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Model Theory (1).

Syntax. Symbols Formal Proof `

Semantics. Interpretations Truth |=

Gödel’s Completeness Theorem. ` = |= for first order
logic.
More precisely: If T is any first-order theory and σ any
sentence, then the following are equivalent:

1. T ` σ, and

2. for all M such that M |= T , we have that M |= σ.
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Model Theory (2).

If T is any first-order theory and σ any sentence, then the following are equivalent:

1. T ` σ, and

2. for all M such that M |= T , we have that M |= σ.

For a set of sentences T , let Mod(T ) be the class of models
of T . For a class of structures M let Thy(M) be the class of
sentences true in all structures in M.

Then:
Thy(Mod(T )) is the deductive closure of T .

It is not true that Mod(Thy(M)) = M: let M := {N}, then
there are models N |= Th(N) such that N 6= N.
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Products (1).

Let L = {ḟn, Ṙm ; n,m} be a first-order language and S be a
set.

Suppose that for every i ∈ S, we have an L-structure

Mi = 〈Mi, f
i
n, R

i
m ; n,m〉.

Let MS :=
∏

i∈S Mi. For X0, ..., Xk ∈M , we let

fS
n (X0, ..., Xk)(i) := f i

n(X0(i), ..., Xk(i)) and

RS
m(X0, ..., Xk) :↔ ∀i ∈ S(Ri

m(X0(i), ..., Xk(i)).

Then MS := 〈MS , f
S
n , R

S
m ; n,m〉 is the product of the Mi.
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Products (2).

In general, classes of structures are not closed under
products:

Let LF := {+,×, 0, 1} be the language of fields and ΦF be
the field axioms. Let S = {0, 1} and M0 = M1 = Q. Then
MS = Q × Q is not a field: 〈1, 0〉 ∈ Q × Q doesn’t have an
inverse.
Theorem (Birkhoff, 1935). If a class of algebras is
equationally definable, then it is closed under products.

Garrett Birkhoff
(1884-1944)

Garrett Birkhoff, On the structure of abstract algebras, Proceedings of the Cambridge
Philosophical Society 31 (1935), p. 433-454
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Ultraproducts (1).

Suppose S is a set, Mi is an L-structure and U is an
ultrafilter on S.

Define ≡U on MS by

X ≡U Y :↔ {i ; X(i) = Y (i)} ∈ U ,

and let MU := MS/≡U .
The functions fS

n and the relations RS
m are welldefined on

MU (i.e., if X ≡U Y , then fS
n (X) ≡U fS

n (Y )), and so they
induce functions and relations fU

n and RU
m on MU .

We call

MU := Ult(〈Mi ; i ∈ S〉, U) := 〈MU , f
U
n , R

U
m ; n,m〉

the ultraproduct of the sequence 〈Mi ; i ∈ S〉 with U .
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Ultraproducts (2).

Theorem (Łoś.) Let 〈Mi ; i ∈ S〉 be a family of L-structures
and U be an ultrafilter on S. Let σ be an L-sentence. Then
the following are equivalent:

1. MU |= σ, and

2. {i ∈ S ; Mi |= σ} ∈ U .

Applications.

If for all i ∈ S, Mi is a field, then MU is a field.

Let S = N. Sets of the form {n ; N ≤ n} are called final segments. An ultrafilter U on
N is called nonprincipal if it contains all final segments. If 〈Mn ; n ∈ N〉 is a family of
L-structures, U a nonprincipal ultrafilter, and Φ an (infinite) set of sentences such that
each element is “eventually true”, then MU |= Φ.

Nonstandard analysis (Robinson). Let L be the language of fields with an additional
0-ary function symbol ċ. Let Mi |= Th(R) ∪ {ċ 6= 0 ∧ ċ < 1

i
}. Then MU is a model of

Th(R) plus “there is an infinitesimal”.
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Tarski (1).

Alfred Tarski
1902-1983

Teitelbaum (until c. 1923).

1918-1924. Studies in Warsaw. Student of Lesniewski.

1924. Banach-Tarski paradox.

1924-1939. Work in Poland.

1933. The concept of truth in formalized languages.

From 1942 at the University of California at Berkeley.

Students. 1946. Bjarni Jónsson (b. 1920). 1948. Julia Robinson (1919-1985). 1954.
Bob Vaught (1926-2002). 1957. Solomon Feferman (b. 1928). 1957. Richard
Montague (1930-1971). 1961. Jerry Keisler. 1961. Donald Monk (b. 1930). 1962.
Haim Gaifman. 1963. William Hanf.
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Tarski (2).

Undefinability of Truth.
If a language can correctly refer to its own sentences,
then the truth predicate is not definable.

Limitative Theorems.
Provability Truth Computability

1931 1933 1935
Gödel Tarski Turing

Algebraic Logic.
Leibniz called for an analysis of relations (“Plato is
taller than Socrates” “Plato is tall in as much as
Socrates is short”).
Relation Algebras: Steve Givant, István Németi,
Hajnal Andréka, Ian Hodkinson, Robin Hirsch,
Maarten Marx.
Cylindric Algebras: Don Monk, Leon Henkin, Ian
Hodkinson, Yde Venema, Nick Bezhanishvili.

Logic and Geometry.
A theory T admits elimination of quantifiers if every
first-order formula is T -equivalent to a quantifier-free
formula (Skolem, 1919).
1955. Quantifier elimination for the theory of real
numbers (“real-closed fields”).
Basic ideas of modern algebraic model theory.
Connections to theoretical computer science:
running time of the quantifier elimination algorithms.
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Back to Set Theory for a while:

Applications of Set Theory in the foundations of
mathematics:
(Remember Hausdorff’s question in pure set theory: are there regular limit cardinals?)

Vitali’s construction of a non-Lebesgue measurable set (1905).

Hausdorff’s Paradox: the Banach-Tarski paradox (1926).

Banach’s generalized measure problem (1930): existence of real-valued measurable
cardinals.

Banach connects the existence of real-valued measurable cardinals to Hausdorff’s
question about inaccessibles:
if Banach’s measure problem has a solution, then Hausdorff’s answer is ‘Yes’.

Ulam’s notion of a measurable cardinal in terms of ultrafilters.
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Early large cardinals.

Weakly inaccessibles (Hausdorff, 1914).

Inaccessibles (Zermelo, 1930).

Real-valued measurables (Banach, 1930).

Measurables (Ulam, 1930).

measurable

uukkkkkkkkkkkkkk

((
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real-valued meas.

GCH

SSSSSS

))SSSSSS

inaccessible

vvmmmmmmmmmmmmm

weakly inaccessible

Question. Are these notions different? Can we prove that
the least inaccessible is not the least measurable?
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Ultraproducts in Set Theory.

Recall: A cardinal κ is called measurable if there is a κ-complete nonprincipal ultrafilter on κ.

Idea: Apply the theory of ultraproducts to the ultrafilter
witnessing measurability.
Let V be a model of set theory and V |=“κ is measurable”.
Let U be the ultrafilter witnessing this. Define Mα := V for
all α ∈ κ and MU := Ult(V, U).
By Łoś, MU is again a model of set theory with a
measurable cardinal.

Theorem (Scott / Tarski-Keisler, 1961). If κ is measurable,
then there is some α < κ such that α is inaccessible.
Corollary. The least measurable is not the least
inaccessible.
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More on large cardinals.

Reflection. Some properties of a large cardinal κ reflect
down to some (many, almost all) cardinals α < κ.

Lévy (1960); Montague (1961). Reflection Principle.

Hanf (1964). Connecting large cardinal analysis to infinitary logic.

Gaifman (1964); Silver (1966). Connecting large cardinals and inner
models of constructibility (“iterated ultrapowers”).
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Hilbert’s First Problem.

Is the Continuum Hypothesis (“every set of reals is either
countable or in bijection with the set of all reals”) true?
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Gödel’s Constructible Universe (1).

In 1939, Gödel constructed the constructible universe L

and proved:

Theorem (Gödel; 1938). L |= ZFC + CH.

Corollary. If ZF is consistent, then ZFC + CH is consistent.
Consequences.

CH cannot be refuted in ZFC.

The system ZFC + CH cannot be logically stronger than ZF, i.e.,
ZFC + CH 6` Cons(ZF).

L is tremendously important for the investigation of logical strength. It turns out that if
there is a measurable cardinal, then L |= “there are inaccessible but no measurable
cardinals”.

L is a minimal model of set theory.
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Gödel’s Constructible Universe (2).

A new axiom? V=L. “The set-theoretic universe is
minimal”.

Gödel Rephrased. ZF + V=L ` AC + CH.

Possible solutions.

Prove V=L from ZF.

Assume V=L as an axiom. (V=L is generally not
accepted as an axiom of set theory.)

Find a different proof of AC and CH from ZF.

Prove AC and CH to be independent by creating models
of ZF + ¬AC, ZF + ¬CH, and ZFC + ¬CH.
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Cohen.

Paul Cohen (b. 1934)

Technique of Forcing (1963). Take a model M of ZFC and
a partial order P ∈M . Then there is a model construction of
a new model MP, the forcing extension. By choosing P

carefully, we can control properties of MP.

Let κ > ω1. If P is the set of finite partial functions from κ× ω

into 2, then MP |= ¬CH.

Theorem (Cohen). ZFC 6` CH.

Theorem (Cohen). ZF 6` AC.
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Solovay.

Robert Solovay
1962. Correspondence with Mycielski about the Axiom of
Determinacy.

1963. Development of Forcing as a method.

1963. Solves the measure problem: it is consistent with ZF that all
sets are Lebesgue measurable.

1964. PhD University of Chicago (advisor: Saunders Mac Lane).

1975. Baker-Gill-Solovay: There are oracles p and q such that
P

p = NP
p and P

q 6= NP
q .

1976. Solovay-Woodin: Solution of the Kaplansky problem in the
theory of Banach algebras.

1977. Solovay-Strassen algorithm for primality testing.
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Now, what is the size of the continuum?

Gödel’s Programme.
1947. “What is Cantor’s Continuum Problem?”

Use new axioms (in particular large cardinal axioms) in
order to resolve questions undecidable in ZF.

Lévy-Solovay (1967).
Large Cardinals don’t solve the continuum problem.

More about this in two weeks.
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Modal logic (2).

Modalities as operators.
McColl (late XIXth century); Lewis-Langford (1932). ♦ as
an operator on propositional expressions:

♦ϕ “Possibly ϕ”.

� for the dual operator:

�ϕ “Necessarily ϕ”.

Iterated modalities:

�♦ϕ “It is necessary that ϕ is possible”.
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Modal logic (3).

What modal formulas should be axioms? This depends on
the interpretation of ♦ and �.
Example. �ϕ→ ϕ (“axiom T”).

Necessity interpretation. “If ϕ is necessarily true, then it
is true.”

Epistemic interpretation. “If p knows that ϕ, then ϕ is
true.”

Doxastic interpretation. “If p believes that ϕ, then ϕ is
true.”

Deontic interpretation. “If ϕ is obligatory, then ϕ is true.”
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Early modal semantics.

Topological Semantics (McKinsey / Tarski).
Let 〈X, τ〉 be a topological space and V : N → ℘(X) a
valuation for the propositional variables.

〈X, τ, x, V 〉 |= ♦ϕ if and only if x is in the closure of
{z ; 〈X, τ, z, V 〉 |= ϕ}.

〈X, τ〉 |= ϕ if for all x ∈ X and all valuations V ,
〈X, τ, x, V 〉 |= ϕ.

Theorem (McKinsey-Tarski; 1944). 〈X, τ〉 |= ϕ if and only if
S4 ` ϕ.
(S4 = {T,��ϕ→ �ϕ})
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Kripke.

Saul Kripke
(b. 1940)

Saul Kripke, A completeness theorem in modal logic,
Journal of Symbolic Logic 24 (1959), p. 1-14.

“Naming and Necessity”.
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Kripke semantics (1).

Let M be a set and R ⊆M ×M a binary relation. We call
M = 〈M,R〉 a Kripke frame. Let V : N → ℘(M) be a
valuation function. Then we call MV = 〈M,R, V 〉 a Kripke
model.

MV , x |= pn iff x ∈ V (n)

MV , x |= ♦ϕ iff ∃y(xRy & MV , y |= ϕ)

MV , x |= �ϕ iff ∀y(xRy → MV , y |= ϕ)

MV |= ϕ iff ∀x(MV , x |= ϕ)

M |= ϕ iff ∀V (MV |= ϕ)
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Kripke semantics (2).

M
V , x |= ♦ϕ iff ∃y(xRy & M

V , y |= ϕ)

M
V , x |= �ϕ iff ∀y(xRy → M

V , y |= ϕ)

M
V |= ϕ iff ∀x(MV , x |= ϕ)

M |= ϕ iff ∀V (MV |= ϕ)

Let 〈M,R〉 be a reflexive frame, i.e., for all x ∈M , xRx.
Then M |= T.
(T = �ϕ→ ϕ)

Let 〈M,R〉 be a transitive frame, i.e., for all x, y, z ∈M , if
xRy and yRz, then xRz.
Then M |= ��ϕ→ �ϕ.
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Kripke semantics (3).

Theorem (Kripke).

1. T ` ϕ if and only if for all reflexive frames M, we have
M |= ϕ.

2. S4 ` ϕ if and only if for all reflexive and transitive frames
M, we have M |= ϕ.

3. S5 ` ϕ if and only if for all frames M with an
equivalence relation R, we have M |= ϕ.
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