Modal Propositional Logic.
-

Propositional Logic: Prop. Propositional variables p;,
/\1 \/, Ty T 7.

Modal Logic. Prop+ [, <.

First-order logic. Prop+ V, 3, function symbols f,
relation symbols R.

Prop € Mod C FOL

)

Standard
Translation

|

Core Logic —2007/08-1ab — p. 2/30



The standard translation (1).

-

Let P; be a unary relation symbol and R a binary relation

symbol.

We translate Mod into £ = {P;,R: i € N}.
For a variable =, we define ST, recursively:

=ST ()
STx(p) V STy ()

3y (R(z,y) A STy ()

|
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The standard translation (2).

fIf (M, R,V) is a Kripke model, let P, := V(p;). If P;is a unaryT
relation on M, let V (p;) := P;.

Theorem.

(M,R,VYE=¢ < (M,P;,R;1eN)EVrST.(p)

Corollary. Modal logic satisfies the compactness theorem.

Proof. Let ® be a set of modal sentences such that every finite set has a model. Look at
O* = {Vx ST, (p); ¢ € ®}. By the theorem, every finite subset of &* has a model. By
compactness for first-order logic, ®* has a model. But then & has a model. g.e.d.

. |
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Bisimulations.

fIf (M, R,V)and (M*, R*, V*) are Kripke models, then a T
relation Z C M x N is a bisimulation if

® IfzZx*, then x € V(p;) ifand only if z* € V(p;).

® If xZ2* and xRy, then there is some y* such that z* R*y*
and yZy*.

® If xZ2* and =*R*y*, then there is some y such that z Ry
and yZy*.

A formula ¢(v) is called invariant under bisimulations if for
all Kripke models M and N, all x € M and y € N, and all
bisimulations Z such that +Zvy, we have

M E p(x) < N E p(y).

. |
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van Benthem.

2 Johan van Benthem

Theorem (van Benthem; 1976). A formula in one free
variable v is invariant under bisimulations if and only if it is
equivalent to ST, (v) for some modal formula ).

Modal Logic is the bisimulation-invariant fragment of

Lfirst-order logic. J
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|7R

ecall the game semantics of intuitionistic propositional

Intuitionistic Logic (1).

-

logic: =qialog ¥-

>

¥

¥

—dialog P — 77'P;

#dialog —7p — D,

#dialog © NV .

Kripke translation (1965) of intuitionistic propositional logic
iInto modal logic:

.

K(p;) = Up;
Kl V) = K(p) VK@)
K(=p) = O-K(p)

|
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Intuitionistic Logic (2).

.

heorem.

-

‘:dialog Y S4 F K(QO)

Consequently, ¢ is intuitionistically valid if and only if K(y)
holds on all transitive and reflexive frames.

|:dialog p—>7"p ~~
\#dialog p—=p
F’édialog PNV P~

Cp — OGUp
LoUp — Up
K(p) vVO-K(ep)
Lp v U=Lp

Cp v OO—p

|
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Provability Logic (1).

Leon Henkin (1952). “If © is equivalent to PA - ¢, what do
we know about p?”

M. H. LOb, Solution of a problem of Leon Henkin, Journal of Symbolic Logic 20
(1955), p.115-118:

PAE ((PAF ©) — ) implies PA + .
Interpret Cly as PA F . Then LOb’s theorem becomes:
(L6b) (L — ¢) — Ce.

LGL is the modal logic with the axiom (L&b). J
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Provability Logic (2).
-

fTheorem (Segerberg-de Jongh-Kripke; 1971). GL F ¢ if
and only if ¢ is true on all transitive converse wellfounded
frames.

A translation R from the language of model logic into the
language of arithmetic is called a realization if

R(L) = L
R(—p) = —R(y)
R(pVy) = Rp)V R()

R(Op) = PAF R(p).

Theorem (Solovay; 1976). GL F ¢ if and only if for all
realizations R, PA - R(yp).

. |
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Modal Logics of Models (1).
5 -

ne example: Modal logic of forcing extensions.

- - Y _'

“F iR A
.....
......

T S Joel D. Hamkins
A function H is called a Hamkins translation if

H(l) = L1
H(—p) = -—H(p)
H(pvy) = H(p)V H(®)
H($p) = “there is a forcing extension in which H () holds”.

The Modal Logic of Forcing: Force := {p; ZFCF H(y)}.

. |
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Modal Logics of Models (2).
f1.?0rce .= {p; ZFC + H(yp)}. T

Theorem (Hamkins).
1. Force t/ S5.
2. Force - S4.

3. There is a model of set theory V such that the Hamkins
translation of S5 holds in that model.

Joel D. Hamkins, A simple maximality principle, Journal of Symbolic Logic 68 (2003),
p. 527-550

Theorem (Hamkins-L). Force = S4.2.

Joel D. Hamkins, Benedikt Lowe, The Modal Logic of Forcing, Transactions of the AMS
360 (2008)

. |
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Tarski (1).

Alfred Tarski
1902-1983

Teitelbaum (until c. 1923).

1918-1924. Studies in Warsaw. Student of Lesniewski.

1924. Banach-Tarski paradox.
1924-1939. Work in Poland.
1933. The concept of truth in formalized languages.

From 1942 at the University of California at Berkeley.

|
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°

°

Tarski (2).

Undefinability of Truth. T
Algebraic Logic.

Logic and Geometry.

s A theory T admits elimination of quantifiers if every
first-order formula is T-equivalent to a quantifier-free
formula (Skolem, 1919).

s 1955. Quantifier elimination for the theory of real
numbers (“real-closed fields”).

» Basic ideas of modern algebraic model theory.

» Connections to theoretical computer science:
running time of the quantifier elimination algorithms.

|
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The puzzle of truth.
| -

# Eubulides. “A man says he is lying. Is what he says true
or false?”

#® Sophismata.

® Buridan’s Proof of God’s Existence.
(1) God exists.

(2) (1) and (2) are false.

. |
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Tarski & Truth (1).
-

Alfred Tarski, The concept of truth in the languages of the
deductive sciences, Prace Towarzystwa Naukowego Warsza-

wskiego, Wydzial Il Nauk Matematyczno-Fizycznych 34
(1933)

We say that a language £ is saturated if there are

® an assignment ¢ — t, of L-terms to L-sentences,

® 3 surjective assignment  — F,. of £L-formulae in one free variable to objects.

Let T" be an L-theory and ®(x) be an L£-formula with one free variable. We
say that @ is truth-adequate with respect to T’ if

® forall ¢, either T+ ®(t,) or T'+ —~®(t,,) (totality), and
® for all ¢, we have that
TEp«— Cb(tgo)

L (Adequacy; “Tarski’s T-convention”).

|
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Tarski & Truth (2).
| -

TEe— O(ty,).

Theorem (Undefinability of Truth). If £ is saturated and 7' is
a consistent £-theory, then there is no formula ® that is
truth-adequate for 7.

Proof. Suppose @ is truth-adequate. Consider p(z) := ~®(tp, (5))- This is a formula in one
variable, there is some e such that Fe(z) = =®(tp_ (5)). Consider Fe(e) = =P(tp, (c))-

T F Fe(e)
T F _‘CI)(tFe(e))
T + —Fe(e) (by adequacy)

So, & cannot be total. g.e.d.

. |
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Object language and metalanguage.

-

fIf L is any (interpreted) language, let L1 be £ U {T} where
T is a unary predicate symbol. If 7" is any consistent theory,
just add the Tarski biconditional

p < T(ty)

to get Tr.

Now T is a truth-adequate predicate with respect to T+, but
only for sentences of L.

The metalanguage L1 can adequately talk about truth in
the object language L.

. |
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Unproblematic sentences.

-

T(toso-4). 2+2=41Is true.’
T(tr(ty,,_q))- Itistruethat 2 +2 =41is true”

© o o

~

(tﬂT(tT(tm:él))ﬂp). “It is true that (If it is false that
2+ 2 =4Iis true, then ¢ holds.)”

Well-foundedness.

. |
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An inductive definition of truth (1).
-

fLet L be a language without truth predicate. We shall add a
partial truth predicate T to get L
Suppose we already have a partial truth predicate T
interpreting T. Then we can define T" := {t,; pistrueif T
IS interpreted by 7.

Let
To = {ty; ¢lis atrue L-sentence}
Tiy1 = (Th)"
Iw = JTi
ieN

Then T is a partial truth predicate that covers all of the
L“unproblematic” cases. All? J
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An inductive definition of truth (2).
B -

To := {ty; pisatrue L-sentence}
Tiy1 = ()T
T. = T

1€N

If ¢ is a formula, let T%(¢) = ¢ and T (¢) = T(tpn(,))-
Let ¢» be the formalization of
“Forall n, T*(2+4+2=4).

The formula ¢ is not in the scope of any of the partial truth
predicates T}, so it can’'t be in T,.

But T(t,) is intuitively "unproblematic”.

. |
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An inductive definition of truth (3).
-

More formally: T, is not a fixed-point of the ™ operation.

-

_|_
Tro ; (Too) ™.
Use ordinals as indices:
T, = T
Ta—l—l = (Ta)+
Ty = U T.,

a<l

Theorem. There is a (countable) ordinal « such that
Ta — La+1-

. |
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The source of the problem.

- N

#® What is the source of the problem with the Liar?

# Why didn’'t we have any problems with the
“‘unproblematic” sentences?

Self-reference

#® Liar. “This sentence is false.” 4

® Nested Liar. “The second sentence is false.”—“The first
sentence is true.”

A
o o
~—

® “This sentence has five words.”

. |
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Pointer Semantics (1).

- N

Haim Gaifman, Pointers to truth, Journal of Philosophy 89 (1992), p. 223—-261

o

Haim Gaifman, Operational pointer semantics: solution to self-referential puzzles. |I.
Proceedings TARK II, p. 43-59

® Thomas Bolander, Logical Theories for Agent Introspection, PhD thesis, Technical
University of Denmark 2003

Pointer Language: Let p,, be (countably many) propositional
variables.

® Every p, is an expression.
® | and T are expressions.
® |f £ is an expression, then —F is an expression.

® |f E; is an expression, then N\; E; and \/,; E; are expressions.

If £/ is an expression and n is a natural number, thenn : E'is
a clause. (Interpretation. “p,, states £".) J
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Pointer Semantics (2).

-

Every p,, is an expression.

1 and T are expressions.

e o0 b0

If £ is an expression and n is a natural number, then n : E is a clause.

Examples.
The Liar:

The Truthteller:
One Nested Liar:

Two Nested Liars:

.

_o = O O O

If £/ is an expression, then —F is an expression.

If E; is an expression, then A\, E; and \/, E; are expressions.

: pQ.-
. PO-
: P1.
. Po-
: Pp1.
: TPo.

|
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Pointer Semantics (3).

- N

Every p,, is an expression.
1 and T are expressions.

If £/ is an expression, then —F is an expression.

e o0 b0

If E; is an expression, then A\, E; and \/, E; are expressions.

If £ is an expression and n is a natural number, then n : E is a clause.

# An interpretation is a function 7 : N — {0, 1} assigning

truth values to propositional letters. I extends naturally
to all expressions.

® Ifn: Eis aclause, we say that / respects n: I if
I(n)=1I1(F).

# If X is a set of clauses, we say that it is paradoxical if
there is no interpretation that respects all clauses in 3.

. |
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Paradoxicality of the Liar.

- N

The Liar: 0:-pg. The Truthteller: 0 : po.
One Nested Liar: 0:—-p;. Two Nested Liars: 0 : —p;.
1: po. 1: —=pg.
Paradoxical Nonparadoxical

There are four relevant interpretations:

Ioo 0—0;1—0
Io1 0—0;1—1
1o 0O—1;1—0
111 O—1;1—1

. |
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The Truthteller.
B

fWhat IS the problem with the truthteller and the two nested
liars?
Both Iy; and I;( are interpretations, so the two nested liars
are nonparadoxical. But: the interpretations disagree about
the truthvalues.
We call a set of clauses > determined if there is a unique
Interpretation.
The truthteller and the two nested liars are nonparadoxical
but also nondetermined.

. |
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The dependency graph.
. N

et X be a (syntactically consistent) set of clauses. Then
we can define the dependency graph of X as follows:

® V :={n; p, occurs in some clause in >}.

® nEmifandonlyifn: X € ¥ and p,, occurs in X.

Liar and Truthteller:
0
Nested Liar(s): -

O/—&

n is selfreferential if there is a path from n to n in the
dependency graph.

1

Note. Selfreference does not imply paradoxicality!

. |
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-

>

Yablo’s Paradox.
-

Let £, := A\,~,, piand T := {n: E, ; n € N}.

# The dependency graph of T is (N, <). No clause is

¥

self-referential in Y.
Claim. X is paradoxical.

Proof. Let I be an interpretation.

If I(n) =1,then A\,L,, —p; istrue, so I(i) = 0 for all i > n, in particular for i = n + 1.
Butthen I(A;-,, .1 ~pi) = 0,80 I(V,-, .1 Pi) = 1. Pick ig such that I(ip) = 1 to get
a contradiction.

So, I(n) = 0 for all n. But then I(A,, -p») = 1. Contradiction. g.e.d.

So: Paradoxicality does not imply self-reference.

.

|
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