
Mathematical Logic.

From the XIXth century to the 1960s, logic was
essentially mathematical.

Development of first-order logic (1879-1928): Frege,
Hilbert, Bernays, Ackermann.

Development of the fundamental axiom systems for
mathematics (1880s-1920s): Cantor, Peano, Zermelo,
Fraenkel, Skolem, von Neumann.

Giuseppe Peano (1858-1932)

Proof Theory.

Core Logic – 2005/06-1ab – p. 2/43

Mathematical Logic.

From the XIXth century to the 1960s, logic was
essentially mathematical.

Development of first-order logic (1879-1928): Frege,
Hilbert, Bernays, Ackermann.

Development of the fundamental axiom systems for
mathematics (1880s-1920s): Cantor, Peano, Zermelo,
Fraenkel, Skolem, von Neumann.

Traditional four areas of mathematical logic:
Proof Theory.
Recursion Theory.
Model Theory.
Set Theory.

Core Logic – 2005/06-1ab – p. 2/43

Gödel (1).

Kurt Gödel (1906-1978)

Studied at the University of Vienna; PhD supervisor
Hans Hahn (1879-1934).

Thesis (1929): Gödel Completeness Theorem.

1931: “Über formal unentscheidbare Sätze der
Principia Mathematica und verwandter Systeme I”.
Gödel’s First Incompleteness Theorem and a proof
sketch of the Second Incompleteness Theorem.

Core Logic – 2005/06-1ab – p. 3/43

Gödel (2).

1935-1940: Gödel proves the consistency of the Axiom
of Choice and the Generalized Continuum Hypothesis
with the axioms of set theory (solving one half of
Hilbert’s 1st Problem).

1940: Emigration to the USA: Princeton.

Close friendship to Einstein, Morgenstern and von
Neumann.

Suffered from severe hypochondria and paranoia.

Strong views on the philosophy of mathematics.

Core Logic – 2005/06-1ab – p. 4/43

Gödel’s Incompleteness Theorem (1).

1928: At the ICM in Bologna, Hilbert claims that the work of Ackermann and von Neumann
constitutes a proof of the consistency of arithmetic.

1930: Gödel announces his result (G1) in Königsberg in
von Neumann’s presence.

Von Neumann independently derives the Second
Incompleteness Theorem (G2) as a corollary.

Letter by Bernays to Gödel (January 1931): There may
be finitary methods not formalizable in PA.

1931: Hilbert suggests new rules to avoid Gödel’s
result. Finitary versions of the ω-rule.

By 1934, Hilbert’s programme in the original formulation
has been declared dead.

Core Logic – 2005/06-1ab – p. 5/43

Gödel’s Incompleteness Theorem (2).

Theorem (Gödel’s Second Incompleteness Theorem). If T
is a consistent axiomatizable theory containing PA, then
T 6` Cons(T).

“consistent”: T 6` ⊥.

“axiomatizable”: T can be listed by a computer
(“computably enumerable”, “recursively enumerable”).

“containing PA”: T ` PA.

“Cons(T)”: The formalized version (in the language of
arithmetic) of the statement ‘for all T -proofs P , ⊥
doesn’t occur in P ’.

Core Logic – 2005/06-1ab – p. 6/43

Gödel’s Incompleteness Theorem (3).

Thus: Either PA is inconsistent or the deductive closure
of PA is not a complete theory.

All three conditions are necessary:

Theorem (Presburger, 1929). There is a weak
system of arithmetic that proves its own consistency
(“Presburger arithmetic”).
If T is inconsistent, then T ` ϕ for all ϕ.
If N is the standard model of the natural numbers,
then Th(N) is a complete extension of PA (but not
axiomatizable).

Core Logic – 2005/06-1ab – p. 7/43

Gentzen.

Gerhard Gentzen (1909-1945)

Student of Hermann Weyl (1933).

1934: Hilbert’s assistant in Göttingen.

1934: Introduction of the Sequent Calculus.

1936: Proof of the consistency of PA from a transfinite
wellfoundedness principle.

Theorem (Gentzen). Let T ⊇ PA such that T proves
the existence and wellfoundedness of (a code for) the
ordinal ε0. Then T ` Cons(PA).

Core Logic – 2005/06-1ab – p. 8/43

Arithmetic and orderings (1).

Ordinals are not objects of arithmetic (neither first-order not
second-order). So what should it mean that an arithmetical
theory proves that “ε0 is well-ordered”?

Let α be a countable ordinal. By definition, there is some
bijection f : N → α. Define

n <f m :↔ f(n) < f(m).

Clearly, f is an isomorphism between 〈N, <f 〉 and α.

If g : N × N → {0, 1} is an arbitrary function, we can interpret
it as a binary relation on N:

n <g m :↔ g(n, m) = 1.

Core Logic – 2005/06-1ab – p. 9/43

Arithmetic and orderings (2).

Let us work in second-order arithmetic

〈N, NN, 2N×N, +,×, 0, 1, app〉

g : N × N → {0, 1} codes a wellfounded relation if and only if

¬∃F ∈ NN∀n ∈ N(g(F (n + 1), F (n)) = 1).

“Being a code for an ordinal < ε0” is definable in the
language of second-order arithmetic (ordinal notation
systems).
TI(ε0) is defined to be the formalization of “every code g for
an ordinal < ε0 codes a wellfounded relation”.

Core Logic – 2005/06-1ab – p. 10/43

More proof theory (1).

TI(ε0): “every code g for an ordinal < ε0 codes a wellfounded relation”

Generalization: If “being a code for an ordinal < α” can be
defined in second-order arithmetic, then let TI(α) mean
“every code g for an ordinal < α codes a wellfounded
relation”.

The proof-theoretic ordinal of a theory T .

|T | := sup{α ; T ` TI(α)}

Rephrasing Gentzen. |PA| = ε0.

Core Logic – 2005/06-1ab – p. 11/43

More proof theory (2).

Results from Proof Theory.

The proof-theoretic ordinal of primitive recursive
arithmetic is ωω.

(Jäger-Simpson) The proof-theoretic ordinal of
arithmetic with arithmetical transfinite recursion is Γ0

(the limit of the Veblen functions).

These ordinals are all smaller than ωCK
1 , the least

noncomputable ordinal.

Core Logic – 2005/06-1ab – p. 12/43

Early History of Computing.

1623.

Wilhelm Schickard (1592-1635)

1642.

Blaise Pascal (1623-1662)

1671.

Gottfried Wilhelm von Leibniz (1646-1716)

Core Logic – 2005/06-1ab – p. 13/43

Computation beyond numbers.

Charles Babbage (1791-1871)
Difference Engine (1822)

Analytical Engine

Ada King, Countess of Lovelace (1815-
1852)

Daughter of Lord Byron

Collaborated with Babbage and de Morgan

“[The Analytical Engine] might act upon other things besides number, were
objects found whose mutual fundamental relations could be expressed by those
of the abstract science of operations, and which should be also susceptible of
adaptations to the action of the operating notation and mechanism of the engine
... Supposing, for instance, that the fundamental relations of pitched sounds in
the science of harmony and of musical composition were susceptible of such
expression and adaptations, the engine might compose elaborate and scientific
pieces of music of any degree of complexity or extent.”

Core Logic – 2005/06-1ab – p. 14/43

Turing.

Alan Turing (1912-1954)
1936. On computable numbers. The Turing
Machine.

1938. PhD in Princeton.

1939-1942. Government Code and Cypher
School at Bletchley Park.

Enigma.

1946. Automatic Computing Engine (ACE).

1948. Reader in Manchester.

1950. Computing machinery and intelligence. The
Turing Test.

1952. Arrested for violation of British homosexual-
ity statutes.

Core Logic – 2005/06-1ab – p. 15/43

Turing Machines (1).

Entscheidungsproblem.

Is there an algorithm that decides whether a given formula
of predicate logic is a tautology or not?

Positive answer simple; negative answer hard. Define
“algorithm”.

Turing Machine. An idealized model of computation: an
infinite tape, a finite alphabet Σ of symbols that can be on
the tape, a read/write head, a finite set of actions A, a finite
set S of states and a function (“programme”) F : Σ × S → A.
One of the states is designated the HALT state. Write
T := 〈Σ, S, A, F 〉. There are only countably many Turing
machines.

Core Logic – 2005/06-1ab – p. 16/43

Turing Machines (2).

Turing Machine. An idealized model of computation: an infinite tape, a finite alphabet Σ of
symbols that can be on the tape, a read/write head, a finite set of actions A, a finite set S of
states and a function (“programme”) F : Σ × S → A. One of the states is designated the
HALT state. Write T := 〈Σ, S, A, F 〉. There are only countably many Turing machines.

Given some finite string s ∈ Σ∗ as input, the machine starts its computation according
to F .

There is a unique defined sequence of states that the computation runs through.

If one of them is HALT, we say that the machine halts and write T (s) ↓.

Otherwise, we say that the machine loops (diverges) and write T (s) ↑.

If T (s) ↓, then the machine outputs the content of the tape. We write T (s) for the
output.

We say that T accepts s if T (s) ↓ and T (s) = 1.

We say that T rejects s if T (s) ↓ and T (s) = 0.

A set X ⊆ Σ∗ is decidable if there is a Turing machine T such that s ∈ X if and only if
T accepts s and s /∈ X if and only if T rejects s.

Core Logic – 2005/06-1ab – p. 17/43

The Universal Turing Machine (1).

Fixing a finite alphabet Σ := {σ0, ..., σs} and a finite set of
actions A := {α0, ..., αa}, we can list all Turing machines:

If F : Σ × S → A is a Turing machine programme, we can
view it as a partial function
ΦF : {0, ..., s} × {0, ..., n} → {0, ..., a} for some natural
number n.
If now Φ : {0, ..., s} × {0, ..., n} → {0, ..., a} is a partial
function, we assign a natural number (the “Gödel number of
Φ”):

G(Φ) :=
∏

i≤s,j≤n

prime
Φ(i,j)+1
ij .

Core Logic – 2005/06-1ab – p. 18/43

The Universal Turing Machine (2).

G(Φ) :=
Y

i≤s,j≤n

prime
Φ(i,j)+1
ij .

Let
T ⊆ N := {n ; ∃F (G(ΦF) = n) }

be the set of numbers that are Gödel numbers of some
Turing machine. Let tn be the nth number in T and let Tn be
the Turing machine such that G(ΦTn

) = tn.

“It can be shown that a single special machine of that type can be made to do
the work of all. It could in fact be made to work as a model of any other machine.
The special machine may be called the universal machine. (Turing 1947).”

Core Logic – 2005/06-1ab – p. 19/43

The Universal Turing Machine (3).

Let T be the set of numbers that are Gödel numbers of some Turing machine. Let tn be the
nth number in T and let Tn be the (a) Turing machine such that G(ΦTn

) = tn.

A universal Turing machine is a Turing machine U with
alphabet {0, 1} such that at input 〈n, m〉 such that n ∈ T the
following happens:

If Tn(m) ↑, then U(n, m) ↑.

If Tn(m) ↓= k, then U(n, m) ↓= k.

The Halting Problem K is the set

K := {n ; U(n, n) ↓}.

Core Logic – 2005/06-1ab – p. 20/43

The Halting Problem.

Theorem (Turing). The Halting Problem is not decidable.
Proof. Suppose it is decidable. Then there is a Turing machine T such that

T (n) ↓= 0 ↔ n ∈ K ↔ U(n, n) ↓

T (n) ↓= 1 ↔ n /∈ K ↔ U(n, n) ↑

By universality, there is some e ∈ T such that T = Te, i.e.,

T (n) ↓= 0 ↔ Te(n) ↓= 0 ↔ U(e, n) ↓= 0

T (n) ↓= 1 ↔ Te(n) ↓= 1 ↔ U(e, n) ↓= 1

Substitute n = e in the above equivalences and get:

U(e, e) ↓= 1 ↔ U(e, e) ↑ .

Contradiction! q.e.d.

Core Logic – 2005/06-1ab – p. 21/43

Computability (1).

Alonzo Church Stephen Kleene
1903-1995 1909-1994

“Both Turing and Gödel preferred the terminology ‘computable’ for this class of
functions. When Turing’s 1939 paper appeared, he had already been recruited
as a cryptanalyst three days after Britain was plunged into World War II. Gödel
moved to set theory. Neither Turing nor Gödel had much influence on the
terminology of the subject after 1939.
The present terminology came from Church and Kleene. They had both
committed themselves to the new ‘recursive’ terminology before they had ever
heard of Turing or his results. (Soare 1996)”

Robert I. Soare, Computability and recursion, Bulletin of Symbolic Logic 2 (1996),
p.284-321

Core Logic – 2005/06-1ab – p. 22/43

Computability (2).

computable recursive
computably enumerable recursively enumerable

Computability Theory Recursion Theory

The class of Church-recursive functions is the smallest
class containing projections and the successor function
closed under primitive recursion, substitution and
µ-recursion.

Theorem. A function is Turing-computable if and only if it is
Church-recursive.

Church-Turing Thesis. Every algorithm is represented by
a Turing machine.

Core Logic – 2005/06-1ab – p. 23/43

The Entscheidungsproblem.

Theorem (Church). The set of all (codes for) tautologies in
predicate logic is undecidable, i.e., there is no Turing
machine T such that

T (n) ↓= 0 ↔ ϕn is a tautology
T (n) ↓= 1 ↔ ϕn is not a tautology.

Alonzo Church, An Unsolvable Problem of Elementary Number Theory, American Journal
of Mathematics 58 (1936), p. 345-363

Core Logic – 2005/06-1ab – p. 24/43

Oracle Machines.

An oracle machine is a regular Turing machine with an
extra tape on which it cannot write but only read.

If f : N → N and T is an oracle machine, we say that T
halts at input x with oracle f if the computation with f

written on the extra tape halts. We write T f (x) ↓.

A function f is Turing-computable in g if for all x, we
have

f(x) = y ↔ T g(x) ↓ y.

Theorem. A function is Turing-computable in g if and
only if it is in the smallest class containing projections,
the successor function, and g closed under primitive
recursion, substitution and µ-recursion.

Let us write Cg for that class.

Core Logic – 2005/06-1ab – p. 25/43

Relative Computability.

We write f ≤T g if and only if Cf ⊆ Cg.

≤T is a partial preorder, i.e., a transitive and reflexive
relation.

It is not antisymmetric: If f and g are computable, then
Cf = Cg is the class of computable sets.

If f is computable, then f ≤T K and K 6≤T f .

Define f ≡T g if and only if f ≤T g and g ≤T f .

D := NN/≡T is a partial order called the Turing degrees.

Core Logic – 2005/06-1ab – p. 26/43

Two questions.

Is D a linear order?
Are there f and g such that f 6≤T g and g 6≤T f?

No!

A set A is called computably enumerable (c.e.) if there
is a Turing machine T such that

x ∈ A ↔ T (x) ↓ .

Post’s Problem: Is there a non-computable c.e. A such
that χA 6≡T K.

Yes! (Friedberg-Muchnik 1956/1957).
Core Logic – 2005/06-1ab – p. 27/43

Hilbert’s Problems Once Again.

Hilbert’s First Problem. The Continuum Hypothesis.
“What is the cardinality of the real numbers?”

Hilbert’s Second Problem. Consistency of Arithmetic.
“Is there a finitistic proof of the consistency of the
arithmetical axioms?”

Hilbert’s Tenth Problem. Solvability of Diophantine
Equations. “Is there an algorithm that determines
whether a given Diophantine equation has a solution or
not?”

Core Logic – 2005/06-1ab – p. 29/43

Hilbert’s Tenth Problem (1).

A diophantine equation is an equation of the form

anxn + an−1x
n−1 + ... + a0 = 0.

Hilbert’s Tenth Problem. Is there an algorithm that
determines given 〈an, ..., a0〉 as an input whether the
Diophantine equation anxn + an−1x

n−1 + ... + a0 = 0 has an
integer solution?

Answer (Davis-Putnam-Robinson-Matiyasevich;
1950-1970). No!

Core Logic – 2005/06-1ab – p. 30/43

Hilbert’s Tenth Problem (2).

Davis Robinson Matiyasevich Putnam

Core Logic – 2005/06-1ab – p. 31/43

	Mathematical Logic.
	Mathematical Logic.
	G"odel (1).
	G"odel (2).
	G"odel's Incompleteness Theorem (1).
	G"odel's Incompleteness Theorem (2).
	G"odel's Incompleteness Theorem (3).
	Gentzen.
	Arithmetic and orderings (1).
	Arithmetic and orderings (2).
	More proof theory (1).
	More proof theory (2).
	Early History of Computing.
	Computation beyond numbers.
	Turing.
	Turing Machines (1).
	Turing Machines (2).
	The Universal Turing Machine (1).
	The Universal Turing Machine (2).
	The Universal Turing Machine (3).
	The Halting Problem.
	Computability (1).
	Computability (2).
	The 	extit {Entscheidungsproblem}.
	Oracle Machines.
	Relative Computability.
	Two questions.
	Hilbert's Problems Once Again.
	Hilbert's Tenth Problem (1).
	Hilbert's Tenth Problem (2).

