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Abstract

We prove thatS4 is complete with respect to Boolean combinations of countable unions of convex
subsets of the real line, thus strengthening a 1944 result of McKinsey and Tarski (Ann. of Math. (2) 45
(1944) 141). We also prove that the same result holds for the bimodal systemS4 + S5 + C, which is
a strengthening of a 1999 result of Shehtman (J. Appl. Non-Classical Logics 9 (1999) 369).
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1. Introduction

It was shown in McKinsey and Tarski [8] that every finite well-connected topological
space is an open image of a metric separable dense-in-itself space. This together with the
finite model property ofS4 implies thatS4 is complete with respect to any metric separable
dense-in-itself space. Most importantly, it implies thatS4 is complete with respect to the
real lineR. Shehtman [13] strengthened the McKinsey and Tarski result by showing that
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every finite connected space is an open image of a (connected) metric separable dense-
in-itself space. (That every finite connected space is an open image of a Euclidean space
was first established in Puckett [11].) As a result, Shehtman obtained that in the language
enriched with the universal modality∀ the complete logic of a connected metric separable
dense-in-itself space is the logicS4 + S5 + C, whereS4 + S5 is Bennett’s logic [2] (being
S4 for ✷, S5 for ∀, plus the bridge axiom∀ϕ → ✷ϕ) andC is the connectedness axiom
∀(✸ϕ → ✷ϕ) → (∀ϕ ∨ ∀¬ϕ).

The original proof of McKinsey and Tarski was quite complicated. The later version in
Rasiowa and Sikorski [12] was not much more accessible. Recently Mints [10] and Aiello
et al. [1] obtained simpler model-theoretic proofs of completeness ofS4 with respect to
the Cantor spaceC and the real lineR. In this paper we give yet another, more topological,
proof of completeness ofS4 with respect toR. It is not only more accessible than the
original proof, but also strengthens both the McKinsey and Tarski, and Shehtman results.

The paper is organized as follows. InSection 2we recall a one-to-one correspondence
between Alexandroff spaces and quasi-ordered sets; we also recall the modal systemsS4,
S4 + S5 andS4 + S5 + C, and their algebraic semantics. InSection 3we give a simplified
proof that a finite well-connected topological space is an open image ofR. It follows thatS4
is complete with respect to Boolean combinations of countable unions of convex subsets of
R, which is a strengthening of the McKinsey and Tarski result. As a by-product, we obtain a
new proof of completeness of the intuitionistic propositional logicInt with respect to open
subsets ofR, and completeness of the Grzegorczyk logicGrz with respect to Boolean
combinations of open subsets ofR. In Section 4we give a simplified proof that a finite
topological space is an open image ofR iff it is connected. Consequently, we obtain that
S4 + S5 + C is complete with respect to Boolean combinations of countable unions of
convex subsets ofR, which is a strengthening of the Shehtman result. We conclude the
paper by mentioning several open problems.

2. Preliminaries

2.1. Topology and order

SupposeX is a topological space. ForA ⊆ X we denote byA the closure ofA, and by
Int(A) the interior ofA. We recall thatA is denseif A = X, and thatA is nowhere dense
or boundaryif Int(A) = ∅. The definition of closed and open subsets ofX is usual. We
call a subset ofX clopenif it is simultaneously closed and open. The spaceX is called
connectedif ∅ andX are the only clopen subsets ofX; it is calledwell-connectedif there
exists a least nonempty closed subset ofX. It is obvious that every well-connected space is
connected, but the converse is not necessarily true. We callX anAlexandroff spaceif the
intersection of any family of open subsets ofX is open. Obviously every finite space is an
Alexandroff space. For two topological spacesX andY, a continuous mapf : X → Y is
calledopenif the f -image of every open subset ofX is an open subset ofY. Thus, f is an
open map iff itpreservesandreflectsopens.

SupposeX is a nonempty set. A binary relation≤ on X is called aquasi-orderif ≤ is
reflexive and transitive; if in addition≤ is antisymmetric, then≤ is called apartial order.
If ≤ is a quasi-order onX, thenX is called aquasi-ordered setor simply aqoset; if ≤ is
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a partial order, thenX is called apartially ordered setor simply aposet. For two qosetsX
andY, an order-preserving mapf : X → Y is called ap-morphismif for everyx ∈ X and
y ∈ Y, from f (x) ≤ y it follows that there existsz ∈ X such thatx ≤ z and f (z) = y.

SupposeX is a qoset. ForA ⊆ X let ↑A = {x ∈ X : ∃a ∈ A with a ≤ x} and
↓A = {x ∈ X : ∃a ∈ A with x ≤ a}. We call A ⊆ X anupsetif A = ↑A, and adownset
if A = ↓A. For x ∈ X let C[x] = {y ∈ X : x ≤ y andy ≤ x}. We callC ⊆ X a cluster
if there isx ∈ X such thatC = C[x]. We callx ∈ X maximalif x ≤ y implies x = y,
andquasi-maximalif x ≤ y implies y ≤ x; similarly, we callx ∈ X minimal if y ≤ x
impliesy = x, andquasi-minimalif y ≤ x impliesx ≤ y. If X is a poset, then it is obvious
that the notions of maximal and quasi-maximal points, as well as the notions of minimal
and quasi-minimal points coincide. We call a clusterC maximalif C = C[x] for some
quasi-maximalx ∈ X; a clusterC is calledminimal if C = C[x] for some quasi-minimal
x ∈ X. We callr ∈ X a root of X if r ≤ x for everyx ∈ X; a qosetX is calledrooted
if it has a rootr ; note thatr is not unique: every element ofC[r ] serves as a root ofX.
We say that there exists a≤-pathbetween two pointsx, y of X if there exists a sequence
w1, . . . , wn of points ofX such thatw1 = x,wn = y, and eitherwi ≤ wi+1 orwi+1 ≤ wi

for any 1 ≤ i ≤ n − 1. We callX a connected componentif there is a≤-path between
any two points ofX. Note that every rooted qoset is a connected component, but not vice
versa.

For a qosetX let τ≤ denote the set of upsets ofX. It is easy to verify thatτ≤ is an
Alexandroff topology onX. Conversely, ifX is a topological space, then we define the
specialization order≤τ on X by puttingx ≤τ y iff x ∈ {y}. It is routine to check that
≤τ is a quasi-order onX. Moreover,≤τ is a partial order iffX is a T0-space. Now a
standard argument shows that≤ = ≤τ≤ and thatτ ⊆ τ≤τ . Furthermore,τ = τ≤τ iff τ
is an Alexandroff topology. This establishes a one-to-one correspondence between qosets
and Alexandroff spaces, and between posets and AlexandroffT0-spaces. In particular, we
obtain a one-to-one correspondence between finite qosets and finite topological spaces,
and between finite posets and finiteT0-spaces. We note that under this correspondence
order-preserving maps correspond to continuous maps, andp-morphisms correspond to
open maps. Moreover, connected spaces correspond to connected components and well-
connected spaces correspond to rooted qosets (see, e.g., Aiello et al. [1] for details).

Subsequently, we will not distinguish between Alexandroff spaces and qosets, and
between AlexandroffT0-spaces and posets. For these spaces we will use interchangeably
the notions of open maps andp-morphisms, connected spaces and connected components,
and well-connected spaces and rooted qosets.

2.2. S4, S4 + S5, andS4 + S5 + C

We recall thatS4 is the least set of formulae of the propositional modal languageL
containing the axioms✷ϕ → ϕ, ✷ϕ → ✷✷ϕ, ✷(ϕ → ψ) → (✷ϕ → ✷ψ), and closed
under modus ponens(ϕ, ϕ → ψ/ψ), substitution(ϕ(p1, . . . , pn)/ϕ(ψ1/p1, . . . , ψn/pn)),
and necessitation(ϕ/✷ϕ).

It was shown in McKinsey and Tarski [9] that algebraic models ofS4 are closure
algebras. We recall that aclosure algebrais a pair(B,C), whereB is a Boolean algebra and
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C : B → B is a function satisfying the following identities: (i)a ≤ Ca, (ii) CCa = Ca,
(iii) C(a ∨ b) = Ca ∨ Cb, and (iv)C0 = 0. We callC a closure operatoron B.

To give an example of a closure algebra, letX be a qoset and letP(X) denote the
powerset ofX. It is easy to check that↓ is a closure operator onP(X). Hence,(P(X),↓) is
a closure algebra. We call(P(X),↓) theclosure algebra over the qoset X. More generally,
if X is a topological space, then it is routine to verify that(P(X), ) is a closure algebra.
We call(P(X), ) theclosure algebra over the topological space X.

SupposeX andY are topological spaces andf : X → Y is an open map. Then it is easy
to verify that for A ⊆ Y we have f −1(A) = f −1(A). Therefore,f −1 : P(Y) → P(X)
is a closure algebra homomorphism. Moreover, iff is onto, thenf −1 is one-to-one, and
hence(P(Y), ) is isomorphic to a subalgebra of(P(X), ).

Theorem 1. (a) Every closure algebra can be represented as a subalgebra of the closure
algebra over a topological space. In fact, every closure algebra can be represented as
a subalgebra of the closure algebra over an Alexandroff space, or equivalently, over a
qoset.

(b) If a closure algebra is finite, then it is isomorphic to the closure algebra over a finite
space, or equivalently, over a finite qoset.

(c) A finite closure algebra is subdirectly irreducible iff it is isomorphic to the closure
algebra over a finite well-connected space, or equivalently, over a finite rooted qoset.

(d) S4 is complete with respect to finite subdirectly irreducible closure algebras. Hence,
S4 is complete with respect to the closure algebras over finite well-connected spaces,
or equivalently, over finite rooted qosets.

Proof. In the light of the above correspondence between Alexandroff spaces and qosets,
(a) follows from [8, Theorem 2.4] and [6, Theorem 3.14]; (b) follows from [3, Lemma 1];
(c) follows from [4, the paragraph after the Theorem of Duality]; and finally, (d) follows
from [8, Theorem 4.16]. �

Let L(∀) denote the enrichment ofL by the universal modality∀. As usual, the
existential modality∃ is the abbreviation of¬∀¬. We recall that Bennett’s logicS4 + S5 is
the least set of formulae ofL(∀) containing the✷-axioms forS4, the∀-axioms forS5 (that
is ∀-axioms forS4 plus the axiom∃ϕ → ∀∃ϕ), the bridge axiom∀ϕ → ✷ϕ, and closed
under modus ponens, substitution,✷-necessitation, and∀-necessitation(ϕ/∀ϕ).

Algebraic models ofS4 + S5 are the triples(B,C, ∃), where (i)(B,C) is a closure
algebra, (ii)(B, ∃) is amonadic algebra(that is(B, ∃) is a closure algebra satisfying the
identity∃ − ∃a = −∃a), and (iii) Ca ≤ ∃a. We call(B,C, ∃) an(S4 + S5)-algebra.

Examples of(S4 + S5)-algebras can be obtained from the closure algebras over
topological spaces. LetX be a topological space. We define∃ onP(X) by setting

∃A =
{∅, if A = ∅

X, otherwise.

Then(P(X), , ∃) is an(S4 + S5)-algebra, called the(S4 + S5)-algebra over the topolo-
gical space X. In particular, if X is a qoset, then(P(X),↓, ∃) is an (S4 + S5)-algebra,
called the(S4 + S5)-algebra over the qoset X.
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Theorem 2. (a) Every (S4 + S5)-algebra over a topological space is simple (has no
proper congruences).

(b) Every simple(S4 + S5)-algebra can be represented as a subalgebra of the(S4 + S5)-
algebra over some (Alexandroff) space.

(c) If a simple(S4 + S5)-algebra is finite, then it is isomorphic to the(S4 + S5)-algebra
over a finite space, or equivalently, over a finite qoset.

(d) S4 + S5 is complete with respect to finite simple(S4 + S5)-algebras. Hence,S4 + S5
is complete with respect to the(S4 + S5)-algebras over finite topological spaces, or
equivalently, over finite qosets.

Proof. For (a) see [5, Lemma 3.1]. For (b) observe that a(S4 + S5)-algebra(B,C, ∃) is
simple iff for everya ∈ B we havea �= 0 implies∃a = 1. Now applyTheorem 1(a). (c)
follows from (b) andTheorem 1(b). For (d) see [13, Theorem 7] or [5, Theorem 5.9]. �

It was proved in [13, Lemma 8] that the connectedness axiom

C = ∀(✸ϕ → ✷ϕ) → (∀ϕ ∨ ∀¬ϕ)
is valid in the(S4 + S5)-algebra over a topological spaceX iff X is connected. In partic-
ular, C is valid in the(S4 + S5)-algebra over a qosetX iff X is a connected component.
Let S4 + S5 + C denote the normal extension ofS4 + S5 by the connectedness axiom. We
call an(S4 + S5)-algebra(B,C, ∃) a (S4 + S5 + C)-algebraif the connectedness axiom
is valid in (B,C, ∃).
Theorem 3. S4+S5+C is complete with respect to finite simple(S4+S5+C)-algebras.
Hence,S4 + S5 + C is complete with respect to the(S4 + S5 + C)-algebras over finite
connected spaces, or equivalently, over finite connected components.

Proof. See [13, Theorem 10]. �

3. Completeness of S4

We recall that a subsetA of R is said to beconvexif x, y ∈ A and x ≤ z ≤ y
imply that z ∈ A. We denote byC(R) the set of convex subsets ofR, and byC∞(R)
the set of countable unions of convex subsets ofR. We also letB(C∞(R)) denote the
Boolean algebra generated byC∞(R). It is obvious that every open interval ofR belongs
to C(R). Now since every open subset ofR is a countable union of open intervals ofR,
it follows that every open subset ofR, and hence every closed subset ofR belongs to
B(C∞(R)). Therefore,(B(C∞(R)), ) is a closure algebra. In fact,(B(C∞(R)), ) is a
proper subalgebra of(P(R), ). Our goal is to show thatS4 is complete with respect to
(B(C∞(R)), ). For this, as follows fromTheorem 1, it is sufficient to show that every
closure algebra over a finite rooted qoset is isomorphic to a subalgebra of(B(C∞(R)), ).

SupposeX is a finite poset. We callY ⊆ X a chain if for every x, y ∈ Y we have
x ≤ y or y ≤ x. For x ∈ X let d(x) be the number of elements of a maximal chain with
the rootx; we call d(x) the depthof x. Let alsod(X) = sup{d(x) : x ∈ X}; we call
d(X) thedepthof X. For x, y ∈ X let x < y mean thatx ≤ y andx �= y. We call y an
immediate successorof x if x < y and there is noz such thatx < z < y. For x ∈ X let
b(x) be the number of immediate successors ofx; we callb(x) thebranchingof x. Let also
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b(X) = sup{b(x) : x ∈ X}; we callb(X) thebranchingof X. A finite posetX is called a
tree if ↓x is a chain for everyx ∈ X; if in the treeX we haveb(x) = n for everyx ∈ X,
then we callX ann-tree.

Lemma 4. (a) Every finite rooted poset is a p-morphic image of a finite tree.

(b) Every tree of branching n and depth m is a p-morphic image of the n-tree of depth m.

(c) For every finite rooted poset X there exists n such that X is a p-morphic image of a
finite n-tree.

Proof. For (a) see [7, Proposition 2]; (b) follows from [7, Theorem 1]; finally, (c) follows
from (a) and (b). �

We call a finite qosetX q-regularif every cluster ofX consists of exactlyq elements.
We define an equivalence relation∼ on X by puttingx ∼ y iff C[x] = C[y]. Let X/∼ de-
note the quotient ofX under∼, where[x] ≤∼ [y] if there existx′ ∈ [x] andy′ ∈ [y] such
thatx′ ≤ y′. ObviouslyX/∼ is a finite poset, called theskeletonof X. We call X a quasi-
treeif X/∼ is a tree; we callX aquasi-n-treeif X/∼ is ann-tree; finally, we callX aquasi-
(q,n)-tree if X is aq-regular quasi-n-tree. The following lemma is an easy generalization
of Lemma 4to qosets.

Lemma 5. For every finite rooted qoset X there exist q,n such that X is a p-morphic
image of a finite quasi-(q,n)-tree.

Proof (Sketch). Letq = sup{|C[x]| : x ∈ X}. Then replacing every cluster ofX
by a q-element cluster, we get a newq-regular qosetY. Obviously X is a p-morphic
image ofY and X/∼ is isomorphic toY/∼. From the previous lemma we know that
there exist ann-tree Tn and a p-morphism f from Tn onto Y/∼. We denote byTq,n

the quasi-tree obtained fromTn by replacing every nodet of Tn by a q-element cluster
[t] = {t1, . . . , tq}. ObviouslyTq,n is a finite quasi-(q,n)-tree andTn is (isomorphic to)
Tq,n/∼. Suppose[y] = {y1, . . . , yq} is an element ofY/∼ and[t] = {t1, . . . , tq} is an
element ofTq,n/∼ = Tn. We defineh : Tq,n → Y by puttingh(ti ) = yi if f ([t]) = [y],
ti ∈ [t], andyi ∈ [y] for 1 ≤ i ≤ q. Since[h(ti )] = f ([t]) and f is an ontop-morphism,
so ish. SoY is a p-morphic image ofTq,n, and sinceX is a p-morphic image ofY, it is
also ap-morphic image ofTq,n. �

Corollary 6. S4 is complete with respect to the closure algebras over finite quasi-trees.

Proof. It follows from Theorem 1(d) that S4 is complete with respect to the closure
algebras over finite rooted qosets. FromLemma 5it follows that the closure algebra over
a finite rooted qoset is isomorphic to a subalgebra of the closure algebra over some finite
quasi-tree. Thus,S4 is complete with respect to the closure algebras over finite quasi-
trees. �

Now we are in a position to show that finite rooted qosets are open images ofR. We
first show that every finite rooted poset is an open image ofR, and then extend this result
to finite qosets. Let us start by showing that then-treeT of depth 2 shown inFig. 1 is an
open image of any bounded intervalI ⊆ R.
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r

t1 t2 t3 tn

T

Fig. 1. Ann-tree of depth 2.

Supposea,b ∈ R, a < b, I = (a,b), I = [a,b), I = (a,b], or I = [a,b]. We recall
that the Cantor setC is constructed insideI by taking out open intervals fromI infinitely
many times. More precisely, in step 1 of the construction the open interval

I 1
1 =

(
a + b − a

3
,a + 2(b − a)

3

)

is taken out. We denote the remaining closed intervals byJ1
1 and J1

2 . In step 2 the open
intervals

I 2
1 =

(
a + b − a

32
,a + 2(b − a)

32

)
and I 2

2 =
(

a + 7(b − a)

32
,a + 8(b − a)

32

)

are taken out. We denote the remaining closed intervals byJ2
1 , J2

2 , J2
3 , and J2

4 . In
general, in stepm the open intervalsI m

1 , . . . , I m
2m−1 are taken out, and the closed intervals

Jm
1 , . . . , Jm

2m remain. We will use the construction ofC to obtainT as an open image ofI .

Lemma 7. T is an open image of I .

Proof. Define f T
I : I → T by putting

f T
I (x) =

{
tk, if x ∈ ⋃

m≡k(mod n)
⋃2m−1

p=1 I m
p

r, otherwise
.

Obviously, f T
I is a well-defined onto map. Moreover,

( f T
I )

−1(tk) =
⋃

m≡k(mod n)

2m−1⋃
p=1

I m
p and ( f T

I )
−1(r ) = C.

Let us show thatf T
I is open. Since{∅, {t1}, . . . , {tn}, T} is a family of basic open subsets

of T , continuity of f T
I is obvious. SupposeU is an open interval inI . If U ∩ C = ∅, then

f T
I (U) ⊆ {t1, . . . , tn}. Thus, f T

I (U) is open. IfU ∩ C �= ∅, then there existsc ∈ U ∩ C.
Sincec ∈ C we have f T

I (c) = r . Fromc ∈ U it follows that there isε > 0 such that
(c − ε, c + ε) ⊆ U . We pickm so thatb−a

3m < ε. As c ∈ C, there isk ∈ {1, . . . ,2m} such
that c ∈ Jm

k . Moreover, since the length ofJm
k is equal tob−a

3m , we have thatJm
k ⊆ U .

Therefore,U contains the points removed fromJm
k in the subsequent iterations in the
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t1 tm 


Td




T

Fig. 2.T andTd.

construction ofC. Thus, f T
I (U) ⊇ {t1, . . . , tn} and f T

I (U) = T . Hence, f T
I (U) is open

for any open intervalU of I . It follows that f T
I is an onto open map.�

Theorem 8. Every finite n-tree is an open image of I .

Proof. For an arbitrary finiten-treeT we define a mapfI : I → T by induction on the
depth ofT . If the depth ofT is 1, thenT is a 1-tree consisting of a single elementt , and for
everyx ∈ I we set f I (x) = t . Then it is obvious thatfI is onto and open. If the depth
of T is 2, then for everyx ∈ I we define f I (x) = f T

I (x). Then the previous lemma
guarantees thatf I is onto and open. Now suppose the depth ofT is d + 1, d ≥ 2. Let
t1, . . . , tm (m = nd) be the elements ofT of depth 2, and letTd be the subtree ofT of all
elements ofT of depth≥ 2 (seeFig. 2).

We note that for eachk ∈ {1, . . . ,m} the upset↑tk is isomorphic to then-tree of depth 2,
and thatTd is then-tree of depthd. So by the induction hypothesis there exists an onto open
map f d

I : I → Td. We usef d
I to define f I : I → T as follows. For eachk ∈ {1, . . . ,m}

andx ∈ ( f d
I )

−1(tk) let Ix denote the connected component of( f d
I )

−1(tk) containingx.
We set

f I (x) =
{

f d
I (x), if f d

I (x) /∈ {t1, . . . , tm}
f ↑tk
Ix
(x), if f d

I (x) = tk.

It is clear that f I is a well-defined onto map. To show thatf I is continuous observe that
for t ∈ T − Td there is a uniquetk such thattk < t . Hence, we have

f −1
I (t) =

⋃
{( f ↑tk

I ′ )−1(t) : I ′ is a connected component of( f d
I )

−1(tk)}.
Also for t ∈ Td we have

f −1
I (↑Tt) = ( f d

I )
−1(↑Tdt).

Now since the family{∅} ∪ {{t} : t ∈ T − Td} ∪ {↑T t : t ∈ Td} forms a basis forT , we
have thatf I is continuous.

To show thatf I is open, letU = (c,d) be an open interval inI . If U ⊆ I ′ whereI ′ is a
connected component of( f d

I )
−1(tk) for somek, then f I (U) = f ↑tk

I ′ (U). Therefore,f I (U)
is open by the previous lemma. AssumeU �⊆ I ′ for anyk and I ′. We want to show that
f I (U) = ↑ f d

I (U). If t ∈ T− ↑{t1, . . . , tm}, then f −1
I (t) = ( f d

I )
−1(t), and thust ∈ f I (U)
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Q

Fig. 3. A quasi-(q, n)-tree of depth 2.

iff t ∈ f d
I (U). So we can assume thatt ∈ ↑ tk for somek. Then if t ∈ f I (U), there is

x ∈ U with f I (x) = t . Hence, by the definition off I , there exists a connected component
I ′ of ( f d

I )
−1(tk) with x ∈ I ′ and fI (x) = f ↑tk

I ′ (x). Therefore,x ∈ U ∩ ( f d
I )

−1(tk), which
implies thattk ∈ f d

I (U). Hence,t ∈ ↑tk ⊆↑ f d
I (U). Conversely, ift ∈ ↑ f d

I (U), then there
existk ∈ {1, . . . ,m} andx ∈ U with f d

I (x) = tk ≤ t . Hence,x ∈ ( f d
I )

−1(tk), and there
is a connected componentI ′ = (p,q) of ( f d

I )
−1(tk) containingx. SinceU ∩ I ′ �= ∅

and by assumptionU �⊆ I ′, we have thatU ∩ I ′ is either (p,d) or (c,q). As both
(p,d) and(c,q) must intersect the Cantor set constructed inI ′ and f ↑tk

I ′ is open, we have

f I (U) ⊇ f I (U ∩ I ′) = f ↑tk
I ′ (U ∩ I ′) = ↑tk. It follows thatt ∈ ↑tk ⊆ f I (U). Therefore,

f I (U) = ↑ f d
I (U), and sof I (U) is open. Thus,f I is an onto open map, implying thatT is

an open image ofI . �

Corollary 9. Every finite rooted poset, or equivalently, every finite well-connected T0-
space is an open image ofR.

Proof. It follows from Lemma 4andTheorem 8that every finite rooted poset is an open
image of any bounded intervalI ⊆ R. In particular, if I is open, thenI is homeomorphic
to R, and so the corollary follows.�

Remark 10. It follows from Corollary 9 that the Heyting algebra of upsets of a finite
rooted poset is isomorphic to a subalgebra of the Heyting algebraO(R) of open subsets of
R. Hence, every finite subdirectly irreducible Heyting algebra is isomorphic to a subalgebra
of O(R). This together with the finite model property of the intuitionistic propositional
logic Int gives a new proof of completeness ofInt with respect toO(R), a fact first
established by Tarski [14] back in 1938. Now, applying the Blok–Esakia theorem, we
obtain that the Grzegorczyk modal systemGrz = S4 + ✷(✷(ϕ → ✷ϕ) → ϕ) → ϕ

is complete with respect to the Boolean closureB(O(R)) of O(R).
We are now in a position to expand onCorollary 9and show that finite rooted qosets

are open images ofR. We start by showing that the quasi-(q,n)-treeQ of depth 2 shown
in Fig. 3 is an open image ofI .

Lemma 11. If X has a countable basis and every countable subset of X is boundary, then
for any natural number n there exist disjoint dense boundary subsets A1, . . . , An of X such
that X = ⋃n

i=1 Ai .
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Proof. Suppose{Bi }∞i=1 is a countable basis ofX. Since every countable subset ofX is
boundary, eachBi is uncountable. We pick from eachBi a pointx1

i and setA1 = {x1
i }∞i=1.

SinceA1 is countable, eachBi − A1 is uncountable. So we pick from eachBi − A1 a point
x2

i and setA2 = {x2
i }∞i=1. We repeat the same construction for eachBi −(A1∪A2) to obtain

A3. After repeating the constructionn − 1 times we obtainn − 1 many setsA1, . . . , An−1.
Finally, we setAn = X − ⋃n−1

i=1 Ai . It is clear that differentAi ’s are disjoint from each
other and thatX = ⋃n

i=1 Ai . Moreover, eachAi contains at least one point from every
basic open set. Hence, eachAi is dense. Furthermore, no basic open set is a subset of any
Ai . Therefore, everyAi is boundary. �

Lemma 12. Q is an open image of I .

Proof. We denote the least cluster ofQ by r and its elements byr1, . . . , rq. Also for
1 ≤ i ≤ n we denote thei -th maximal cluster ofQ by t i and its elements byt i

1, . . . , t
i
q.

Since the Cantor setC satisfies the conditions ofLemma 11, it can be divided intoq-many
disjoint dense boundary subsetsC1, . . . , Cq. Also eachI m

p (1 ≤ p ≤ 2m−1, m ∈ ω)
satisfies the conditions ofLemma 11, and so eachI m

p can be divided intoq-many disjoint

dense boundary subsets(I m
p )

1, . . . , (I m
p )

q. Suppose 1≤ k ≤ q. We definef Q
I : I → Q

by putting

f Q
I (x) =

{
t i
k, if x ∈ ⋃

m≡i (mod n)
⋃2m−1

p=1 (I
m
p )

k

rk, if x ∈ Ck
.

It is clear thatf Q
I is a well-defined onto map. Similar toLemma 7we have

( f Q
I )

−1(t i ) =
⋃

m≡i (mod n)

2m−1⋃
p=1

I m
p and ( f Q

I )
−1(r ) = C.

Hence, f Q
I is continuous. To show thatf Q

I is open letU be an open interval inI . If

U ∩ C = ∅, then f Q
I (U) ⊆ ⋃n

i=1 t i . Moreover, since(I m
p )

1, . . . , (I m
p )

q partition I m
p into

q-many disjoint dense boundary subsets,U ∩ I m
p �= ∅ impliesU ∩ (I m

p )
k �= ∅ for every

k ∈ {1, . . . ,q}. Hence, if f Q
I (U) contains an element of a clustert i , it contains the whole

cluster. Thus,f Q
I (U) is open. Now supposeU ∩ C �= ∅. SinceC1, . . . , Cq partitionC into

q-many disjoint dense boundary subsets,U ∩ Ck �= ∅ for everyk ∈ {1, . . . ,q}. Hence,
r ⊆ f Q

I (U). Moreover, the same argument as in the proof ofLemma 7guarantees that

every point greater than points inr also belongs tof Q
I (U). Thus f Q

I (U) = Q, implying

that f Q
I is an onto open map.�

Theorem 13. Every finite quasi-(q,n)-tree is an open image of I .

Proof. This follows along the same lines as the proof ofTheorem 8but is based on
Lemma 12instead ofLemma 7. �

Corollary 14. Every finite rooted qoset, or equivalently, every finite well-connected space
is an open image ofR.
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Proof. This follows along the same lines as the proof ofCorollary 9 but is based on
Lemma 5andTheorem 13instead ofLemma 4andTheorem 8. �
Theorem 15. S4 is complete with respect to(B(C∞(R)), ).

Proof. It is sufficient to show that the closure algebra over a quasi-(q,n)-tree is
isomorphic to a subalgebra of(B(C∞(R)), ). So let X be a quasi-(q,n)-tree andI be
a bounded interval ofR. We denote byC the Cantor set constructed insideI , and by
C1, . . . , Cq disjoint dense boundary subsets ofC constructed inLemma 11. By Theorem 13
there exists an onto open mapf I : I → X. We show that for everyx ∈ X we have
( f I )

−1(x) ∈ B(C∞(I )). If x is a quasi-minimal point ofX, then by Lemma 12
( f I )

−1(x) = Ck for somek ∈ {1, . . . ,q}. From the proof ofLemma 11it follows that either
Ck orC−Ck is a countable subset ofI . In either case we have( f I )

−1(x) ∈ B(C∞(I )). Now
supposex is neither a quasi-minimal nor a quasi-maximal point ofX. Then by the proof of
Theorem 13, which follows along the same lines as the proof ofTheorem 8, ( f I )

−1(x) is a
countable union of the setsC I ′

k , where eachC I ′
k is a dense boundary subset of the Cantor set

C I ′
constructed inside some open intervalI ′ of I . Let U denote the (countable) union of

these open intervals. Then byLemma 11( f I )
−1(x) or U − ( f I )

−1(x) is countable. Thus,
( f I )

−1(x) ∈ B(C∞(I )). Finally, if x is a quasi-maximal point ofX, then( f I )
−1(x) =⋃

m≡i (mod n)
⋃2m−1

p=1 (I
m
p )

k for somek ∈ {1, . . . ,q}, where each(I m
p )

k is a dense boundary
subset of the intervalI m

p constructed inside some open interval ofI . Let U denote the
(countable) union of these open intervals. Then the same argument as above guarantees that
( f I )

−1(x) or U − ( f I )
−1(x) is countable. Therefore,( f I )

−1(x) ∈ B(C∞(I )). Thus, the
closure algebra over a quasi-(q,n)-tree is isomorphic to a subalgebra of(B(C∞(I )), ).
Now if I is an open interval, thenI is homeomorphic toR. Hence, the closure algebra over
a quasi-(q,n)-tree is isomorphic to a subalgebra of(B(C∞(R)), ), and soS4 is complete
with respect to(B(C∞(R)), ). �

4. Completeness of S4 + S5 + C

In this section we show thatS4 + S5 + C is complete with respect to the algebra
(B(C∞(R)), , ∃). For this, byTheorem 3, it is sufficient to construct an open map
from R onto every finite connected componentX such that for everyx ∈ X we have
f −1(x) ∈ B(C∞(R)).

SupposeT1, . . . , Tn are finite trees (of branching≥ 2). Let t l
i andtr

i denote two distinct
maximal nodes ofTi . Consider the disjoint union

⊔n
i=1 Ti , and identifytr

i−1 with t l
i andtr

i

with t l
i+1. We call this construction thetree sumof T1, . . . , Tn and denote it by

⊕n
i=1 Ti

(seeFig. 4).
We can generalize this construction to quasi-trees. SupposeQ1, . . . , Qn are finite

q-regular quasi-trees (of branching≥ 2). Let Cl
i and Cr

i denote two distinct maximal
clusters ofQi . Consider the disjoint union

⊔n
i=1 Qi , and identifyCr

i−1 with Cl
i andCr

i

with Cl
i+1. We call this construction theregular quasi-tree sumof Q1, . . . , Qn and denote

it by
⊕n

i=1 Qi .

Lemma 16 (Compare with [13, Lemma 13]).
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T1 T2 Tn−1 Tn

tr
1 t l

2 tr
2 t l

n−1 tr
n−1 t l

n

tr
1 = t l

2 tr
2 = t l

3 tr
n−2 = t l

n−1 tr
n−1 = t l

n

⊕n
i=1 Ti

Fig. 4. Construction of
⊕n

i=1 Ti from T1, . . . , Tn.

(a) For every finite partially ordered connected component X there exist trees T1, . . . , Tn

such that X is a p-morphic image of
⊕n

i=1 Ti .
(b) For every finite connected component X there exist q-regular quasi-trees Q1, . . . , Qn

such that X is a p-morphic image of
⊕n

i=1 Qi .

Proof. (a) follows from (b) and the fact that the regular quasi-tree sum of trees is in fact
their tree sum.

(b) SupposeX is a finite connected component. LetC1, . . . ,Cn denote minimal clus-
ters of X. Consider(↑C1,≤1), . . . , (↑Cn,≤n), where≤i is the restriction of≤ to ↑Ci .
Obviously each(↑Ci ,≤i ) is a finite rooted qoset and

⋃n
i=1 Ci = X. As follows from

Lemma 5, for each(↑Ci ,≤i ) there existqi ,mi such that(↑Ci ,≤i ) is a p-morphic image
of a finite quasi-(qi ,mi )-tree. Letq = sup{q1, . . . ,qn}, and consider quasi-(q,mi )-trees
Q1, . . . , Qn. Obviously for eachi there exists ap-morphism fi from Qi onto(↑Ci ,≤i ).
Also note that for eachi there exists a maximal clusterC of X such thatC is a subset of
both↑Ci−1 and↑Ci . Since fi−1 is a p-morphism, there exists a maximal clusterDr

i−1 of
Qi−1 such thatfi−1(Dr

i−1) = C. Similarly there exists a maximal clusterDl
i of Qi such

that fi (Dl
i ) = C. We form

⊕n
i=1 Qi by identifyingDr

i−1 with Dl
i andDr

i with Dl
i+1. Now

define f : ⊕n
i=1 Qi → X by putting f (t) = fi (t) for t ∈ Qi . It is routine to check thatf

is well defined and that it is an ontop-morphism. �
Theorem 17. The tree sum of finitely many finite trees is an open image ofR.

Proof. SupposeT1, . . . , Tn are finite trees. Consider
⊕n

k=1 Tk. For 2 ≤ k ≤ n − 1 let t l
k

andtr
k denote the maximal nodes ofTk which got identified with the corresponding nodes
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fIn−1

T1 Tn−1 Tn

❄

)]

❄ ❄

( [ ] [

0 1 2n − 4 2n − 3 2n − 2 2n − 1

f I1 f In

T2

❄

[ ]

2 3

fI2

Fig. 5. The mapsf Ik .

tr
k−1 of Tk−1 andt l

k+1 of Tk+1, respectively. Also letI1 = (0,1], Ik = [2k − 2,2k − 1] for
k ∈ {2, . . . ,n − 1}, andIn = [2n − 2,2n − 1). FromTheorem 8it follows that for eachIk

there exists an onto open mapf Ik : Ik → Tk (seeFig. 5).
We definef : (0,2n − 1) → ⊕n

k=1 Tk by putting

f (x) =



fIk (x), if x ∈ Ik

tr
k , if x ∈ (2k − 1,2k)
fIn (x), if x ∈ In

wherek ∈ {1, . . . ,n − 1}. It is obvious thatf is a well-defined onto map. Fort ∈ Tk

observe that ift l
k, t

r
k /∈↑t , then

f −1(↑t) = f −1
Ik
(↑t),

if t l
k ∈ ↑t andtr

k /∈ ↑t , then

f −1(↑t) = f −1
Ik−1

(tr
k−1) ∪ (2k − 3,2k − 2) ∪ f −1

Ik
(↑t),

if t l
k /∈ ↑t andtr

k ∈ ↑t , then

f −1(↑t) = f −1
Ik
(↑t) ∪ (2k − 1,2k) ∪ f −1

Ik+1
(t l

k+1),

and finally, if t l
k, t

r
k ∈ ↑t , then

f −1(↑t) = f −1
Ik−1

(tr
k−1) ∪ (2k − 3,2k − 2) ∪ f −1

Ik
(↑t) ∪ (2k − 1,2k) ∪ f −1

Ik+1
(t l

k+1).

Hence, f is continuous. Moreover, for an open intervalU ⊆ (0,2n − 1), if U ⊆ Ik, then
f (U) = f Ik (U); and ifU ⊆ (2k − 1,2k), then f (U) = {tr

k }. In either casef (U) is open
in

⊕n
k=1 Tk. Now every open intervalU ⊆ (0,2n− 1) is the unionU = U1 ∪ . . .∪U2n−1,

whereU2k = U ∩ (2k − 1,2k) for k = 1, . . . ,n − 1, andU2k+1 = U ∩ Ik+1 for
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k = 0, . . . ,n − 1. Thus, f (U) = f (U1) ∪ . . . ∪ f (U2n−1), and so f (U) is an open
set in

⊕n
k=1 Tk. Hence, f is an onto open map, implying that

⊕n
k=1 Tk is an open image

of (0,2n−1). Since(0,2n−1) is homeomorphic toR, we obtain that
⊕n

k=1 Tk is an open
image ofR. �
Corollary 18. A finite T0-space is an open image ofR iff it is connected.

Proof. Since finite connectedT0-spaces correspond to finite connected partially ordered
components, it follows fromLemma 16and Theorem 17that every finite connected
T0-space is an open image ofR. Conversely, sinceR is connected and open (even contin-
uous) images of connected spaces are connected, finiteT0 images ofR are connected. �
Theorem 19. The regular quasi-tree sum of finitely many finite q-regular quasi-trees is an
open image ofR.

Proof. This follows along the same lines as the proof ofTheorem 17but is based on
Theorem 13instead ofTheorem 8. In addition, according toLemma 11, for k = 1, . . . ,
n − 1 we divide each interval(2k − 1,2k) into q-many disjoint dense boundary subsets
Ak

1, . . . , Ak
q and definef : (0,2n − 1) → ⊕n

k=1 Qk by putting

f (x) =



f Ik (x), if x ∈ Ik

(tr
k )i , if x ∈ Ak

i
f In (x), if x ∈ In

where(tr
k )i is the i -th element ofCr

k andk ∈ {1, . . . ,n − 1}. As a result we obtain that⊕n
k=1 Qk is an open image of(0,2n − 1), and so

⊕n
k=1 Qk is an open image ofR. �

Corollary 20. A finite topological space is an open image ofR iff it is connected.

Proof. This follows along the same lines as the proof ofCorollary 18but is based on
Theorem 19instead ofTheorem 17. �
Theorem 21. S4 + S5 + C is complete with respect to(B(C∞(R)), , ∃).
Proof. SupposeQ1, . . . , Qn are arbitraryq-regular quasi-trees. It is sufficient to show
that the(S4 + S5 + C)-algebra over the regular quasi-tree sum

⊕n
k=1 Qk is isomorphic

to a subalgebra of(B(C∞(R)), , ∃). The proof ofTheorem 15implies that for eachQk

there existsIk = [2k − 2,2k − 1] and an onto open mapfk : Ik → Qk such that for
every t ∈ Qk we have f −1

k (t) ∈ B(C∞(Ik)). It follows from the proof ofTheorem 19
that there exists an onto open mapf : (0,2n − 1) → ⊕n

k=1 Qk. If t ∈ Qk does not
belong to eitherCl

k or Cr
k , then f −1(t) = f −1

k (t), and so f −1(t) ∈ B(C∞(0,2n − 1)).
If t ∈ Cl

k, then f −1(t) is the union of f −1
k (t) ∪ f −1

k−1(t) with a disjoint dense boundary
subset of(2k − 3,2k − 2) constructed inTheorem 19; and if t ∈ Cr

k , then f −1(t) is
the union of f −1

k (t) ∪ f −1
k+1(t) with a disjoint dense boundary subset of(2k − 1,2k)

constructed in the same theorem. In either casef −1(t) ∈ B(C∞(0,2n − 1)). Therefore,
f −1(t) ∈ B(C∞(0,2n − 1)) for everyt ∈ ⊕n

k=1 Qk. Thus, the(S4 + S5 + C)-algebra
over

⊕n
k=1 Qk is isomorphic to a subalgebra of(B(C∞(0,2n − 1)), , ∃), and so it is

isomorphic to a subalgebra of(B(C∞(R), , ∃). It follows thatS4 + S5 + C is complete
with respect to(B(C∞(R)), , ∃). �
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5. Conclusions

In this paper we proved thatS4 is complete with respect to the closure algebra
(B(C∞(R)), ). It follows that S4 is complete with respect to any closure algebra
containing (B(C∞(R)), ) and contained in(P(R)), ). One closure algebra in the
interval [(B(C∞(R)), ), (P(R)), )] deserves special mention. LetB(R) denote the
Boolean algebra of Borel sets over open subsets ofR; that is B(R) is the countably
complete Boolean algebra countably generated byO(R). It is obvious thatB(C∞(R)) ⊆
B(R) ⊆ P(R). In fact, both of the inclusions are proper. As a result we obtain thatS4 is
complete with respect to the closure algebra(B(R), ).

In Remark 10we pointed out that the modal systemGrz is complete with respect to the
closure algebra(B(O(R)), ). It still remains an open problem to classify the complete
logics of the closure algebras in between(B(O(R)), ) and(B(C∞(R)), ).

In the languageL(∀) a natural extension ofGrz is the bimodal systemGrz + S5 + C.
However, it remains an open problem whetherGrz + S5+ C has the finite model property.
Therefore, it is still an open problem whetherGrz + S5 + C is complete with respect to
(B(O(R)), , ∃).

Let B(C(R)) denote the Boolean algebra generated byC(R). It was proved in Aiello
et al. [1] that the complete logic of(B(C(R)), ) is the complete logic of the closure
algebra over the 2-tree of depth 2. This result was extended to the bimodal languageL(∀) in
van Benthem et al. [15]. It still remains an open problem to classify the complete logics of
the closure algebras in the interval[(B(C(R)), ), (B(O(R)), )], as well as the bimodal
logics of the(S4 + S5 + C)-algebras in the interval[(B(C(R)), , ∃), (B(C∞(R)), , ∃)].
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