
ε
φ(Zε)1[M ,∞)(Zε)]}

The result follows by taking M →∞. �

4.3 Laplace principles

Recap: If {Zε}ε>0 satisfies an LDP with good rate function I and φ is continuous
and bounded then

lim
ε→0
ε logE[e

1
ε
φ(Zε)] = sup

x∈X
{φ(x)− I(x)}.

Conversely, if this holds for a family {Zn}∞n=1 and a good rate function I , for all
φ ∈ Cb(X ;R), then we say that {Zn}∞n=1 satisfies a Laplace principle on X with
rate function I . We just saw that the LDP implies the Laplace principle. It can be
shown that the Laplace principle implies the LDP if X is a Polish space.

Bryce (1990) showed that if the measures {µn}∞n=1 are exponentially tight and
the limit

Λφ := lim
n→∞

1

n
logE[enφ(Zn)]

exists for all φ ∈ Cb(X ;R) then {Zn}∞n=1 satisfy the LDP with good rate function
I(x) := supφ∈Cb(X ;R){φ(x)−Λφ}.

4.4 Asymptotically optimal variance reduction

In Monte Carlo simulations, goal is compute EP[G(X )], where we know enough
about the law of X to sample from it, but not enough to compute the expected
value explicitly. Suppose further that G has some properties that make it really
bad to simulate under the original measure. (Think insurance or credit derivatives,
where there is a tiny chance for a huge payout.) If P ∼Q then

EP[G] = EQ[G dP
dQ
]

VarQ(G dP
dQ
) = EQ[G2( dP

dQ
)2]−EQ[G dP

dQ
]2 = EP[G2 dP

dQ
]−EP[G]2
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The idea is to change measure in such a way that this variance is as small as
possible, and then compute EP[G] using this new measure. This problem is not
well posed, because taking dQ

dP
= G/EP[G] would give zero variance, but finding

this Q is as hard are the original simulation problem! Instead, we choose a suitable
class of measures Q over which to minimize EQ[G2( dP

dQ
)2]. One popular class has

are those measures that have density with respect to P of the form

dQλ

dP
(x) = e(λ,x)−Λ(λ)

for a fixed function Λ : X → [0,∞], defined for all λ ∈ DΛ. Hence we wish to
minimize

min
λ∈X ∗
EP[exp(2 log G− (λ, X ) +Λ(λ))],

which is ripe for an LDP approximation. Assume that X = X1 for {Xε}ε≤1 which
satisfies an LDP with good rate function I .

logEP[exp(2 log G(X )− (λ, X ) +Λ(λ))]

= ε logEP[exp((2 log G(Xε)− (λ, Xε) +Λ(λ))/ε)]

when ε = 1. The goal is to find λ which solves

min
λ
ε logEP[exp((2 log G(Xε)− (λ, Xε) +Λ(λ))/ε)]

=min
λ

sup
x
{2 log G(x)− (λ, x) +Λ(λ)− I(x)}

=min
λ

sup
x
{2 log G(x) + (I(x)− (λ, x) +Λ(λ))− 2I(x)}

≥ 2sup
x
{log G(x)− I(x)}

The method is to solve the last problem for the maximizer x∗ and find λ∗ by
attempting to solve I(x∗) = supλ(λ, x∗)−Λ(λ). Then check whether

sup
x
{2 log G(x) + (I(x)− (λ∗, x) +Λ(λ∗))− 2I(x)} ≥ 2sup

x
{log G(x)− I(x)}.

If this happens then the resulting change of measure is asymptotically optimal
(show this). Note that

EP[G2 dP
dQ
] = EQ[G2( dP

dQ
)2]≥ EQ[G( dP

dQ
)]2 = EP[G]2

and

lim
ε→0
ε logE[e

1
ε

log G(Xε)]2 = 2 sup
x∈X
{log G(x)− I(x)}
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so in some sense the asymptotically optimal change of measure over this class
achieves the same asymptotically optimal change over measure over any class.

5 General results

5.1 An existence result for weak LDP

Let X be a regular topological space and A be a base for the topology of X , and
let {µn}∞n=1 be a sequence of Borel measures onX . If limn→∞

1
n

logµn(A) exists for
all A∈ A then there is a weak LDP. More precisely,

5.1.1 Lemma. Suppose that

LA :=− lim inf
n→∞

1

n
logµn(A)

exists for all A∈ A. Let I(x) := sup{LA : A∈ A, x ∈ A}. If

I(x) = sup
A∈A
x∈A

�

− lim sup
n→∞

1

n
logµn(A)

�

then {µn}∞n=1 satisfies a weak LDP.

PROOF: First we check that I is a rate function. Clearly I ≥ 0 since LX = 0. Let
α > 0 be given. If x ∈ {I > α} then there is A ∈ A such that LA > α. But then if
y ∈ A then I(y) > α, so LA ⊆ {I > α}. Therefore {I > A} is open, so {I ≤ α} is
closed and I is l.s.c.

Let G be an open set. Then there is A∈ A such that x ∈ A⊆ G.

lim inf
n→∞

1

n
logµn(G)≥ lim inf

n→∞

1

n
logµn(A) =−LA ≥ I(x),

so we have the LDP lower bound for open sets, pretty much by definition. Up to
this point we have not used the assumption on I .

Let Γ be a compact set. As usual, define Iδ := min{I − δ, 1
δ
}. For any x ∈ Γ

and δ > 0 we can find Ax ,δ ∈ A such that

limsup
n→∞

1

n
logµn(Ax ,δ)≤−Iδ(x).

For any fixed δ > 0, there are x1, . . . , xN ∈ Γ such that Γ⊆
⋃N

i=1 Ax i ,δ.

lim sup
n→∞

1

n
logµn(Γ)≤ lim sup

n→∞

1

n
log

N
∑

i=1

µn(Ax i ,δ)

=
N

max
i=1

limsup
n→∞

1

n
logµn(Ax i ,δ)

≤−
N

min
i=1

Iδ(x i)≤− inf
x∈Γ

Iδ(x)

Taking δ→ 0 completes the proof of the LDP upper bound for compact sets. �
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5.1.2 Example. This result is sometimes applied as follows. When X is a topo-
logical vector space, choose A to be the base of open convex subsets. Let f (n) :=
− logµn(A) and try to show that f is sub-additive, i.e. f (n+m)≤ f (n)+ f (m). If
this can be done then limn→∞ f (n)/n either exists (if µn(A) > 0 for all n) or is∞
(if µn(A) = 0 eventually). The above lemma then gives a weak LDP.

5.2 Contraction principle

LetX and Y be topological spaces. Let {µn}∞n=1 be a sequence of Borel probability
measures on X and g : X → Y be a continuous function. If {µn}∞n=1 satisfies
the LDP in X with good rate function I , then the sequence of induced measures
{νn = µn g−1}∞n=1 satisfies the LDP in Y with good rate function

I g(y) := inf
x∈g−1({y})

I(x).

PROOF: Clearly I g ≥ 0. Note that I being good implies that I g(y) = I( x̂) for some
x̂ such that g( x̂) = y . Whence

{I g ≤ α}= {g(x) : I(x)≤ α}= g({I ≤ α}),

which is compact, so I g is a good rate function. (Note that this argument breaks
down if I is not good. In fact, if I is not good then I g is not necessarily a rate
function. Consider I ≡ 0 and g = exp, which has I g = χ[0,∞) which is not l.s.c.) If
G is open then

lim inf
n→∞

1

n
logνn(G) = lim inf

n→∞

1

n
logµn(g

−1(G))

≥− inf
x∈g−1(G)

I(x) since g−1(G) is open

=− inf
y∈G

I ′(y)

Similarly, if Γ is closed then

limsup
n→∞

1

n
logνn(Γ) = limsup

n→∞

1

n
logµn(g

−1(Γ))

≤− inf
x∈g−1(Γ)

I(x) since g−1(Γ) is closed

=− inf
y∈Γ

I ′(y) �

5.3 Approximate contraction principle

Consider the same setting as the last section, but with g : X → Y measurable
but not necessarily continuous. Suppose that {gm}∞m=1 is a sequence of continuous
functions X →Y . In what sense should gm→ g so that the contraction principle
holds for g?
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5.3.1 Theorem. Let (Ω,F ,P) be the underlying probability space, X and Y be
Polish spaces, Xn : Ω→X be random variables with distribution µn, Yn = g(Xn),
and Y m

n = gm(Xn). Assume that gm→ g in the following two ways.
(i) For all δ > 0,

lim
m→∞

lim sup
n→∞

1

n
logP[dY (Yn, Y m

n )> δ] =−∞.

In this case we say that {Yn}∞n=1 and {{Y m
n }
∞
n=1}

∞
m=1 are approximately expo-

nentially equivalent.
(ii) For all α > 0,

lim
m→∞

sup
x∈X

I(x)≤α

dY (g
m(x), g(x)) = 0.

This is uniform convergence on level sets of the rate function. Note that this
implies that g is continuous where I is finite valued.

If these conditions are satisfied then {νn = µn g−1}∞n=1 satisfies an LDP with good
rate function I g(y) := infx∈g−1({y}) I(x).

5.3.2 Example. One application of this result is as follows (this example will be
discussed in detail later on). Suppose X and W are independent stochastic pro-
cesses and that (X , W ) satisfy some sort of LDP. The stochastic integral

(X , W ) 7→
∫ T

0

f (X t)dWt ,

is a measurable map, but it is not always continuous. Discrete time approxima-
tions are often continuous functionals, and they often approach the stochastic
integral in the ways required by the theorem.

6 Sample Path LDP

What is the probability that the path of a process is in a given set of paths? We will
leverage the finite dimensional results to obtain results about measures on path
spaces.

6.1 Mogulskii’s theorem

Consider the following setup. Let {X i}∞i=1 be i.i.d. Rd valued random variables
distributed as µ. Assume for simplicity that DΛ = Rd , where Λ is the cumulant
generating function of µ, and let Λ∗ be the Fenchel-Legendre transform of Λ, as
usual. The objects under consideration are the pure jump processes

Zn(t) :=
bntc
∑

i=1

X i
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defined for t ∈ [0, 1]. Let µn be the distribution of Zn on the space of bounded
measurable paths, (L∞([0, 1]),‖ · ‖∞). Mogulskii’s theorem states that {µn}∞n=1
satisfies the LDP with good rate function

I(ϕ) =

(

∫ 1

0
Λ∗(ϕ̇(t))d t when ϕ ∈ AC([0,1]) and ϕ(0) = 0

∞ otherwise,

where ϕ̇ is the (almost sure) derivative of ϕ.
First, some motivation. Why should this be true? If

ZΠn = (Zn(t1), . . . , Zn(t|Π|))

where Π = {0 < t1 < · · · < t|Π| ≤ 1} is a fixed partition and µΠn is the distribution
of ZΠn on (Rd)|Π|, then {µΠn }

∞
n=1 satisfies the LDP with good rate function

IΠ(z) :=
|Π|
∑

i=1

(t i − t i−1)Λ
∗
�

zi − zi−1

t i − t i−1

�

,

where z0 = 0 and t0 = 0 are set by definition. (See the problem set associated
with lecture 4 for hints toward a proof of this fact.) Taking the size of the partition
to zero yields the integral.

We will prove Mogulskii’s theorem with the aid of three main lemmas. Recall
that Xn and Yn are exponentially equivalent if, for all δ > 0,

lim
n→∞

1

n
logP[|Xn − Ŷn|> δ] =−∞.

Note that if Xn and Yn are exponentially equivalent and one satisfies an LDP with
rate function I then the other does as well.

6.1.1 Lemma. Let Z̃n(t) = Zn(t) + (t − bntc/n)Xbntc+1 be the polygonal process
obtained from the random walk. Then Z̃n and Zn are exponentially equivalent in
L∞([0,1]).

PROOF: Omitted, but similar to the calculation of the special case for normal ran-
dom variables found in the proof of Schilder’s theorem, below. �

The point of 6.1.1 is that it suffices to prove the LDP for Z̃n, and this is easier
because the Z̃n are continuous processes.

6.1.2 Lemma. {µ̃n}∞n=1 is exponentially tight in (C0([0, 1]),‖ · ‖∞), the space of
continuous functions null at zero.

PROOF: Show that Kα := {I ≤ α} is compact by proving it is bounded and equicon-
tinuous. �
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6.1.3 Lemma. Set X := { f : [0,1] → Rd : f (0) = 0} and endow it with the
topology of pointwise convergence (i.e. the product topology on (Rd)[0,1]). Then
{µ̃n}∞n=1 satisfies an LDP in X with good rate function I .

Given these lemmas, the proof of Mogulskii’s theorem is as follows. Note first
that D I ⊆ C0([0,1]) ⊆ X , and for all n, µ̃n(C0([0, 1])) = 1. Therefore, by 6.1.3,
{µ̃n}∞n=1 satisfies an LDP in C0([0,1]) with the topology inherited from X . This
is not the uniform topology, unfortunately. However, every basic open set in this
topology, Vt,x ,g := {g ∈ X : |g(t)− x | < δ} ∩ C0([0,1]), is open in the uniform
topology on C0, so the uniform topology is finer than the topology of pointwise
convergence. In particular the identity map from the uniform topology to the
product topology is continuous.

The inverse contraction principle states that if f : X → Y is a continuous
bijection and {µn}∞n=1 is exponentially tight then if it satisfies an LDP on Y with
rate function I (automatically good by exponential tightness) then it satisfies an
LDP on X with rate function I ◦ f .

Finally, taking the LDP on C0([0, 1]) to an LDP on L∞([0, 1]) is accomplished
by noting that C0 is a closed subset and carries the inherited topology, and that
D I ⊆C0.

PROOF (OF 6.1.3): The first step is to the show that {µ̃n}∞n=1 satisfies an LDP in X
with good rate function

IX (φ) := sup
Π

IΠ(φ) = sup
Π

|Π|
∑

i=1

(t i − t i−1)Λ
∗
�

φ(t i)−φ(t i−1)
t i − t i−1

�

,

where the supremum is taken over all partitions Π of [0, 1]. The second step is to
prove that I = IX . To do this, first apply Jensen’s inequality to see

IΠ(φ) =
|Π|
∑

i=1

(t i − t i−1)Λ
∗
�

φ(t i)−φ(t i−1)
t i − t i−1

�

≤
∫ 1

0

Λ∗(φ̇(t))d t = I(φ)

for all partitions Π and all functions φ. On the other hand, consider the specific
partition

Πk =
�

0<
1

k
< · · ·<

k− 1

k
≤ 1
�

.

For φ ∈ AC([0, 1]),

IX (φ)≥ lim sup
k→∞

IΠk(φ)

= lim sup
k→∞

k
∑

`=0

1

k
Λ∗
�

k
�

φ

�

`

k

�

−φ
�

`− 1

k

���

≥ I(φ).

If φ is not absolutely continuous then there is ε > 0 such that, for all δ > 0, there
is a partition Πδ = {0≤ s2 < t1 ≤ s2 < t2 ≤ · · · ≤ sk < tk ≤ 1} with

∑k
i=1 t i−si < δ
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but
∑k

i=1 |φ(t i)−φ(si)| ≥ ε.

IX (φ)≥ IΠ
δ

(φ) = sup
λ∈(Rd )k

k
∑

i=1

(λi ,φ(t i)−φ(si))− (t i − si)Λ(λi)

≥ ρε−δ sup
|λ|=ρ

Λ(λ)

where ρ > 0 is any fixed radius and λi := ρ(φ(t i) − φ(si))/|φ(t i) − φ(si)| is
chosen specifically. Since we have assumed DΛ = Rd , the term being subtracted is
finite valued, and can be made arbitrarily small by sending δ→ 0. Taking ρ→∞
then shows that IX (φ) =∞.

To prove the first step, we need the concept of a projective limit. Let (J ,≤) be
a directed set, (Y j) j∈J be a family of topological spaces, and (pi j)i≤ j be a family
of compatible projections pi j : Y j → Yi , i.e. continuous functions such that pik =
pi j ◦ p jk for all i ≤ j ≤ k. Set Y =

∏

j∈J Yi , and define p j : Y → Y j to be the
projection. Endow Y with the weak topology defined by {p j} j∈J (i.e. the product
topology). Define Ŷ = lim←−Yi to be the subspace of Y , with the induced topology,
such that y ∈ Ŷ if pi(y) = pi j(p j(y)), for all i ≤ j. The following facts are true:
(i) Ŷ is closed in Y , (ii) the p j , restricted to Ŷ , are continuous on Ŷ and generate
the topology, (iii) the projective limit of closed sets is closed, and (iv) the projective
limit of nonempty compact subsets is nonempty and compact. In our setting, J is
the collection of all partitions j of [0, 1], ordered by containment, Y j = R| j|, and
Ŷ = X , with p j : ϕ 7→ (ϕ(t1), . . . ,ϕ(t| j|)). If {µn}∞n=1 is a family of measures on
Ŷ such that, for all j ∈ J , {µn ◦ p−1

j }
∞
n=1 satisfies an LDP with good rate function

I j , then {µn}∞n=1 satisfies an LDP with good rate function Î(y) := sup j∈J I j(p j(y)).
Indeed, Î is a good rate function because

{ Î ≤ α}= Ŷ ∩
⋂

j∈J

{I j ≤ α}= lim←−{I
j ≤ α},

which is compact because each I j is good. If G ⊆ X̂ is open and x ∈ A then there
is j ∈ J and U j ⊆ Y j open such that x ∈ p−1

j (U j), so

lim inf
n→∞

1

n
logµn(A)≥ lim inf

n→∞

1

n
logµn(p

−1
j (A))

≥− inf
y∈U j

I j(y)≥−I j(p j(x))≥− Î(x).

The upper bound is a bit more work. First show that F = lim←− p j(F). Second let

α < infx∈F Î(x) and show that { Î ≤ α} ∩ F =∅. Then lim←− p j(F)∩ {I j ≤ α}=∅, so

there is j ∈ J such that p j(F)∩ {I j ≤ α}=∅. Now, F ⊆ p−1
j (p j(F)), so

limsup
n→∞

1

n
logµn(F)≤ limsup

n→∞

1

n
logµn(p

−1
j (p j(F))≤− inf

y∈p j(F)
I j(y)<−α

�
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6.2 Schilder’s theorem

The objects under consideration now are Wn(t) := 1p
n
W (t), where W is a Brow-

nian motion on [0,1]. Schilder’s theorem is essentially a corollary of Mogulskii’s
theorem, though it was originally proven ten years earlier.

6.2.1 Theorem (Schilder). Let (Wt)t∈[0,1] be a standard d-dimensional Brownian
motion. Set Wn(t) := 1p

n
W (t) and let µn be the distribution of Wn on the space

(C0([0, 1]),‖ · ‖∞). Then {µn}∞n=1 satisfies the LDP with good rate function

Iw(φ) =

(

1
2

∫ 1

0
|φ̇(t)|2d t for φ ∈ H1

∞ otherwise

where H1 := {φ ∈ AC([0,1]) : φ(t) =
∫ t

0
ψ(s)ds,ψ ∈ L2([0,1])} is Cameron-

Martin space, the collection of absolutely continuous functions with (a.s.) deriva-
tive in L2.

Remark. (i) It is not hard to extend this result to Brownian motion on [0, T].
(ii) In Stroock and Deuschel, they prove this result on the space of continuous

functions with sublinear growth, {ω ∈ C0([0,∞)) : limt→∞ω(t)/t = 0}
under the norm |ω| := supt>0 |ω(t)|/(1+ t).

PROOF: Set Ŵn(t) = Wn(bntc/n). We can identify Ŵn with Zn(t) =
1
n

∑bntc
i=1 X i ,

where X i ∼ N(0,1) i.i.d. By Mogulskii’s theorem, {µ̂n}∞n=1 satisfies an LDP with
good rate function Iw on (L∞([0, 1]),‖ · ‖∞).

Need to show that Wn and Ŵn are exponentially equivalent. For any δ > 0,

P
h

sup
0≤t≤1

|Wn(t)− Ŵn(t)|> δ
i

≤ nP
h

sup
0≤t≤1/n

|Wn(t)|> δ
i

= 2nP
h

sup
0≤t≤1/n

W (t)> δ
i

= 2nP[W (1/n)>
p

nδ]

≈ g(n)e−n2δ2
.

(Something is not quite right with the above calculation.) Therefore

lim
n→∞

1

n
logP

h

sup
0≤t≤1

|Wn(t)− Ŵn(t)|∞ > δ
i

=−∞,

so {µn}∞n=1 satisfy the LDP with good rate function Iw on L∞([0,1]). But C0([0,1])
is a closed subspace of L∞([0,1]) and D Iw

⊆ C0([0, 1]), so it satisfies the LDP on
this space. �
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6.3 Friedlin-Wentzell theory

In this section we extend Schilder’s theorem to Itô diffusions. Consider a sequence
of Rk valued diffusions

dX n
t = b(X n

t )d t +
1
p

n
σ(X n

t )dWt , X n
0 = 0,

where W is a d-dimensional Brownian motion (the same for all n). Let µn be the
distribution of X n on C0([0, 1];Rk). The idea is that µn→ δϕ, where ϕ solves the
ODE ϕ̇t = b(ϕt), ϕ0 = 0.

6.3.1 Example. Consider the Ornstein-Uhlenbeck process with k = d = 1.

dX n
t =−X n

t d t +
1
p

n
dWt , X n

0 = 0.

The SDE can be solves explicitly.

X n
t =

∫ t

0

e−(t−s) 1
p

n
dWs =

1
p

n
Wt −

∫ t

0

e−(t−s) 1
p

n
Wsds =: f

�

1
p

n
W
�

t
,

and in this case f : C0([0, 1];R) → C0([0, 1];R) is in fact continuous. By the
Contraction Principle, we have an LDP for {µn}∞n=1, with

IX (ϕ) = inf
�

1

2

∫ 1

0

ψ̇2
s ds :ψ ∈ H1,ϕ = f (ψ)

�

The infimum is taken over those ψ such that ϕt =
∫ t

0
e−(t−s)ψ̇sds (by integration

by parts). This reduces to the differential equation ψ̇t = ϕ̇t +ϕt , so we may write

IX (φ) =
1

2

∫ 1

0

(ϕ̇t +ϕt)
2d t =

1

2

∫ 1

0

ϕ̇t − b(ϕt))2

σ(φt)2
d t.

In general X n is not a continuous image of the Brownian motion. We proceed
as though it were and come up with appropriate conditions. If

X n
t = x +

∫ t

0

b(X n
s )ds+

∫ t

0

σ(X n
s )

1
p

n
dWs = f

�

1
p

n
W
�

t

and f were continuous then {µn}∞n=1 would satisfy an LDP by the contraction
principle, with

IX (ψ) = inf
�

1

2

∫ 1

0

ϕ̇2
s ds :ψt = x +

∫ t

0

b(ψs)ds+

∫ t

0

σ(ψs)ϕ̇sds
�

.

6.3.2 Theorem. Assume b and σ are bounded and uniformly Lipschitz. Then
{µn}∞n=1 satisfies the LDP in C0([0, 1];Rk) with good rate function IX above.
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Remark. If σσT is uniformly elliptic then

IX (ϕ) =

(

1
2

∫ 1

0
|σ−1(ϕt)(ϕ̇t − b(ϕt))|2d t ϕ ∈ H1

x

∞ otherwise.

Some of the assumptions on b and σ may be relaxed. In particular, the theorem
holds if σσT (x)≤ K(1+ |x |2)Id and |b(x)| ≤ K

p

1+ |x |2.

PROOF: The result follows by invoking the Approximate Contraction Principle. As-
sume for simplicity that x = 0. For each m, define the function

F m :C0([0, 1];Rd)→C0([0,1];Rk) by F m(g)0 = 0 and

F m(g)t = F m(g)k/m + (t − k/m)b(F m(g)k/m) +σ(F
m(g)k/m)(gt − gk/m)

for t ∈ [k/m, (k + 1)/m) and k = 0, . . . , m− 1. Define F : {Iw <∞} → AC[0, 1]
via

F(g)t =

∫ t

0

b(F(g)s)ds+

∫ t

0

σ(F(g)s) ġsds.

Each F m is continuous (by the boundedness and Lipschitz conditions). Let X n,m
t =

F m( 1p
n
W )t . To invoke the principle, we need to show that

lim
m→∞

lim sup
n→∞

1

n
logP[‖X n,m − X n‖∞ > δ] =−∞

and
lim

m→∞
sup

g:Iw(g)≤α
‖F m(g)− F(g)‖∞ = 0.

�

7 LDP for occupancy times

The remainder of the seminar is dedicated to LDP for occupancy times of ergodic
Markov processes. The plan is to first study LDP for Markov chains taking values
in a finite state space ΣN := {1, . . . , N}, using the Gärtner-Ellis theorem. Then
we will study Markov chains taking values in Polish spaces, and time permitting,
we will talk about continuous parameter Markov processes taking values in Polish
spaces.

In each case we will appeal to an abstract result to get an LDP, and then we
will develop alternate, friendlier, expressions for the rate function.

7.1 Finite state Markov chains

Let {Yi}∞i=1 be a Markov chain taking values in ΣN . Let Π denote the N × N
transition matrix, sometimes called a stochastic matrix. Then Πi j ≥ 0 for all 1 ≤
i, j ≤ N and Π1 = 1. The setup is Ω = ΣN0

N , F is the power set, Y is the canonical
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process, and {PΠσ }σ∈Σ is a (Markov) family of measures such that PΠσ [Y0 = σ] = 1
and

PΠσ [Yn+1 ∈ Γ|σ(Ym : m≤ n)] = Π(Yn,Γ)

Write PΠ,n
σ (y1, . . . , yn) = Π(σ, y1)Π(y1, y2) · · ·Π(yn−1, yn).

Let f : Σ→ Rd be a function and consider the sequence of random variables
Zn =

1
n

∑n
i=1 f (Yi). For example, f (i) = (δi,1, . . . ,δi,n) ∈ RN gives Zn = LY

n , the
setting for Sanov’s theorem. Let µn,σ be the distribution of Zn on Rd under PΠ,n

σ .
If there were a measure µ such that Π(i, j) = µ( j) for all i and j then the Yi ’s

would be i.i.d. and we would be in the setting of Cramér’s theorem, so there is an
LDP with rate function

Λ∗ = sup
λ∈Rd
(λ, x)− logEµ[e(λ, f (Y1))].

What conditions do we need on Π so that, if Λ(σ)n (λ) := logEPΠ,n
σ [e(λ,Zn)] then

limn→∞
1
n

logΛ(σ)n (nλ) exists. We would also like to know when this limit is inde-
pendent of σ.

7.1.1 Assumption. Π is irreducible, i.e. for all 1 ≤ i, j ≤ N there is m(i, j) such
that Πm(i, j)(i, j) > 0. In words, the chain can move from any state to any other
state with positive probability.

7.1.2 Theorem (Perron-Frobenius). Let B be an N × N irreducible matrix with
non-negative entries. Set

ρ(B) = sup
‖x‖=1

x≥0

min
1≤i≤N

(Bx)i
x i

.

(i) ρ(B) is an eigenvalue of B.
(ii) There are left and right eigenvectors associated to ρ(B) with strictly positive

entries, and the eigenspaces are one dimensional.
(iii) If λ is any other eigenvalue of B then |λ| ≤ ρ(B).
(iv) If ϕ ∈ RN with ϕ� 0 then, for all i,

lim
n→∞

1

n
log(Bnϕ)i = ρ(B) = lim

n→∞

1

n
log((BT )nϕ)i .

7.1.3 Theorem. Let Π be an irreducible stochastic matrix. For λ ∈ Rd define the
N × N irreducible (but not necessarily stochastic) matrix Πλ via

Πλ(i, j) = e(λ, f ( j))Π(i, j).

Then {µn,σ}∞n=1 satisfies the LDP with good rate function

I(x) := sup
λ∈Rd
{(λ, x)− logρ(Πλ)}
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PROOF: We need only to show that

lim
n→∞

1

n
Λn(nλ) = lim

n→∞

1

n
logEPΠ,n

σ [en(λ,Zn)]

exists and is finite for all λ ∈ Rd , and then apply the Gärtner-Ellis theorem.

1

n
logEPΠ,n

σ [en(λ,Zn)] =
1

n
logEPΠ,n

σ [e(λ,
∑n

i=1 f (i))]

=
1

n
log

∑

y1,...,yn

Π(σ, y1)e
(λ, f (y1)) · · ·Π(yn−1, yn)e

(λ, f (yn))

=
1

n
log

N
∑

yn=1

(Πλ)n(σ, yn)

=
1

n
log

N
∑

yn=1

(Πλ)n(σ, yn)1

=
1

n
log((Πλ)n1)σ = logρ(Πλ) �

Remark. Note that I does not depend on σ. In the setting of Sanov’s theorem,
Πλ(i, j) = eλ jΠ(i, j), as might have been suspected. Therefore we have two ex-
pressions for the rate function

sup
λ∈RN
{(λ, x)− logρ(Πλ)}= sup

λ∈RN
{(λ, x)−Λ(λ)}

where Λ(λ) = limn→∞
1
n

logEPΠ,n
σ [en(λ,LY

n )]. Further, it can be shown these are
equal to

Î(x) =







supu∈RN

u�0

∑N
i=1 x i log

�

ui

(uΠ)i

�

x ∈ M1(Σ)

∞ otherwise.

Indeed, LY
n ∈ M1(Σ) = {x ∈ Rn : x ≥ 0, x · 1 = 1}, so the LDP lower bound shows

that they are equal off of M1(Σ). Fix x ∈ M1(Σ). For λ ∈ RN set u to be the left
principle eigenvector of Πλ. Then

(λ, x)− logρ(Πλ) =
N
∑

i=1

x i log
�

ui

(uΠ)i

�

.

On the other hand, for u ∈ RN with u� 0, set λ j := log(ui/(uΠ) j).

7.2 Markov chains in Polish spaces

Let {Yi}∞i=1 be a Markov chain taking values in Σ, a complete separable metric
space. The setup is Ω = ΣN0 with the product topology, F =B(Ω) = (B(Σ))N0 ,
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the Borel σ-algebra, Y is the canonical process, Fn = σ(Ym : m≤ n), and {Pσ}σ∈Σ
is a (Markov) family of measures such that Pσ[Y0 = σ] = 1 for all σ ∈ Σ and

Pσ[Yn+1 ∈ Γ|Fn] = Π(Yn,Γ)

for a fixed stochastic kernel Π : Σ×B(Σ)→ R.
The main object under consideration is LY

n (ω) := 1
n

∑n
i=1 δYi(ω), the empirical

measure of {Yi}ni=1, a form of “occupancy time.” Note that LY
n (ω) ∈ M1(Σ). Call

µn,σ the distribution of LY
n under Pσ. Note that µn,σ ∈ M1(M1(Σ)). Yikes!

Structure of M1(Σ)

Let M(Σ) denote the space of all finite signed measures on (Σ,B(Σ)). Then
M1(Σ) is convex subset of M(Σ). We put the topology of weak convergence on
M(Σ), with sub-basis

U f ,x ,δ = {ν ∈ M(Σ) : |ν( f )− x |< δ}

with x ∈ Σ, f ∈ Cb(Σ;R), and δ > 0. With this topology M(Σ) is locally convex
and Hausdorff. Endow M1(Σ) with the relative topology. The topological dual of
M(Σ) with this topology is Cb(Σ;R). Define the Lévy metric as follows.

dL(µ,ν) := inf
δ>0
{µ(F)≤ ν(Fδ) +δ for all closed sets F}

With this metric, (M1(Σ), dL) is a Polish space carrying the same topology as above.
The plan is to find a baseA for M1(Σ) such that, for all ν ∈ M1(Σ),

sup
A∈A
ν∈A

�

− lim sup
n→∞

1

n
log(sup

σ∈Σ
µn,σ(A))

�

= sup
A∈A
ν∈A

�

− lim inf
n→∞

1

n
log( inf

σ∈Σ
µn,σ(A))

�

.

This will give a weak LDP for {µn,σ}∞n=1. Then we will prove exponential tightness,
giving the full LDP. Finally, we will exhibit alternate, nicer, characterizations of the
rate function.
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