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Abstract

We prove thaB4 is complete with respect to Boolean combinations of countable unions of convex
subsets of the real line, thus strengthening a 1944 result of McKinsey and Tarski (Ann. of Math. (2) 45
(1944) 141). We also prove that the same result holds for the bimodal sgdtens5 + C, which is
a strengthening of a 1999 result of Shehtman (J. Appl. Non-Classical Logics 9 (1999) 369).
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1. Introduction

It was shown in McKinsey and Tarsk8] that every finite well-connected topological
space is an open image of a metric separable dense-in-itself space. This together with the
finite model property 084 implies thatS4 is complete with respect to any metric separable
dense-in-itself space. Most importantly, it implies ti$dtis complete with respect to the
real lineR. Shehtman3] strengthened the McKinsey and Tarski result by showing that

U The research described in this publication was made possible in part by Award No. 3303 of the Georgian
Research and Development Foundation (GRDF) and the U.S. Civilian Research & Development Foundation for
the Independent States of the Former Soviet Union (CRDF).

* Corresponding author.

E-mail addresseggbezhani@nmsu.edu (G. Bezhanishvili), mgehrke@nmsu.edu (M. Gehrke).

0168-0072/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.apal.2004.06.003


http://www.elsevier.com/locate/apal

288 G. Bezhanishvili, M. Gehrke / Annals of Pure and Applied Logic 131 (2005) 287-301

every finite connected space is an open image of a (connected) metric separable dense-
in-itself space. (That every finite connected space is an open image of a Euclidean space
was first established in Puckett]].) As a result, Shehtman obtained that in the language
enriched with the universal modali¥ythe complete logic of a connected metric separable
dense-in-itself space is the logid + S5+ C, whereS4 + S5 is Bennett’s logic 2] (being
34 for O, S5 for V, plus the bridge axiotWg — Og) andC is the connectedness axiom
V(Cp — Op) - (Yo vV V=p).
The original proof of McKinsey and Tarski was quite complicated. The later version in
Rasiowa and Sikorskil2] was not much more accessible. Recently Miri§ and Aiello
et al. [1] obtained simpler model-theoretic proofs of completenesS4ofvith respect to
the Cantor spacé and the real lind. In this paper we give yet another, more topological,
proof of completeness d#4 with respect toR. It is not only more accessible than the
original proof, but also strengthens both the McKinsey and Tarski, and Shehtman results.
The paper is organized as follows. $ection 2we recall a one-to-one correspondence
between Alexandroff spaces and quasi-ordered sets; we also recall the modal $ftems
A+ S5andHA + S5+ C, and their algebraic semantics.$ection 3we give a simplified
proofthat a finite well-connected topological space is an open imagelbfollows thatS4
is complete with respect to Boolean combinations of countable unions of convex subsets of
R, which is a strengthening of the McKinsey and Tarski result. As a by-product, we obtain a
new proof of completeness of the intuitionistic propositional ldgicwith respect to open
subsets ofR, and completeness of the Grzegorczyk loGicz with respect to Boolean
combinations of open subsets Rf In Section 4we give a simplified proof that a finite
topological space is an open imagebfff it is connected. Consequently, we obtain that
4 + S5 + C is complete with respect to Boolean combinations of countable unions of
convex subsets dR, which is a strengthening of the Shehtman result. We conclude the
paper by mentioning several open problems.

2. Preliminaries
2.1. Topology and order

SupposeX is a topological space. F@x € X we denote byA the closure ofA, and by
Int(A) the interior of A. We recall thatA is densef A = X, and thatA is nowhere dense
or boundaryif Int(A) = @. The definition of closed and open subsetsxois usual. We
call a subset oK clopenif it is simultaneously closed and open. The spXcés called
connectedf ¥ and X are the only clopen subsets ¥f it is calledwell-connectedf there
exists a least nonempty closed subseXoft is obvious that every well-connected space is
connected, but the converse is not necessarily true. WeXcal Alexandroff spacé the
intersection of any family of open subsetsXfs open. Obviously every finite space is an
Alexandroff space. For two topological spacéandY, a continuous mag : X — Y is
calledopenif the f-image of every open subset ¥fis an open subset &f. Thus, f is an
open map iff itpreservesandreflectsopens.

SupposeX is a nonempty set. A binary relation on X is called aquasi-orderif < is
reflexive and transitive; if in additiog is antisymmetric, ther: is called apartial order.

If <is a quasi-order oiX, thenX is called aquasi-ordered sebr simply agoset if < is
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a partial order, theiX is called apartially ordered sebr simply aposet For two gosetx
andY, an order-preserving map: X — Y is called ap-morphisnif for everyx € X and
y €Y, from f (x) <y it follows that there existg € X suchthax < zandf(z) =Y.

SupposeX is a qoset. ForA € X let 1A = {x € X : 3a € Awitha < x} and
JA={xe X:3Jae Awith x < a}. We call A C X anupsetif A = 1A, and adownset
if A=A Forx e XletC[x] ={y e X:x <yandy < x}. We callC C X acluster
if there isx € X such thatC = C[x]. We callx € X maximalif x < y impliesx =y,
andquasi-maximalf x < y impliesy < x; similarly, we callx € X minimalif y < x
impliesy = x, andquasi-minimalf y < x impliesx < y. If X is a poset, then it is obvious
that the notions of maximal and quasi-maximal points, as well as the notions of minimal
and quasi-minimal points coincide. We call a clustemaximalif C = C[x] for some
quasi-maximak € X; a clusterC is calledminimalif C = C[x] for some quasi-minimal
x € X. We callr € X arootof X if r < x for everyx € X; a qosetX is calledrooted
if it has a rootr; note thatr is not unique: every element @f[r] serves as a root oX.

We say that there exists=a-pathbetween two points, y of X if there exists a sequence
wi, ..., wp Of points of X such thatw; = X, wy = y, and eithetw; < wj11 Or wij+1 < wj
forany 1< i < n — 1. We callX aconnected componeiftthere is a<-path between

any two points ofX. Note that every rooted goset is a connected component, but not vice
versa.

For a qosetX let 7< denote the set of upsets &f. It is easy to verify that< is an
Alexandroff topology onX. Conversely, ifX is a topological space, then we define the
specialization order<, on X by puttingx <, y iff x € {y}. Itis routine to check that
<. is a quasi-order orX. Moreover,<; is a partial order iffX is a Tp-space. Now a
standard argument shows that= <._ and thatr < t<,. Furthermorer = 7 iff ¢
is an Alexandroff topology. This establishes a one-to-one correspondence between qosets
and Alexandroff spaces, and between posets and Alexarirsfiaces. In particular, we
obtain a one-to-one correspondence between finite qosets and finite topological spaces,
and between finite posets and finifg-spaces. We note that under this correspondence
order-preserving maps correspond to continuous mapspamdrphisms correspond to
open maps. Moreover, connected spaces correspond to connected components and well-
connected spaces correspond to rooted qosets (see, e.g., Aielldlgfal details).

Subsequently, we will not distinguish between Alexandroff spaces and qosets, and
between Alexandroffp-spaces and posets. For these spaces we will use interchangeably
the notions of open maps ampdmorphisms, connected spaces and connected components,
and well-connected spaces and rooted gosets.

22. A4, A+ S5 ands4+ S5+ C

We recall that+4 is the least set of formulae of the propositional modal language
containing the axiom8&lp — ¢, Op — OOgp, O(p — ¥) — (Op — Ovyr), and closed
under modus ponerig, ¢ — /), substitution(¢(p, ..., Pn)/¢(¥1/P1. - .., ¥n/Pn)),
and necessitatiofy/0¢).

It was shown in McKinsey and TarskB] that algebraic models 084 are closure
algebras. We recall thatdosure algebras a pair(B, C), whereB is a Boolean algebra and
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C : B — B is a function satisfying the following identities: @ < Ca, (i) CCa= Ca,
(iif) C(av b) =Cav Ch, and (iv)C0O = 0. We callC aclosure operatoon B.

To give an example of a closure algebra, ¥etbe a qoset and leP(X) denote the
powerset ofX. Itis easy to check thatis a closure operator gA(X). Hence(P(X), | ) is
a closure algebra. We calP(X), |) theclosure algebra over the qoset Kiore generally,
if X is a topological space, then it is routine to verify tii&(X), ) is a closure algebra.
We call (P(X), ) theclosure algebra over the topological space X

SupposeX andY are topological spaces arfd: X — Y is an open map. Then itis easy
to verify that forA € Y we havef ~1(A) = f-1(A). Therefore,f =1 : P(Y) - P(X)
is a closure algebra homomorphism. Moreovef ifs onto, thenf ~1 is one-to-one, and
hence(P(Y), ) is isomorphic to a subalgebra ¢ (X), ).

Theorem 1. (a) Every closure algebra can be represented as a subalgebra of the closure
algebra over a topological space. In fact, every closure algebra can be represented as
a subalgebra of the closure algebra over an Alexandroff space, or equivalently, over a
goset.

(b) If a closure algebra is finite, then it is isomorphic to the closure algebra over a finite
space, or equivalently, over a finite qoset.

(c) A finite closure algebra is subdirectly irreducible iff it is isomorphic to the closure
algebra over a finite well-connected space, or equivalently, over a finite rooted qoset.

(d) $4is complete with respect to finite subdirectly irreducible closure algebras. Hence,
$4 is complete with respect to the closure algebras over finite well-connected spaces,
or equivalently, over finite rooted qosets.

Proof. In the light of the above correspondence between Alexandroff spaces and qosets,
(a) follows from B, Theorem 2.4] andd, Theorem 3.14]; (b) follows from3, Lemma 1];

(c) follows from [4, the paragraph after the Theorem of Duality]; and finally, (d) follows
from [8, Theorem 4.16]. O

Let £(V) denote the enrichment of by the universal modalityy. As usual, the
existential modalityd is the abbreviation of-V—. We recall that Bennett’s logis4 + S5 is
the least set of formulae @f(V) containing thed-axioms fors4, thev-axioms forS5 (that
is V-axioms for$4 plus the axiondy — V3p), the bridge axion¥y — Og, and closed
under modus ponens, substitutiitnecessitation, and-necessitatiotip /Vo).

Algebraic models o4 + S5 are the triplegB, C, 3), where (i) (B, C) is a closure
algebra, (ii)(B, 3) is amonadic algebrdthat is(B, 3) is a closure algebra satisfying the
identity3 — 3a = —3a), and (iii) Ca < Ja. We call(B, C, 3) an($4 + S5)-algebra

Examples of($4 + Sb)-algebras can be obtained from the closure algebras over
topological spaces. Le{ be a topological space. We defin@n P (X) by setting

g, fA=0
A= {X, otherwise
Then(P(X), ,3) is an($4 + SH)-algebra, called thé4 + S5)-algebra over the topolo-
gical space X In particular, if X is a qoset, thetiP(X), |, 3) is an (4 + Sb)-algebra,
called the($4 + S5)-algebra over the goset.X
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Theorem 2. (a) Every ($4 + Sb)-algebra over a topological space is simple (has no
proper congruences).

(b) Every simplg$4 + S5)-algebra can be represented as a subalgebra of 8#e+ S5)-
algebra over some (Alexandroff) space.

(c) If a simple($4 + Sb)-algebra is finite, then it is isomorphic to thi&4 + S5)-algebra
over a finite space, or equivalently, over a finite qoset.

(d) $4+ S5is complete with respect to finite simge4 + S5)-algebras. Hence4 + S5
is complete with respect to th&4 + S5)-algebras over finite topological spaces, or
equivalently, over finite qosets.

Proof. For (a) see%, Lemma 3.1]. For (b) observe that(®4 + S5)-algebra(B, C, 3) is
simple iff for everya € B we havea # 0 implies3a = 1. Now applyTheorem {a). (c)
follows from (b) andTheorem 1b). For (d) seel3, Theorem 7] or, Theorem 5.9]. O

It was proved in 13, Lemma 8] that the connectedness axiom
C =V(Cp — Op) —> (Vo VV—p)

is valid in the($4 + S5)-algebra over a topological spaeiff X is connected. In partic-
ular, C is valid in the($4 + S5)-algebra over a qoset iff X is a connected component.
Let $4 + S5+ C denote the normal extension® + S5 by the connectedness axiom. We
call an($4 + Sb)-algebra(B, C, 3) a (4 + S5 + C)-algebraif the connectedness axiom
isvalidin(B, C, 3).

Theorem 3. $4+ S5+ C is complete with respect to finite simged + S5+ C)-algebras.
Hence,$4 + S5 + C is complete with respect to th®&4 + S5 + C)-algebras over finite
connected spaces, or equivalently, over finite connected components.

Proof. See [L3, Theorem 10]. O

3. Completenessof 4

We recall that a subseA of R is said to beconvexif x,y € Aandx < z <y
imply thatz € A. We denote byC(R) the set of convex subsets Bf and byC>(R)
the set of countable unions of convex subset®RofVe also letB(C*°(R)) denote the
Boolean algebra generated 69°(R). It is obvious that every open interval Bfbelongs
to C(R). Now since every open subsetRfis a countable union of open intervalsRf
it follows that every open subset &, and hence every closed subsetfobelongs to
B(C*(R)). Therefore(B(C*(R)), ) is a closure algebra. In faatB(C*(R)), ) is a
proper subalgebra afP(R), ). Our goal is to show tha®4 is complete with respect to
(B(C**(R)), ). For this, as follows fronTheorem 1it is sufficient to show that every
closure algebra over a finite rooted qoset is isomorphic to a subalgetB&@™ (R)), ).

SupposeX is a finite poset. We cal¥Y € X achainif for every x,y € Y we have
X <yory < x.Forx € X letd(x) be the number of elements of a maximal chain with
the rootx; we calld(x) the depthof x. Let alsod(X) = sugd(x) : x € X}; we call
d(X) thedepthof X. Forx,y € X letx < y mean thak < y andx # y. We cally an
immediate successof x if X < y and there is n@ such thaix < z < y. Forx € X let
b(x) be the number of immediate successors;afe callb(x) thebranchingof x. Let also
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b(X) = supb(x) : x € X}; we callb(X) thebranchingof X. A finite posetX is called a
treeif | x is a chain for every e X; if in the treeX we haveb(x) = n for everyx € X,
then we callX ann-tree

Lemma4. (a) Every finite rooted poset is a p-morphic image of a finite tree.
(b) Every tree of branching n and depth m is a p-morphic image of the n-tree of depth m.

(c) For every finite rooted poset X there exists n such that X is a p-morphic image of a
finite n-tree.

Proof. For (a) see, Proposition 2]; (b) follows from{, Theorem 1]; finally, (c) follows
from (a) and (b). O

We call a finite qoseK q-regularif every cluster ofX consists of exactly elements.
We define an equivalence relationon X by puttingx ~ y iff C[x] = C[y]. Let X/~ de-
note the quotient oK under~, where[x] <~ [y] if there existx’ € [x] andy’ € [y] such
thatx’ < y’. ObviouslyX/~ is a finite poset, called thekeletorof X. We call X aquasi-
treeif X/~ is atree; we calK aquasi-n-treaf X/~ is ann-tree; finally, we callX aquasi-

(q, n)-treeif X is ag-regular quasi-tree. The following lemma is an easy generalization
of Lemma 4to qosets.

Lemma5. For every finite rooted qoset X there existrgsuch that X is a p-morphic
image of a finite quasig, n)-tree.

Proof (Sketch). Letq = suf{|C[x]| : x € X}. Then replacing every cluster of
by a g-element cluster, we get a negvregular qosety. Obviously X is a p-morphic
image ofY and X/ ~ is isomorphic toY/ ~. From the previous lemma we know that
there exist am-tree T, and ap-morphismf from T, onto Y/ ~. We denote byTq n
the quasi-tree obtained froify, by replacing every node of T, by a g-element cluster
[t] = {t1, ..., tq}. ObviouslyTq n is a finite quasiq, n)-tree andTy is (isomorphic to)
Tq,n/~. Supposdy] = {y1,..., Yq} is an element off /~ and[t] = {t1,...,tg} iS an
element ofTg,n/~ = Tn. We defineh : Tqn — Y by puttingh(ti) = vy; if f([t]) = [y],
ti € [t], andy; € [y]for 1 <i < q. Since[h(tj)] = f([t]) and f is an ontop-morphism,
so ish. SoY is a p-morphic image ofly n, and sinceX is a p-morphic image ofY, it is
also ap-morphicimage offg . O

Corollary 6. S4is complete with respect to the closure algebras over finite quasi-trees.

Proof. It follows from Theorem {d) that $4 is complete with respect to the closure
algebras over finite rooted qosets. Frbemma 5it follows that the closure algebra over

a finite rooted qoset is isomorphic to a subalgebra of the closure algebra over some finite
quasi-tree. Thus$4 is complete with respect to the closure algebras over finite quasi-
trees. O

Now we are in a position to show that finite rooted qosets are open imadges\ué
first show that every finite rooted poset is an open image,afnd then extend this result
to finite qosets. Let us start by showing that thiree T of depth 2 shown irFig. 1is an
open image of any bounded intervag R.



G. Bezhanishvili, M. Gehrke / Annals of Pure and Applied Logic 131 (2005) 287-301 293

t1 t2 t3 th

Fig. 1. Ann-tree of depth 2.

Supposa,b e R,a<b,| =(ab),| =[a,b),l =(a,b],orl = [a,b]. We recall
that the Cantor set is constructed insidé by taking out open intervals frominfinitely
many times. More precisely, in step 1 of the construction the open interval

_ 2(b —
|11:<a-|—b3a,a~|— (b3 a)>

is taken out. We denote the remaining closed intervalsillmnd J21. In step 2 the open
intervals

12 = <a+ b—a a—l—z(b_a)) and 12 = <a+ 7(b—a)’a+8(b—a)>

32 32 32 32

are taken out. We denote the remaining closed intervalslhyl?, J2, and JZ. In
general, in stepn the open interval$!, .. ., IZ“QH are taken out, and the closed intervals
J", ..., I remain. We will use the construction 6fto obtainT as an open image ¢f

Lemma?7. T is anopenimage of I.

Proof. Define f," : I — T by putting

. om-1
fIT (X) = t, i X € Um=kmodn) Up:l ||r3n )
r, otherwise

Obviously, flT is a well-defined onto map. Moreover,
om—1
tH7*w= | Yy ad Htn=c

m=k(modn) p=1
Let us show than‘lT is open. Sincgy, {t1}, ..., {tn}, T} is a family of basic open subsets
of T, continuity of flT is obvious. Suppose is an open interval in. If U N C = @, then
fT(U) C {t1,....ta}. Thus, fT(U) is open. IfU N C # ¢, then there exists € U N C.
Sincec € C we haveflT (¢) = r. Fromc € U it follows that there iss > 0 such that
(C—e¢,C+e) € U. We pickm so that’%:2 < e. Asc e C, there isk € {1,...,2™M} such
thatc € J". Moreover, since the length af" is equal to%, we have that)" < U.
Therefore,U contains the points removed frod]" in the subsequent iterations in the
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Ty

Fig. 2.T andTy.

construction oC. Thus, f,T(U) 2 {t1,...,t,} and fT (U) = T. Hence,f," (U) is open
for any open interval of |. It follows that flT is an onto open map.

Theorem 8. Every finite n-tree is an openimage of |.

Proof. For an arbitrary finitex-tree T we define a mag, : | — T by induction on the
depth ofT. If the depth ofT is 1, thenT is a 1-tree consisting of a single elemgrand for
everyx € | we setf|(x) = t. Then it is obvious thaff|, is onto and open. If the depth
of T is 2, then for everyx € | we definef| (x) = flT (X). Then the previous lemma
guarantees that, is onto and open. Now suppose the deptiTo d + 1,d > 2. Let
t1,...,tm (M = n%) be the elements oF of depth 2, and leTy be the subtree of of all
elements ofl of depth> 2 (seeFig. 2).

We note that for eack € {1, ..., m} the upsetty is isomorphic to the-tree of depth 2,
and thafTy is then-tree of depthd. So by the induction hypothesis there exists an onto open
mapfd: 1 — Tq. We usef{ to definef, : | — T as follows. For eack € {1,...,m}
andx € (fld)_l(tk) let Ix denote the connected componem((ﬁlf‘)‘l(tk) containingx.

We set
fdx), if F900 ¢ {ta, ... tm)
f| (X) = Ttk . d
fIX (x), if f7(X) =t

It is clear thatf| is a well-defined onto map. To show thft is continuous observe that
fort € T — Ty there is a uniqué such thaty < t. Hence, we have

fi) = U{(fﬁ,tk)‘l(t) . I is a connected component of ) ~1(ty)}.
Also fort € Tq we have
(T = (FH 71 (th).

Now since the family{#} U {{t} : t € T — Tq} U {17t : t € Ty} forms a basis foll , we
have thatf| is continuous.

To show thatf; is open, lelU = (c, d) be an openinterval ih. If U C |’ wherel’ is a
connected component ()fld)‘l(tk) for somek, thenf, (U) = flT,tk(U). Therefore,f; (U)
is open by the previous lemma. AssutdeZ |’ for anyk and|’. We want to show that
fl(U) =1f3U). Ift € T— Mg, ..., tm}, thenf, 2(t) = (FH~1(1), and thug € f| (U)
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O

Q

Fig. 3. A quasi¢q, n)-tree of depth 2.

iff t € fld(U). So we can assume thiate 1t for somek. Then ift € f,(U), there is
x € U with f| (x) =t. Hence, by the definition of;, there exists a connected component
I of (£3)~(tw) with x € 1" and f; (x) = )% (x). Thereforex e U N (f?)~(t), which
implies thatty € f9(U). Hencet e 1t 1 f2(U). Conversely, it € 1 f(U), then there
existk € {1,...,m} andx € U with fd(x) = tx <t. Hencex e (f)~1(t), and there
is a connected componeht = (p, q) of (fld)‘l(tk) containingx. SinceU NI’ # @
and by assumptiod Z 1’, we have thald N |’ is either(p, d) or (c,q). As both
(p, d) and(c, q) must intersect the Cantor set constructed!'iand flT,tk is open, we have
fiuys frUuNnl’) = flT,t"(U N 1) = k. It follows thatt € 1ty < f; (U). Therefore,
fiU) =1 fld(U), and sof| (U) is open. Thusf, is an onto open map, implying tha@tis
an openimage of. O

Corollary 9. Every finite rooted poset, or equivalently, every finite well-connecged T
space is an open image Rf

Proof. It follows from Lemma 4and Theorem &hat every finite rooted poset is an open
image of any bounded intervalC R. In particular, ifl is open, therl is homeomorphic
to R, and so the corollary follows. O

Remark 10. It follows from Corollary 9 that the Heyting algebra of upsets of a finite
rooted poset is isomorphic to a subalgebra of the Heyting alg8tiRa of open subsets of

R. Hence, every finite subdirectly irreducible Heyting algebra is isomorphic to a subalgebra
of O(R). This together with the finite model property of the intuitionistic propositional
logic Int gives a new proof of completeness loft with respect toO(R), a fact first
established by Tarskilfl] back in 1938. Now, applying the Blok—Esakia theorem, we
obtain that the Grzegorczyk modal syst&@nz = A4 + O(0O(p — Op) — ¢) = ¢

is complete with respect to the Boolean closBI(&(R)) of O(R).

We are now in a position to expand @orollary 9and show that finite rooted qosets
are open images @. We start by showing that the quasj; n)-tree Q of depth 2 shown
in Fig. 3is an open image df.

Lemma 11. If X has a countable basis and every countable subset of X is boundary, then
for any natural number n there exist disjoint dense boundary subsgets A A, of X such
that X = (JjL; Ai.
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Proof. SupposgB;}°, is a countable basis of. Since every countable subsetXfis
boundary, eaclB; is uncountable. We pick from ead} a pointxi1 and setA; = {xil};’il.
SinceA; is countable, eacB; — A; is uncountable. So we pick from eaBh— Az a point

x? and seth; = {x2}*°, . We repeat the same construction for eBch (AU Ay) to obtain

As. After repeating the construction— 1 times we obtaim — 1 many set#\, ..., An_1.
Finally, we setA, = X — Ui”:_ll Aj. It is clear that differenty;’s are disjoint from each
other and thaX = (J{_; Ai. Moreover, eachh; contains at least one point from every
basic open set. Hence, eadhis dense. Furthermore, no basic open set is a subset of any
Aj. Therefore, every; is boundary. O

Lemma12. Q is an openimage of I.

Proof. We denote the least cluster 6f by r and its elements by, ..., rq. Also for
1 <i < nwe denote thé-th maximal cluster ofQ by t' and its elements by, ..., t('].
Since the Cantor sétsatisfies the conditions @emma 11it can be divided int@-many

disjoint dense boundary subséls ..., Cq. Also eachl' (1 < p < 2™l m e w)

satisfies the conditions ¢femma 11 and so eaclh[)n can be divided int@-many disjoint

dense boundary subse{ﬂ%‘)l, el (Ig‘)q. Suppose k k < g. We defineflQ 1= Q
by putting

: . m—1
f|Q(X) = tll<’ if x e Umsi(mod n) U%:l a ?)k .
rg, if x € Ck

Itis clear thatflQ is a well-defined onto map. Similar temma 7we have

2m—1
(t9Oh= YU U1 ad (D7m=c

m=i(modn) p=1
Hence, le is continuous. To show thatlQ is open letU be an open interval in. If
UnNC =g,then le(U) - Ui"zlti. Moreover, since{lg“)l, ce, (IB“)q partitionlg1 into
g-many disjoint dense boundary subsétsn Ig‘ # ¢ impliesU N (Ig“)k # () for every
ke{l,...,q}. Hence, ifle(U) contains an element of a clustér it contains the whole
cluster. Thus,le(U) is open. Now supposg N C # @. SinceCy, ..., Cq partitionC into
g-many disjoint dense boundary subséisn Cx # @ for everyk € {1, ..., q}. Hence,
r C le(U). Moreover, the same argument as in the prooLemma 7guarantees that
every point greater than pointsiinalso belongs to‘lQ(U). Thus le(U) = Q, implying
that le is an onto open map.]

Theorem 13. Every finite quasiq, n)-tree is an open image of 1.

Proof. This follows along the same lines as the proofTdfeorem 8but is based on
Lemma 12instead olemma7 O

Corollary 14. Every finite rooted goset, or equivalently, every finite well-connected space
is an open image dk.
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Proof. This follows along the same lines as the proof@drollary 9 but is based on
Lemma 5andTheorem 13nstead olLemma 4andTheorem 8 [

Theorem 15. S4is complete with respect IdB(C*(R)), ).

Proof. It is sufficient to show that the closure algebra over a quasiv-tree is
isomorphic to a subalgebra ¢B(C*>*(R)),” ). So letX be a quasiq, n)-tree andl be
a bounded interval oR. We denote byC the Cantor set constructed insidle and by
C1, ..., Cq disjoint dense boundary subset€afonstructed in.emma 11By Theorem 13

there exists an onto open mdp : | — X. We show that for everx € X we have
(fH~1(x) € B(C™(1)). If x is a quasi-minimal point ofX, then by Lemma 12
(f1)~1(x) = C forsomek € {1, ..., q}. From the proof of. emma 11it follows that either

Cx orC—Cy is a countable subset bf In either case we havd|)~1(x) € B(C*(1)). Now
suppose is neither a quasi-minimal nor a quasi-maximal poinkKofThen by the proof of
Theorem 13which follows along the same lines as the prooTbEorem 8(f;)~1(x) is a
countable union of the sef§ , where eacls}’ is a dense boundary subset of the Cantor set
¢" constructed inside some open intervabf |. Let U denote the (countable) union of
these open intervals. Then hgmma 11( f;)~1(x) orU — (f;)~1(x) is countable. Thus,
(f)~1(x) € B(C>(l)). Finally, if x is a quasi-maximal point oX, then(f;)~1(x) =
Unmsimodn) Ufji_f(l p)¥ for somek € {1, ..., q}, where eacil ) is a dense boundary
subset of the interval constructed inside some open intervallofLet U denote the
(countable) union of these open intervals. Then the same argument as above guarantees that
(f))~1(x) or U — (f;)~1(x) is countable. Thereforgf,)~1(x) € B(C*®(l)). Thus, the
closure algebra over a quasj; n)-tree is isomorphic to a subalgebra@(C> (1)), ).
Now if | is an open interval, thehis homeomorphic tiR. Hence, the closure algebra over
a quasitq, n)-tree is isomorphic to a subalgebra(@(C*>(R)), ), and sd4 is complete
with respect tdB(C*®(R)), ). O

4. Completenessof A+ S5+ C

In this section we show the#4 + S5 + C is complete with respect to the algebra
(B(C*®(R)), , 3). For this, by Theorem 3 it is sufficient to construct an open map
from R onto every finite connected componexitsuch that for everx € X we have
f~1(x) € B(C®(R)).

Supposdy, ..., T, are finite trees (of branching 2). LettiI andt{ denote two distinct
maximal nodes of;. Consider the disjoint uniomi"=1 Ti, and identifyt{_; with ti' andt{
with ti'+1. We call this construction thigee sumof T, ..., Tn and denote it b;@i”:l'l'i
(seeFig. 4).

We can generalize this construction to quasi-trees. Sup@use.., Qn are finite
g-regular quasi-trees (of branching 2). Let Ci' andC{ denote two distinct maximal
clusters ofQ;. Consider the disjoint uniop|{_; Qi, and identifyC/_, with C! andC!
with Ci'Jﬁl. We call this construction thegular quasi-tree surof Qg, ..., Qn and denote
|t by @i:l Qi .

Lemma 16 (Compare with 13, Lemma 13]).
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n -
Di1 Ti
Fig. 4. Construction ofp{__; T; from Ty, ..., Th.

(a) For every finite partially ordered connected component X there exist trges.T Ty
such that X is a p-morphic image @;_, Ti.

(b) For every finite connected component X there exist g-regular quasi-trees Q Qn
such that X is a p-morphic image @, Qi.

Proof. (a) follows from (b) and the fact that the regular quasi-tree sum of trees is in fact
their tree sum.

(b) SupposeX is a finite connected component. L@{, ..., C, denote minimal clus-
ters of X. Consider(1Cy, <1), ..., (1Cn, <n), Where<; is the restriction of< to 1C;.
Obviously each(1Cj, <j) is a finite rooted goset and)_; Ci = X. As follows from
Lemma §5 for each(1C;i, <) there exisg;, m; such thai(1C;i, <) is a p-morphic image
of a finite quasi¢g;, m;)-tree. Letq = supqs, ..., gn}, and consider quasg, m;j)-trees
Q1, ..., Qn. Obviously for each there exists @-morphismf; from Q; onto (1Cj, <j).
Also note that for eachthere exists a maximal clustérof X such thatC is a subset of
bothtCi_1 and1C;. Since fj_1 is a p-morphism, there exists a maximal clusi&r_, of
Qi—1 such thatf;_1(D{_;) = C. Similarly there exists a maximal clusta{ of Qj such
that f; (D}) = C. We form@P{_; Qi by identifyingD!_, with D} andD{ with D}_,. Now
definef : @, Qi — X by putting f (t) = fi(t) fort € Q. Itis routine to check that
is well defined and that it is an onf@morphism. O

Theorem 17. The tree sum of finitely many finite trees is an open imagge of

Proof. SupposeTy, ..., Ty are finite trees. Considé€Py_; T. For 2< k < n — 1 lett}
andt; denote the maximal nodes ®f which got identified with the corresponding nodes
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0 1 2 3 2n—4 2n—-3 2n—-2 2n-1

( ] [ 1 [ 1 [ )

\ 1 L 1 L 1 L ]
f|1 f|2 f'n—l f|n

T T2 Th-1 Th

Fig. 5. The mapd, .

tr_, 0f Tk andtl'(Jrl of Tk+1, respectively. Also let; = (0, 1], Ix = [2k — 2, 2k — 1] for
ke{2, ...,n—1},andly = [2n — 2, 2n — 1). FromTheorem &t follows that for eacHy
there exists an onto open mdgp : Ix — Tk (seeFig. 5).

We definef : (0,2n — 1) — @y_; Tk by putting

fl, (), if X € Ik
f(x) = {tg, if x € (2k — 1, 2k)
fi,(x), if x € Iy

wherek € {1,...,n — 1}. It is obvious thatf is a well-defined onto map. Fare T
observe that if}, i ¢1t, then

fian = flaw.
if t} € 1t andt} ¢ 1t, then

=t = L U@k —3.2k—2) U f 1(1D),

lk-1

if ] ¢ 1t andt} € 1t, then
71 = £ 1) U2k — 1,20 U £ L (G).

lk+1

and finally, ift}, tf e 1t, then

f=1(1t) = fﬁl () U@k—3.2k—2 U fi (1) U (2k — 1, 2k) U flzjl (th1)-
Hence,f is continuous. Moreover, for an open interhIC (0, 2n — 1), if U C Iy, then
f(U) = fi,(U);and ifU € (2k — 1, 2k), then f (U) = {t}. In either casef (U) is open
in @’k‘:l Tk. Now every open intervdll C (0, 2n— 1) is the uniorld = U1 U...UU2n_1,
whereUy = UN @k —-1,2k) fork = 1,...,n — 1, andUx1 = U N Igsq for
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k=0,....,n—1. Thus,f(U) = f(Up) U...U f(Uz_1), and sof (U) is an open
set in@Py_; Tk. Hence,f is an onto open map, implying th@;_, Tk is an open image
of (0, 2n —1). Since(0, 2n — 1) is homeomorphic t&, we obtain tha@ﬂzl Tk is an open
image ofR. O

Corollary 18. A finite To-space is an open image Bfiff it is connected.

Proof. Since finite connecteidip-spaces correspond to finite connected partially ordered
components, it follows fromLemma 16and Theorem 17that every finite connected
To-space is an open image Rf Conversely, sinc® is connected and open (even contin-
uous) images of connected spaces are connected, Tiiteages ofR are connected. [

Theorem 19. The regular quasi-tree sum of finitely many finite q-regular quasi-trees is an
open image ofR.

Proof. This follows along the same lines as the proofTdfeorem 17but is based on
Theorem 13nstead ofTheorem 8 In addition, according themma 11fork = 1,...,

n — 1 we divide each intervalk — 1, 2k) into g-many disjoint dense boundary subsets
A%, ..., Ay and definef : (0,2n — 1) — @p_; Q« by putting

fr, (), if X € Ik
fx) =1, ifxeAf
f1,(x), if x € Iy

where(tli)i is thei-th element ofCli andk € {1,...,n — 1}. As a result we obtain that
@Dr_; Q« is an open image aD, 2n — 1), and soPy_; Q« is an open image dk. [

Corollary 20. A finite topological space is an open imageRoiff it is connected.

Proof. This follows along the same lines as the proofGdrollary 18but is based on
Theorem 19nstead ofTheorem 17 [

Theorem 21. $4 + S5+ C is complete with respect Id@B(C>®(R)),” , 3).

Proof. SupposeQs, ..., Qn are arbitraryg-regular quasi-trees. It is sufficient to show
that the(S4 + S5 + C)-algebra over the regular quasi-tree s@y_; Qx is isomorphic
to a subalgebra ofB(C*°(R)),” , 3). The proof ofTheorem 15mplies that for eactQy
there existdy = [2k — 2,2k — 1] and an onto open mafx : Ix — Qg such that for
everyt € Qg we have fk‘l(t) € B(C*®(ly)). It follows from the proof ofTheorem 19
that there exists an onto open mép: (0,2n — 1) — @E:l Qk. If t € Qg does not
belong to eitheC}, or Cf, then f ~%(t) = f, (1), and sof ~1(t) € B(C>(0, 2n — 1)).

If t € Cl, then f~(t) is the union off, *(t) U f_% (t) with a disjoint dense boundary
subset of(2k — 3, 2k — 2) constructed inTheorem 19and ift € Ci, then 1) is
the union of f, 1 (t) U (1) with a disjoint dense boundary subset @k — 1, 2k)
constructed in the same theorem. In either chs&(t) € B(C*®(0, 2n — 1)). Therefore,
f~1(t) € B(C™(0, 2n — 1)) for everyt € Py_; Qk. Thus, the(S4 + S5 + C)-algebra
over@ﬂ=1 Qx is isomorphic to a subalgebra 6B(C*°(0,2n — 1)), ,3), and so it is
isomorphic to a subalgebra 6B(C*>*(R), , 3). It follows that$4 + S5 + C is complete
with respect tadB(C*(R)),” ,3). O



G. Bezhanishvili, M. Gehrke / Annals of Pure and Applied Logic 131 (2005) 287-301 301

5. Conclusions

In this paper we proved tha4 is complete with respect to the closure algebra
(B(C*°(R)), ). It follows that $4 is complete with respect to any closure algebra
containing (B(C*°(R)),” ) and contained in(P(R)), ). One closure algebra in the
interval [(B(C*(R)), ), (P(R)),” )] deserves special mention. L& (R) denote the
Boolean algebra of Borel sets over open subset®;ofhat is B(R) is the countably
complete Boolean algebra countably generate@®). It is obvious thatB(C*°(R)) C
B(R) € PR). In fact, both of the inclusions are proper. As a result we obtainShas
complete with respect to the closure algefR), ).

In Remark 10wve pointed out that the modal systé&nz is complete with respect to the
closure algebraB(O(R)), ). It still remains an open problem to classify the complete
logics of the closure algebras in betwg®&(O(R)), ) and(B(C*°(R)), ).

In the languag& (V) a natural extension dbrz is the bimodal syster®rz + S5 + C.
However, it remains an open problem whetBer + S5+ C has the finite model property.
Therefore, it is still an open problem wheth@rz + S5 + C is complete with respect to
(BIOR)), ,3I.

Let B(C(R)) denote the Boolean algebra generatedtgiR). It was proved in Aiello
et al. [1] that the complete logic ofB(C(R)), ) is the complete logic of the closure
algebra over the 2-tree of depth 2. This result was extended to the bimodal lartjvage
van Benthem et al1[g]. It still remains an open problem to classify the complete logics of
the closure algebras in the intery@B(C(R)), ), (B(O(R)), )], as well as the bimodal
logics of the($4 4+ S5+ C)-algebras in the interv(B(C(R)), , 3), (B(C*®(R)), , I)].
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