Around Kudla’s Green function for SO(3, 2)

by Rolf Berndt
August 19, 2024

Abstract

One of Kudla’s conjectures about deep relations between arithmetic intersection
theory, Eisenstein series and their derivatives comes down to a relation between cer-
tain Green function integrals and the special value of the derivative of a corresponding
Fisenstein series. Though this is in the mean time a well treated field, this shall be
discussed in a pedestrian way for the homogenous space belonging to the orthogonal
group of signature (3,2). On the way, some (2,2)- and (1,2)-material is also collected.
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Preface

In 1997, Kudla presented in [Ku0] and [Ku2] conjectures about deep relations between
arithmetic intersection theory, Eisenstein series and their derivatives, and special values
of Rankin L-series. Almost 20 years ago, Ulf Kithn made me acquainted with some of his
former work concerning the Arakelov theory and the arithmetic of the world round about
the orthogonal and unitary groups in special cases. Based on Kiihn’s old unpublished
draft on his attempt to prove Kudla’s conjectures for the case of the product of two mod-
ular curves two joint articles discussing Kudla’s Green function concerning the orthogonal
group SO(2,2) appeared in the arxiv in 2012 [BeKI| and [BeKHJH There, in part one
it is proved that the generating series of certain modified arithmetic special cycles is as
predicted by Kudlas conjectures a modular form with values in the first arithmetic Chow
group. In part two this generating series is paired with the square of the first arithmetic
Chern class of the line bundle of modular forms. Using part one and previously known
results like the Faltings heights of Hecke correspondences this calculation boils down to
determine the integrals of the Green functions Z(m) over the associated homogenous space
X. The resulting arithmetic intersection numbers turn out to be as predicted by Kudla to
be strongly related to the Fourier coefficients of the derivative of the classical real analytic
Eisenstein series Fs(T, s).

In the following years, an attempt to do all this for the group SO(3,2) using the in [2003]
written articles [BK] by Bruinier and Kiihn and [Kul] by Kudla and though helped by
remarks and hints by Jan Bruinier and Jens Funke got lost in time and details as Kiihn
mainly was taken over by other tasks. And there was much more different and more general
work in several directions on orthogonal and unitary groups by a lot of authors (Kudla,
Rapoport, Bruinier, Funke, Yang, ...). Recently, encouraged by Kiithn and with his help,
I revised the material we had covered and assembled it. Though there is in principle no
result not known in the meantime, one may hope that our pedestrian way to complete our
approach to calculate Kudla’s Green function integral is still interesting to some readers.

In the meantime both articles are joined in the paper 'Kudla’s conjecture for X (1) x X (1)’ which will
appear in the volume dedicated to Kudla’s 70-th birthday



Introduction

Kudla’s program, presented e.g. in his 2002-ICM-talk 'Derivatives of Eisenstein series and
arithmetic geometry’ [Kul, with sources in [Ku0] and [Ku2|, proposes two ways to relate
the generating series for subspaces of the arithmetic space M belonging to the homogenous
space X = I'\ID of the orthogonal group G = SO(p, 2) to the appropriate Eisenstein series
E(t,s) of weight p/2 + 1 (e.g. the introduction of Kudla, Rapoport, and Yang [KRY])
where 7 = u+¢v € H. The first one is via the degree series ¢ge(7) and the second one via

A . ~ ~1
the height series @neignt(7) : For m € Z, let be Z(m) = (Z(m),Z(m,v)) € CH (M) where
Z(m) is a special cycle and = is a possibly modified version (caused by the influence of the
compactification) of Kudla’s Green function =. Then one has

gbdeg Z deg - 8(7—7 0)7
where deg(Z(m,v)) is given by

/X ddE(m, v) A ex (L) = vol(Z(m)).

On the way in the following, this relation is proven again for p = 1,2 and 3. For the height
series Kudla conjectures

d
Oneige(T) = Y _ Z(m (L) =~ B(7,5)|s=0

where E is a certain normalized Eisenstein series and the coefficients of the height series
are essentially given by

A~

Z(m,v) - c1(L)P =htp(Z(m)) + /X E(m, v)er(L)P.

This is already established for p = 1 (see Yang [Ya] and Kudla-Rapoport-Yang [KRY]) and
p = 2 in a particular cases (as mentioned in the Preface in [BeKI] and [BeKII|] and the
thesis of Buck [Bu]) and will be briefly recorded below.

For p = 3, as in (2.1.1)), we take the vector valued Eisenstein series from [BK] (3.1) with
the two components for 5 = 0or1 from [BK] (3.4)

Eg(r,s) == (1/2) Yoo (ep)i(M9).= Y Y cslyimy s v)e, (mu).

(M,¢)€T o0 \Mp4 (Z) yeL' /L meZ—q(v)

As in [BK], we specialize to § = 0 and compare these coefficients cy(y,m, s, v) and their
derivatives cj(y,m, s',v) = %co(% m, s',v) for s = 0 to the integrals

[(fy,m,v):/ =(y,m,v)dp
X
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of Kudla’s Green function Z(v, m, v) displayed in section [4| of this text and I (v, m,v) =
[ Gymdp of the Green function G, ,,, m < 0 from Bruinier-Kiihn [BK] Definition 4.5 and
Theorem 4.10. We see that for general m we get into some elementary algebraic number
theory, As in [BK] (3.23), for m € Z we put 4m = Dy f? and for m — 1/4 € Z16m = D, f*
where Dy is a fundamental discriminant and f € N, and xp, the associated Dirichlet char-
acter (e.g.,[Zal p.38). With a = 47mmw, and o, generalized divisor sums from [BK] (3.23)

(here see ([12.22))) and integrals Ji (12.14.2]), we end up with the following.

0.1. Proposition. For the (3,2) case, one has
C(y,m,0)e~*?form > 0,
0, form <0,
—a C’'(y,m,
o yom.0.0) = § €m0 2(14(3/2,0) + Gy, form >0,
C(vy,m,0)e” 192 J_(3/2,a), form < 0,
(0.1.1)  where  C(y,m,0) := —2°-3-5- 77 2|m[*2L(xpy, 2)0.m(5/2) form # 0,
and the
0.2. Theorem. For the (3,2) case, one has

00(77 m, 07 U) = {

] C(v,m,0)J.(3/2,a), form >0,
(4/B)- 10y, m,v) = {C(v,m,O)J_(B/Za)e'“', form < 0.
(0.2.1)

_C _ O C”(%_m,()) 1 4 —F/ 1 f 0
<4/B>-IBK<%—m,v>—{ O +log(4m) — (1)), form >0,

C(v,—m,0)
0, form < 0.

The second equation is simply [BK] Theorem 4.10 and the first one is an immediate con-
sequence of our main result:

0.3. Proposition (Green Integral). We have the integrals of Kudla’s Green function
for the case of the SO(2,3)

I(y,v,m) = / =(y, m,v)dp
X
= 20357 4m* L(xpy, 2)0ym(5/2) T4 (v,m), for m >0,
(0.3.1) = 20357 2m*2L(xpy, 2) 0y (5/2) J_(v,m)e” 1l for m < 0.
0.4. Corollary. We have
(0.4.1)  cy(y,m,0,v) = e **((4/B) - (I(y, m,v) — I"X(y,=m,v)) + * co(7,m,0,v))

Hence, Kudla’s Green function and the Green function from Bruinier-Kiithn sum up to
create a modular form.



While the work at the elementary details of the paper was interrupted, a lot of other work
on this and similar topics was done. As example, we only mention two items:

0.5. In 2018, an article by Ehlen and Sankaran [ES] appeared which also treated the
two ways to define Green functions, there with the notation Gr& (m,v) and Grf(m). In
[ES] Theorem 3.3 they recognize Gr{f(m,v) as a regularized theta lift and, among others,
they prove the Theorem 3.6 identifying the differences of these Green functions as Fourier
coefficients of a modular form.

0.6. In the paper [GS], Garcia and Sankaran treat a very general situation which does not
include our special example. There they get as their result a very similar looking relation.
Theorem 1.2. Suppose that V is anisotropic and, in the unitary case, that ¢ = 1. Then
for any 7, there is an explicit constant «(T', @), given by Definition 5.7, such that

(—1TI§}0
ZVOI(XV,Ka Qg)

/ g(Ta y, Spf) A Q§+1_TQT = E%(T7 (I)f7 SO) - /{(Ta CDf)qT
(X (C)]

Here ¢ = €™ (I7) and kg = 1 if 5o > 0 and ko = 2 if 5o = 0.

In the special case that T is non-degenerate, one has a factorization
Er(T,®f,8) = Wreo(T, @, 8) - Wr (e, @y, )

where the factors on the right are the products of the archimedean and nonarchimedean
local Whittaker functionals, respectively. Let

E&“(T7 (I)f7 30)00 = Wilf,oo(Tv (1)207 50) ’ WTJ(ev (I)fa S0)

denote the archimedean contribution to the special derivative. Then, if T" is totally positive
definite, Theorem 1.2 specializes to the identity

(=1)"ko
2VO](XV7K, Qg)

/ 9(T,y,05) AL T¢" = BL(T,®4, 50) 00
[Xk (C)]

— Ep(T, @y, 50)((ed)/2(rlog m — % + %logNF/Q det T),

here ¢ = 1(resp. ¢ = 2) in the orthogonal (resp. unitary) case. If T" is not totally positive
definite, the last summand is zero.

Organization of the text

The whole time, we follow the principle to give a lot of details which a reader familiar with
the subject easily can and will skip. Besides the main topic of the signature (3,2), often
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we also look into (2,2) and (1,2) cases.

The main tool in our proofs comes from the special exceptional homomorphisms between
the groups

(0.6.1) SL(2,R) — SO(2, 1)
SL(2,R) x SL(2,R) — SO(2,2)
Sp(2,R) — SO(3,2)

As the symmetric space associated with our orthogonal group G = SO(p, 2) may be iden-
tified with the set

(0.6.2) D = { oriented negative 2-planes X C V =R" },

ie. X =< w,v >, v; € V,qv;) <0, (v1,v2) = 0. It is well-known that, for p = 3, D
has two connected components Dt and D~, and D7 is isomorphic to the Siegel half plane
H, of genus 2, for p = 2 one has D ~ H x H, and D* ~ H for p = 1. Hence, in the
first section, we display this, in the second, we gather from [BK], what we need for the
coefficients of the Eisenstein series for the case p = 3. In sections [3] and [ we introduce
Kudla’s Green function =(5, m,v) belonging to a divisor, rep., to a lattice L,, C V| resp.
an unit group I' = I'(L) = SO(L) which is a discrete subgroup preserving the lattice L.
Section [5| contains notions from elementary number theory needed for the description of
the unit groups and the volumes of their fundamental domains in the sections [6] to
Helped by material from Siegel, we use the exceptional homomorphisms to translate the
well known SL,— and Sp,—results for the cases later needed in the sections [I2] and
to determine the integrals of Kudla’s Green function over X = I"'\ID for the cases p = 3,2, 1.
In these sections, we follow Kudla’s approaches and, concerning the treatment of certain
measures, plunge into papers by Flensted-Jensen, Bruinier and Yang and others which at
the end are further spread in the appendix-section [I6] In epilogue-section [I5], we give an
overview and comparison of the obtained results.

1 Notation and Coordinates

1.1. We take a real quadratic space (V,(.,.)) with signature (p,q),p + ¢ = n and, for
x,y €V, write

q(z) = (1/2)(z,2), (v.y) ="2Qy  (2,y) = q(x +y) — q(z) — q(y), Q € Sym, (R).

Following Siegel (e.g.[S3]), sometime, we also write Q[z] = ‘zQx. In particular, for

(1.1.1) By = (Ep _Eq)



and for z,y € R", we have
p n
(1.1.2) 2qo(x) == Zmi - Z .
a=1 p=p+1

For the identity component of the corresponding special orthogonal group, we write
(1.1.3) G :=S0(p, q).

Here we are mainly interested in the case p = 3,¢ = 2 but we also look at some other low
dimensional cases and start by some generalities for the cases with arbitrary (small) p and
q=2.

For a real symmetric n X n—matrix @, we write SO(Q) = {A € SL,,(R);"AQA = Q}

Our Symmetric Space

1.2. Realization 1. As usual (e.g. [BF], [Kul]), for ¢ = 2, the symmetric space
(1.2.1) D =50(p,q)/(SO(p) x SO(2))

may be identified with the set of oriented negative 2-planes in V, i.e.,

(1.2.2) D ~ { oriented negative 2-planes X C V =R" },

with X = (vy,v9), v; € V, q(v;) < 0, (v1,v2) = 0. It is well-known that D has two
connected components DT and D~. For p = 3, D7 is isomorphic to the Siegel half plane H,
of genus 2, for p = 2 one has Dt ~ H x H, and for p = 1 D" ~ H. There are several ways to
realize these isomorphisms and to fix coordinates. These depend on the special situation
where certain notation has become customary but unfortunatily with slight deviations in
different papers.

1.3. Realization 2. D is isomorphic to the subset
(1.3.1) Dg = {w € V(C); (w,w) =0, (w,w) < 0}/C* C P(V(C)).
The isomorphism is given by

(1.3.2) X = (v1,v9) — w = vy + ivs.

1.4. Realization 3. Moreover, there is the realization of D as a tube domain: Take a
Witt decomposition

(1.4.1) V(R) = aR + V, + cR,

where a,c € V with (a,a) = (¢,¢) =0, (a,c) = 1 span a hyperbolic plane with orthogonal
complement 1}, and let
C = {veVy(v,v) <0}
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be the negative cone in V. Then D ~ Dy, is isomorphic to

(1.4.2) Dy ={z€ W(C);y=Im 2z € C}

via the map

(1.4.3) Dr = V(C), z—w(z) :=v=24+a—q(2)c

composed with the projection to Dy.

1.5. Example (1,2). We take

1 2
(1.5.1) Q= ( ~1 ) , Q=— ( 1)
—1 1
and
(1.5.2) V={M= (Z _ba) ,a,b,c € R} ~ R

with a = (1/v/2)23,b = (1/v/2)(zy — 1),c = (1/v/2) (x5 + 21),a := *(a, b, ¢) and, hence,
(1.5.3) det M = —a® — be = (1/2)'aQa = (1/2)'2Qx = (1/2)(x? — 23 — z2)
SL(2,R) acts on V via M — g- M = gMg~' =: M’ and one has a map
. ) 3 ad+ py —ay PO
(1.5.4) p:SL(2,R) = G :=S0(Q), g= (0‘ 5) —p(g)=| —208 o —p2
Y 26 _72 52

where p(g) is defined by: a’ belonging to M’ is given by a’ = p(g)a. For

12 = 1/2
(1.5.5) 9z = (y y—1/2)
Y
we get
1 0 =z/y 1 0 -z
(1.5.6) plg:) = | =20 y —2*/y |, (plg:)" = |22/y L)y —2/y
0 0 1/y 0 0 y
From ((1.5.3) we take
1 2
(1.5.7) a=Cz, C:=(1/V2) 1 1], ¢ ti=(1/v2) 11,
1 -1 1 -1



and get
(1.5.8) v:S0(Q) — SO(Q), A~ C'AC,
ie.,

(1.5.9)

- p SLu(R) = SO(Q).
2(ad +By)  2(—ay+ 9 2(—ary — B6)
g v(p(g)) = (1/2) | 2(—aB +70) o — %> =42+ 862 o® + 32 — 4% — &2
2(—af —8) o —B2+42 =82 a?+ B2+ 42
and

2y 2x —2x
(1.5.10) vip(g.)) = (1/(2y)) [ =222 1—2® 49> —14+2%+9°
=222 —1—22+y* 1+2*>+y°

For the Realization 1, as a base point for DT, we take the plane

(1511) Xz = <M1,M2>, M1 = (_1 1) ,MQ = (_1 _1) .
Application of A(g,) transforms to
_ _ 2 _ .2
(15.12) ) i B ) i
Y —1 x
hence, g, transforms X; to
- _ 2
(1.5.13) X.=(Im Z Re Z), Z= (_j Zg) ,

and we have a (bijective) map
(1.5.14) v H— DY, z2=z+iy— X,.

The Realization 3 comes out as follows. We have

3 3
(1.5.15) V(R) = ZejR = iR, e} = (e1 + es)/V2, el = (e —e3)/V2, ¢y = e
j=1 7j=1

with



and
C ={veVy=eR;(v,v) <0}, ie,v=aeya>0.
Hence

(1.5.16) Df={2€VWC),y=Imz€C}~{z€C;Imz >0} =H.

1.6. Example (1,2)bis. Though the action treated above seems to be customary, as well
we can take

1/2
(1.6.1) Q= ~1 :
1/2
and
(1.6.2) V={M= <Z i),a,b,ceR}:R?’

with a := *(a, b, c) and, hence,
(1.6.3) (a,a) =det M =ac— b’ =*aQa
SL(2,R) acts on V via M ~ g- M = gM*'g =: M" and one has a map
) i o o> 2a8 B2
(1.6.4)  p:SL(2,R) —» G :=8S0(Q), g= ( ) —p(g)=ay ad+ Gy po
7 0 2 26 52

where p(g) is defined by: a’ belonging to M’ is given by a’ = p(g)a. For

1/2 ~1/2
Yy xry
(1.6.5) 9z = ( 1/2)
Yy
we get
v 2z %)y 1y —2z/y 22/y
(1.6.6) p(g.) = 1ozfy |, (plg.) "= 1 -z
0 0 1/y 0 0 Y

1.7. Example (2,2). We take

(1.7.1) Q= 1 . Q= 1
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and

(1.7.2) V={M= <Z‘ Z) a,b,c,d € R} ~ R

with

(1.7.3) M =a:=%a,b,cd) = (1/V2)(xy + x4, —5 — T3, Ty — T3, 71 — T4)
and hence

(1.7.4)

(@) = det M = ad — be = (1/2)'aQa = (1/2)'aQx = (1/2)(a? + a3 - a3 — x3) = g(a)

Action 1. G := SL(2,R)? acts on Vovia M — g-M = M9 :=gMg;' = M and one has
a homomorphism of G to Og(Q) given by g = (g1, 92) — A’(g) with

_ (o B (a2 P
g1 = (,71 51) y g2 = (72 (52)

a1y —onye PBide —Bine

1.7.5 = A’ — —aifly arae —Bifr Bias
( ) g (91792)|—> (9) WOy —e 810y —61

—Y1P2 Moy —01f2  di10n

and

Now, as above, fixing as base point of D the negative 2-plane spanned by M; := (! _;)
and My := (71 ’1) we get

— — —X — X _ ~
gZ1Mlgz11 = (y1y2> 1/2 <%1 1yiy2 2y1> = —(y1y2) 1/2 Re Z

_ _ —X] T1T9 — —x 3 .
gz1M2.gzzl - (ylyZ) 1/2 (_11 12 g;yQ 2) — _(ylyQ) 1/2 Im Z

- (—z1 A%
Z_(—l 22)'

This explains a Realization 1 isomorphism

with

H? — D*
(176) z = (21,2’2) = XZ = <gz1 (1 71) gz_217gz1 (—1 71) gz_21> =< Re Za Im Z >
We observe the relations

—y1yo = (Re Z, Re Z) = (Im Z, Im Z)
0= (Re Z, Im 2)
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Action 2. There is also an alternative action of G on V which is pursued in [BeKI].
G =SL(2,R)? acts on V via M + g- M = M9 := gy M'gy =: M’ resp. a — a’ = A(g)a,
and one has a map

vy afy fron fife

g 9 ! b Py Bids

1.7.7 SL(2,R)? —» G := SO A _ |72 o2 P
(L.7.7) (2,R)* — o(Q), g A(g) e o
MYz Bida 0172 0102

In particular we get

VITY2 \/Y1/y2m2 \/y2/y171 \Y1y2 tw1me

1.7.8 A(z) = A9, Gz,) = 0 Vyi/y2 0 VIRt
(1.7.8) (2) (9215 G2) . ’ T
0 0 0 \/m—l

And, fixing again as base point of I the negative 2-plane spanned by M; := (! _;) and
My = (_1 _1) we get

_ — T1Ty —X _
gleltng = (yly2) 1/2 <y1y2_x2 e _11) = —(y1y2) 12Re Z

_ —T — T - _
921M2tgz2 _ (y1y2) 1/2 < 1Y2 2Y1 (ﬁ)yl> _ —(y1y2) 1/2 Im 7

—Y2
2129 21

where Z is given by Z = (1, 7 ). This explains the formula for the isomorphism

(1.7.9) H? — Dt

z=(z,2) = Xo = {g:, (' 1) 05,95 (1 7") 'g2) = (Re Z, Im Z).
The coordinates in this description are related to those in the first one by
(1.7.10) 21> 21, Zo = —1/Z.

The Realization 3 comes out as follows. We have

(L7.11) VR)=> eR=> ¢R,
€)= (e1+e1)/V2eh = (ex+e3)/V2, €y = (e2 — €3)/V2,€} = (e1 — €4) /V2,

with

and

C ={veVy=eR+&R; (v,v) <0}, e, v = aey + bey, (v,v) = ab < 0.

12



Hence

(1.7.12) Dr={2€ V(C),y € Im 2 € C} ~ {2z = (21, 2) € C} 419 > 0} = H? U’

1.8. Example (3,2). We put

1 —1
1 ) -1
(1.8.1) Qo = 1 . 0= 2
-1 —1
—1 -1
and with
(182) U= t(uhuQ; us, U4,U5) = (1/\/5)?5(1:1 + Ty, Tg + Ty, T3,Ty — T1,T5 — 171)
we have
(1.8.3)

2G(u) = 2(u2 — uguy — wyus) = wQu = Q= (22 + 22 4+ 22 — 22 — 22) = 2qo(2).
Hence, we have u = Cz and v = C~'u with
1 1 1 ~1
(1.84) C=(1/V2) 1 , O =(1/V2) 2 ,
—1 1 1 1
and Qy = '{CQC, such that
(1.8.5) G =80(Q) = {A;'AQA = Q} = CGo,C™, Gy =S0(Qo).

Here (clearly going back to Siegel and as in [GN]), we realize V' = R’ as the space V of
skew-symmetric matrices

(1.8.6) M = M(u) = (1}{;{] —iii]) € My(R)

with

(1.8.7) X = (Z; Zi) ,J = (_01 é) € My(R)

The quadratic form G(u) = (1/2)'uQu = u? — usuy — uyus comes in as one has
(1.8.8) "M (u) (_E E) M(u) = q(u) (_E E) B = (1 1) :

13



and

(1.8.9) det M (u) = (u3 — uguy — uyus)>.

The symplectic group G' = Sp(2, R) acts (transitively) on V via

(1.8.10) (9, M(u)) — gM(u)'g = M(A(g)u) = M(u)

preserving the quadratic form §. As usual, this leads to a homomorphism G —s G where

g € G is mapped to the matrix A(g) with «' = A(g)u. Some calculation shows that one
has

(18.11) (_OE g) —

(b1 by
for B = <b2 b3>

O O = OO

1 b3 —2by by b3 — bibs
£ B 0 1 0 0 —by
0o B 0 0 1 0 —by ,
0 0 O 1 —bs
00 0 O 1
1 0 0 0 0
o bs 1 0 0 0
(1.8.12) (B E)r—> —by 0 1 0 0},
by 0 0 1 0
—(bybz — b3) —by —2by —by 1
a b .
and for U = ( ) with n = det U
c d
0’
U0 a>  2ab b
(1.8.13) (0 tU_1> — (1/7) ac ad+bc bd
c? 2cd  d?
1

We choose

1819 e (PO (),
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21 Z2
Z9 23

_ [T T2 _fa b
(23 o).
(1.8.15) d=\/y3,b=y2/\/y3,a =1/ /Y3, 1 = ad = \/ y1ys — 3, (> = 2125 — 3.

Hence, one has

such that g, <1E >=2 = ( ) € Hy, ie.,

(1.8.16)
n 77953/93 2(30392 - 95293)/?/3 (3539% — 222YoY3 + 1’12/32,)/(77%) —C2/77
n/ys 242/ y3 Y5/ (nys) —x1/n
Alg.) = 1 Y2 /1 —Za /1)
Yy3/n —x3/n
1/n
and
1/n —z3/n 2xo/n  —z1/n —¢*/n
ys/n - —2y2/n y3/(ysn) (xsy3 — 2x2y0ys + 2193)/ (nys)
(1.8.17) A(g.)™' = 1 —y2/ Y3 (z2ys — ya3) /Y3
n/ys nxs/ys
7

1.9. Remark: We take as a base point of D the plane
(1.9.1) Xig, =< uM u® > M =%1,0,0,0,1),u? =*0,-1,0,—1,0)
and then we get

(192) A(gz)u(l) = (1/77)t(772 - g27 —T1, T2, —T3, ]-)7
A(gz)u(Q) = (1/n)t(2$2yy — 1Y3 — Y13, —Y1, —Y2, —Ys3, O)a

and with
(1.9.3) ui(2) = 25 — 2123, Up(2) = —21,u3(2) = — 29, u4(2) = —23,us(2) = 1
(1.9.4) X. = (Re u(z), Im u(z)) = A(9.)Xig,-

We observe that one has

(1.9.5) (Re u(2), Re u(z)) = (Im u(z), Im u(z)) = —n* < 0.

15



In this case, the Realization 3 comes out as follows. We have

(1.9.6)
VR) =) eR=) ¢R,
€)= (e1+e5)/V2,eh = —(ex+ €4)/V2, €5 = e3V2, €} = (e2 — €4)/V2, €5 = (e1 — e5) / V2,

with

and

C={veVy=eR+ R+ e)R; (v,v) < 0}
ie.,

v = aey + bely + cely, (v,v) = —2ac + 2b* < 0.

Hence, a connected component of Dy = {z € V5(C),y € Im z € C} can be identified with
the Siegel upper half plane {z = (21, 22, z3) € C*; 91y3 — y2 > 0} = H,.

1.10. For the special cases with p or ¢ = 1, one can take the Grassmanian of the positive
lines, i.e., we have as Realization 4.

(1.10.1) Dy = {(v);v € V,q(v) > 0}.

1.11. Example (1,1). We take

(1.11.1) Q:(l _1), Q:(1 1).

and
(1.11.2) V={zr= (2) 21,75 € R} ~ R?
Here we have

(1.11.3) G =SO(1,1) 5 g(t) = (cosht smht) |

sinht cosht
acting on V = {z = (z1,12)} with ¢(z) = 2% — 22 and a map

(1.11.4) A:G=R—=G=S80(11), t— g(t).

16



If we take 2° = <(1)> as base point and put z(t) := g(t)2°, we get the coordinization of D,
(1.11.5) R >t~ (x(t)) € Dy.

There is a slightly different approach: For Q= ( 1) one has

1

G =S0(1,1) ~ G = SO(Q) = {g(a) = (O‘ (1/a)> Lo # 0}
and
(1.11.6) q(x) = 2f — 23 = 212 = "yQu = G(y)

ie, yi = (1/V2) (@1 +2), yo = (1/V2) (21 — 22). As 'y = H(g(a)'y) = "((1/ )y, apa),
we have another coordinization

(1.11.7) R* 5 o+ (g(a)™! G>> = <(O‘&1)> € D;.

1.12. Example (1,2). The (1,2)-case discussed above using 2-planes in V' as well can be
treated using positive lines. Already above in ([1.5.1) we fixed

1 2

and

V:{M:(a b), a,b,c € R} ~R?

c —a
with a = (1/v/2)2s,b = (1/v/2)(zy — x1), ¢ = (1/v/2) (x5 + 21),a := *(a, b, ¢) and, hence,
det M = —a® —be = (1/2)'aQa = q(z) = (1/2)(2? — 22 — 22)
SL(2,R) acts on V via M — g- M = gMg~' =: M’ and one has a map
) ) o B ad + By —ay  Bo
SL(2,R) = G :=00(Q), g= ( 5) — A(g) = | —2ap a?  —p?
g 276 —q2 82

where A(g) is defined by: a’ belonging to M’ is given by a’ = A(g)a. For

12 p=1/2
(1.12.1) 9z = (y yy—1/2 )

17



we get

1 0 =z/y 1 0 —T
(1.12.2) Alg) = —22 v =2y |, (Alg.)) = |22/y 1)y —a%/y
0 0 1/y 0 0 Y

Again, one has
D, = {(v):v € V. q(v) > 0}.
If we take M° = (_1 1) , resp. a” :="*(0,1, —1) as base point, we get the coordinization
—x
(1.12.3) H—Dy, ze((1/y) |22 +4*]),
-1

_ 2
resp. the line fixed by the matrix X (z) := (1/y) (_T |Z’ ) '

1.13. Example (1,2). Sometimes, it is useful to have hyperbolic coordinates: We
take V as above with G(M) = —a? — bc and D; = {(v);v € V, q(v) > 0} with

x
H—Dy, z=z+yir— ((1/y)|2*+9*]|).
-1
Now, we introduce
(1.13.1) Dy ={z=(21,2,23) ER® q(z) =22 — 25 — 25 = 1,2 > 0}.

and via
z/y =z, (B + ) Jy=21+ 2z, —1/y =23 — =
have H ~ Ds. Let S* = {(«, 8);a* + 3% = 1} and
(1.13.2)  (0,00) x S* =Dy, (r,w = (o, B)) = (chr,shr-w), o =cos¥, = sind.

Hence, one has

(1.13.3) x=shr-a/N =:sa/N,y=1/N, N =chr—shr-p=:c—sp.
And, using ¢2 — s? =1,
dr — spdv dN dN
(1.13.4) de = 247 Nsﬁ — S?VQ ,dy = —m,dN = (s — cfB)dr — sad?,
dz N\ d
LY shidr A do.
)

z=z+yi=(sa+1i)/N
1+ 2% =2(s* — csB + sai) /N?
1 212
B2 _ 42 = 4shoy.
Y

18



1.14. Example (1,3). In this case, we have

1
(1.14.1) Q= -1 .

~1
and

1/2
(1.14.2) Q= - .

1/2

with the forms
(1.14.3) Q= 2} — 23 — 2} — 2} =y — 3 — 3 = YQy.

The associated homogeneous space is the hyperbolic three-space. We report on some
material from the first section of the book by Elstrodt, Grunewald and Mennicke [EGM].

1.15. There are several models for the 3-dimensional hyperbolic space:
1. The upper half space model H* = C x R.,. Points are written as

(1.15.1) P=(z,r)=(x,y,r)=2+71j

where H™ may be treated as subset of the Hamilton quaternions H = R + iR + jR + kR
and has as it boundary P*(C) = C U {oc}. The group SL(2,C) acts transitively on H™T

(1.15.2)
(az +b)(cz +d) + acr® r

P = — M(P) = (<',1"), 2/ = =
(2,7) (P) = (1), 2 lcz +dP + ez 0 T Jez 4 d? + [P

and the stabilizer of j is SU(2). The element

(1.15.3) gp = (1/6/7_” _Z\;F\/F)

maps P unto j. One has invariant line and volume elements

o de® +dy? +dr? dv_dx/\dy/\d'r’

Y

(1.15.4) ds

r2 r3

2. The unit ball model B = {u = ug + u1i + ugj € H; ||ul|* < 1}. One has an isometry
no : H™ — B given by
21 2y P4y +rr—1

1.15.5 _ _ _ |
( ) o x2+x2+(r+1)27u1 x2+x2+(7‘+1)2’u2 2?2+ 22 + (r+1)2
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3. The hyperboloid model S = {y = yofo + y1.fi + v2fo +ysfs € Er;y0 > 0,q1(y) = 1}
Here Fj is a 4-dimensional R—vector space with basis fy, ..., f3 and quadratic form

(1.15.6) a(y) =y —vi—v5 — 43

One has an isometry 7y : HY — S given by

(1.15.7) 70(P) = 5 (L PP)fo+ (1= PP)f —22f, — 29 s)

4. The Kleinian model K = {[y] € P(E}); ¢1(y) > 0}. One has an isometry ¢ : HF — K
given by

(1.15.8) Yo(P) = [(1+ PP)fo+ (1 - PP)f1 —2xf, — 2yfs].

For later use, we here change the basis fo =: e; + ey, f1 =: €1 — ey, fo =: e, f3 =: e3 and
get the coordinization of the space of positive lines given by

(1.15.9) 1 (P) = [ey — weg — yes + PPey).
where, now, the form is q(y) = y1y4 — v3 — v3.
1.16. Remark. Proposition 1.4.2 in [EGM] states that 7 is equivariant with respect to

the homomorphism ¥ : SL(2,C) — SOJ (R, ¢;) which is described in [EGM]| Section 1.3.
We try a slightly different approach and take

(1.16.1) V= {X = X(y) = (fu ;") s € Ryw = s + igs € O)).

a b

SL(2,C) acts on V and for A = <c d) € SL(2,C) we have

(1.16.2) X(y) = AX(y)'A = X(), i.e.,y/ = p(A)y

with p(A) € SO(Q) for 'yQy = y1ys — y3 — y3 and

(1.16.3)
|a|? ab + ab (ab — ab)i |b]?
(A) = (ac+ac)/2  (ad+ad+bc+cb)/2  (ad —ad+cb—cb)i/2  (bd+ bd)/2
P = (ac —ac)/(2i) (ad —ad+be —eb)/(2i) (ad+ad —cb—cb)/2 (bd — bd)/(2i)
|c|? cd + dc (ed — ed)i |d|?

1.17. Remark. For square free m < 0, this map p induces a homomorphism

(1.17.1) Pm 2 SL(2, Z[\/m]) = SO(Z, ¢, qm (1) = uyuy — ul + mu?
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(in p(A) replace i by j :=+/m).

From (1.15.3)) we have gp = (1/6/; _Z\Z_:/F) , and hence

/r —2x/r —2y/r |z|*/r

_ _ 1 0 —x
(1.17.2) P(Apl) = P(gPl) = 1 —y
.
and

Y1/ = 2xys /T — 2yys/r + | 2Py /7

1.17.3 ANy = Y2 Tla

( ) p(Ap)y s —

TY4

In particular, for ¢ = gp, we have

r 2z 2y |z|*/r

(1.17.4) plgp) = ! 1 Z:

1/r

N
5

1.18. The Cayley-Klein and the Poincaré slice model. There is another way to
treat the Minkowski-case, i.e., signature with only one negative term. As example, we treat
the case (1,2), that is ¢(x) = 23 — 23 — 23 = 'z Ej 52. We can take as homogeneous space
D the space of positive lines in V(R) = Zle ;R given by

(1.18.1) D = {"(z1,22,23) € R*; 27 — 23 — 25 = 1}.

i) We take the parametrization

1
V1—u?2—v? A
v

(1.18.2) v:U={(u,v) ER;u®> +v* <1} =D, (u,v)

with (z,y) = 'zE; 2y, have the metric tensor

1183)  (gs(u0)) = (((t%,%) (%m)) () (1 0w 2)

(t’ym ’Yu) (t’yw /Y’U) uv 1—u

and the volume form

1.18.4 dvog = \/det(g; ;)dudv = (1 — u? — 0?32 dud.
J
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ii) We take the parametrization

1+u?+v
1
(1.18.5) v:U = {(u,v) e R;u> +v* <1} = D, (u,v) 1— w2 — 2 3“ |
v

with (z,y) = ‘zE) 2y, have the metric tensor

N I (e ) BRI R O

and the volume form

(1.18.7) dvp = y/det(g;;)dudv = 4(1 — u* — v*) " *dudv.

iii) For m € N, another example is given by ¢,,(7) = 4mx x5 — 23 resp. gm(u) = u? —u —

(1/4m)u3. We take the parametrization
(1.18.8)
1 1+ u? + (1/4m)v?

o S22
v:U={(w,v) e Ru” +0° <1} = D, (u’v)H1—u2—(1/4m)v2 35

with (z,y) = x1y1 — T2y2 — (1/4m)z3ys, have the metric tensor

(1.18.9)  (g;;(u,v)) = <(<:7“’%) (i%’%)> = (1 —u’ = (1/4m)v*) "4 (_4 —1/m)

Yo 7)) (Yos T0)
and the volume form

(1.18.10) dvp = \/det(gij)dudv = (2/p)(1 — u® — (1/4m)v®) 2dudv, p* =m.

1.19. An overview over part of all this and objects appearing and to be explained later is
given as follows.

Our orthogonal world.

SLy(Op, ) Spy(Z SLy(OF )
SLy(R)? [ Spy(R) SL»(C)
(Q+) r(Q-)
S0(2,2) 0(3,2) SO(3,1)
H? H, H*
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Our Lattice
In the following, primarily, we look at V = R® and the lattice L = Ze; + - - - + Zes ~ Z°
with quadratic form

(1.19.1) G(u) = u2 — upuy — wyus = (1/2)uQu,

with orthogonal group and its unit group

(1.19.2) G =S50(Q) = {g € SL(5,R); '¢Qg = Q} ~ SO(3,2),
D(Q) = {W € SL(5,2);'WQW = Q}.

We have the dual lattice L' = LU ((1/2)e3 + L) with L'/L ~ Z/27 and quadratic form

(1.19.3) q'(v) = v3/4 — vyvy — vivs = (1/2)'vQ"v,
—1
—1

Q = 1/2 =Q "
-1
-1

with groups
(1.19.4) G'=S0(Q') = {g € SL(5,R);'9Q'g = Q'} ~ SO(3,2),
[(Q) = {W € SL(5,2);'WQW = Q'}.

1.20. Remark. As Q' = Q! for g € G, one has ("gQg)™' = ¢7'Q"¢ ' = Q' = Q/,
hence

(1.20.1) GG, g—g="g"

2 Eisenstein series of weight 5/2

2.1. In [BK], Bruinier and Kiihn study classical real analytic vector valued Eisenstein
series for Mp, transforming with the Weil representation p;. We want to take over their
results. Hence, we have to look at the following specialization of their situation

- a real quadratic space (V,q) of signature (2,3) and rank r = 5,

- (-, -) the bilinear form corresponding to q with q(z) = (1/2)(x,z) = z1209 + 2374 — 22 (i€,
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the negative of our form ¢ above),

- the lattice L = Z° in V with form ¢ and dual L,

- (ey)yer/1 the standard basis of the group ring C[L'/L],

- pr, the representation of Mp,(Z) in C[L'/L] as in [BK] (2.3), and

- I'(L) the kernel of the natural homomorphism from O(L) to O(L'/L).

For k € (1/2)Z, here k = 5/2, the Eisenstein series of weight « is defined by

(2.1.1) Es(7,5) := (1/2) Yo (ea”)(M,9).
(M,9)€T o \Mp, (2)

Eg has the Fourier expansion

(2.1.2) Z Z s(7,m, s, v)e,(mu).

YEL'/L meZ—q(7)

Kudla’s conjecture relates

9] 0
(2.1.3) Ej(7,0) = &EQ(T, 5)|s=0, i.e.,c5(y,m,0,v) = %c[g(%m, $,0)|s5=0

to appropriate Green function integrals to be defined later. Here, we follow [BK] in their
determination of cg(y,m, s, v).

2.2. Proposition 3.1 in [BK] says that Ejs has the Fourier expansion (here we change
Kk =:1)

Z Z s(7,m, s, v)e, (mu),

~yeL'/L meZ—q(y
T+ 26 —1)
I+ s)D(s)

Wy (dremo)H (B, vy, m, s') form > 0,

Cﬁ(’yv m, Slv U) = (5577 + 5—577)7]8/ + 27”)1 (6 e O S ) form = 07

2£7T5'+E|m‘s’+€—l
L'+ s)
2Z7Ts’+€’m‘s’+€—1
[(s")
L.e., in our case, we have a two component series where each component has coefficients

c(0,m, s',v) indexed by integers m € Z and the other coefficients c(1,m, s, v) indexed by
m — 1/4,m € Z. Here, using a generalized Kloosterman sum H} as in [BK] (3.6),

(2.2.1)

Wy (d|m|v)H (B, v, m, s) form < 0.

H(B.ym.s) = 3 |26/ H(5,0,7,m) form =0,

ceZ—{0}

(22.2) = > |e["H(B,0,5,m) form # 0,

ceZ—{0}
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and the Whittaker term

Wal(a) = |a] ™ * Wiy (@)e/2,(1-0)/2—s (|al])

—la/2 1—4—s' oo
— %/ el =41+ )="dt for a = 4mmuv > 0,
I(1—s—1¢) J
e_\a/2|‘a’1—Z—s’

(223) = W/O €_|a‘tt_8/(1 —|— t)_S/_edt fOI' a = 47va < 0,

where (as in [AS] p.190)

o—2/2 yn+1/2

I'p—v+1/2

(2.2.4) Wu(2) = ) / eV (1 4 gyptr 2y,
0

One has the special cases

Wo(a) = e 2 for a = dmmu > 0,
(2.2.5) = e ’T(1 -4, ]a]) for a =4mmv < 0,

where I'(s,z) = [ e "t~ 1dt.

2.3. For later use, we want to put the Whittaker term into another form and take over
expressions and relations from an adelic treatment in [KRY] (15.2-6) and material on
the confluent hypergeometric function of the second kind as in e.g.[Le] p.324-326. For a
short time, we change to some new notation. We write s’ for the variable s from [BK] to

distinguish from the variable s in the usual adelic version and have

(2.3.1) §=(1/2)(s+1—0)

and the special value s = ¢ — 1 there corresponds to ' = s = 0 in [BK]. We have ¢ := &

and
a:=(1/2)(s+1+40),8:=(1/2)(s+1—-0) =5

and the confluent hypergeometric function of the second kind

1 o0
2. 2 \I/ . —pe— —zr 1 b—a—1,.a—1
(2.3.2) (a,b;2) T'a) /0 e (r+1) r*dr,

where a > 0,z > 0,b € R with the functional equation
(2.3.3) U(a,b;z) = 27"U(1 +a—b,2 —b; 2).
As in [KRY] (15.4), we define

(2.3.4) U(0,b; 2) == lim, 0+ V(a,b;2) =1
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and as in [KRY] (15.5), for any number n the function
(2.3.5) U, (s,a) ==V ((1/2)(1 +n+s),s+ 1;a)
which has the functional equation
(2.3.6) U,.(s,a) =a°V,(—s,a).
Now, we take
(2.3.7) Uy(s,a) :=V((1/2)(1+ L+ s),s+ 1;a)
1 5 /oo e (1 4 1) (/210 (1/2)(s4-1) g,
0

TT((A/2)1+ s
1

= — e~ (r + 1)y
() /0

=a *Wy(—s,a)

—S

TT((A/2) 1+ -5

. /oo e (r + 1)_(1/2)(SHM)T(l/Q)(Z_S_l)dr
0

—S

“TH /Ooo e~ (r +1)"r P,

resp.
(2.3.8) U_y(s,a) = ﬁ /000 e~ (r + 1) P ar
=a P+ ﬁ/ e ((r + 1) = 1)rdr
0
=a *WUy(—s,a)

a—S

- —ar 1—,8 —
F(l—a)/o e (r+1)""r%dr

As they will become very important later, we introduce the abbreviation of the integrals

T (s,0) = / e (w1 1)° — Dduw/w,

(2.3.9) J_(s,a) ::/ e widw/(w+1).
0
Using these, we also have
1
2.3.10 U_y(s,a)=a"+ Ji (s —B,a),
(23.10) /(5,a) (s - Bua)
1
U, (l—1a)==—<J ({—1,a).
+£( ,CL) F(E)J ( 7&)
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Hence, remembering s = 2¢' + ¢ — 1, from ([2.2.3) we get
(2.3.11) Wy (a) = |a|’e™ 120y (s, |a]) for a = 4mmv > 0, resp. < 0.

2.4. Remark. With I'(s,z) = fmoo e~'t~'dt and ([2.2.5)), finally, we have
Wo(a) = e 2 for a = dmmu > 0,
= e ’T(1 —¢,]a|) for a=4mmv <0

1
— olal/2 —
€ F(E)J—<£ 1’|CL|),

(2.4.1) _ |a[ttelelr2 / elalt i /4.
1

2.5. Restricting to Ey, for m # 0, in [BK] (3.22), one defines coefficients C(y, m, s) by
co(y,m, s, v) = C(vy,m, s )Wy (drmv)

and in Theorem 3.3, analyzing the Kloosterman sums, for positive m these coefficients in
our case come out as
C(’}/, m, S/) _ 223’+2271/2ﬂ_73’ |mlf+s’71
sin(m(2s" + £))|Do|' =25 T (25" + ¢)
cos(m(s' — (0/2))\/|L'/LIT(s" + £)
L(Xp,, (3/2) — 25 — 1)
C(2—4s" —20)

(2.5.1) 0y (25 +0).

In this formula, the index m of the coefficient and the fundamental discriminant D, are
linked by the essential relation from [BK] (3.24)
(2.5.2) D := Dy f? := =2d2mdet(L),d, = min{b € Z-o;by € L}

and 0 = 0if Dy > 0, 6 = 1if Dy < 0, and 0.,,,(s) from [BK] (3.28) is the generalized divisor
sum which will later reappear in (|12.23.1]) and then will be discussed a more intensely

1 — xp, (p)p1/2 (3/2)s
(253) O'%m(s) = H 1 _0 p1_2s Lf(yz,?n(p (3/2) )
p|D

For m < 0 analogous formulae hold but with I'(s" 4 ¢) replaced by I'(s).

2.6. Remark. It will be helpful to note a formula from the proof of [BK] Theorem 3.3,
namely, for m > 0, one also has

(2.6.1)
(_1)(2£—b*+b+)/42£+1ﬂ.£+s"m‘f-i-s’—l L(XDoa 2g' 4+ ¢ — 1/2>

C(’%mas) = ’L//L’F<SI+€) x C<4S/—|—2€—1)

0ym(28" +0).
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Again, for m < 0, one has an analogous formula but with I'(s’ + ¢) replaced by I'(s).

2.7. The formulae (2.5.1)) and (2.6.1]) are related by the functional equations of the zeta and
L— functions: In [BK] p.1701, for a primitive character xp,, the Dirichlet series L(xp,, )
satisfies the functional equation

25_17TS’D0‘1/2_S

(2.7.1) L(xpy, s) = L{xpo: 1 = S)COS(W(S —0)/2)I'(s)

where 6 = 0 if Dy > 0 and § = 1 if Dy < 0. For s = 2 and § = 1, a quotient of singular
values shows up on the right hand side.
In particular, the Riemann zeta function has the functional equation

28—17TS
2.7.2 = ((1l-8)— .
(272) Cls) =< S)COS(TFS/Q)F(S)
And one also needs the duplication formula
(2.7.3) D(2)[(z + 1/2) = 21 %/7(22).

2.8. For later use, we assemble several standard formulae:

(2.8.1) ¢(2) = 7%/6, ((4) = 7*/90, ¢(—1) = —1/12, ¢(—3) = 1/120,
[(1/2) =V, T(=1/2) = 2v/7, T(3/2) = (1/2)v/7, T(5/2) = (3/4)/T.
1/T'(s) =0, (1/I'(s)) =1 fors = 0.

From [BK] (4.77) we have for our odd case

I (k) / = . -1
ro) = 1(1) - 21og) + 3 (G- (1/2)
(2.8.2) 1;‘,555//22)) =1"(1) — 21og(2) + 8/3.

2.9. Summary 1. Specialized to our case, up to now, we have

co(y,m, s, v) = C(y,m, s YWy (a)
23778/+5/2|m|5l+3/2L(XD0; 25’ + 2)
T T(s +5/2)C(45 + 4)
2375 +5/2 | m |32 L(x p,, 28" + 2)
T [(s)C(4s" +4)
co(y,m, 0,v) = =2°-3-5- 7 2m[*2L(xpy, 2)0ym(5/2) - €2 for m > 0
(2.9.1) =0 for m < 0.

0ym(28 +5/2) - Wy/(a) for m >0

0ym(28 +5/2) - Wy(a) for m < 0
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For m > 0, by (2.5.1), we have as an alternative
sin(m (25 + £))|Do|' =2 ~T'(25' + ¢)
cos(ms')\/|L'/LIT'(s" 4 £)
L(Xpy, (3/2) =25 = {)

(29.2)  C(y,m,s") = 225,+2£71/27r75\m]”5'*1 %

m(28 + ¢
(@—1s—ap om0,
ie.,

(2.9.3) co(y,m,0,v) = =27-3-5-772m/Do|*?L(x Dy, —1)0ym(3/2) - e=/2,
Derivatives

2.10. We hope not to produce too much confusion as we still have the variable s’ and use
the ’ for the s’—derivative. We have

(2.10.1) (v m, s v) = C'(y,m, & )We(a) + Cly,m, )Wi(a)

and want to evaluate this for s’ = 0. For m < 0, one has C(vy,m,0) = 0. Moreover, from
@.311)

Wy (a) = |a|e”192W_y(s,]a]) fora = dmmv > 0, resp. <0,
and from ([2.4.1])
Wo(a) = e=¥?  for a = 4mmuv > 0,
= e Y1(=3/2,]a|) for a = 4wmwv < 0

—|al/2 1
_ olal/ WJ_(?)/?, |al)

_ €7|a\/2’a‘73/2 /Oo €|a‘tdt/t5/2.
1

For m > 0, we get

4
ds’
Using [KRY] (15.9), one has

(2.10.2) Wy (a) = loga - a®e”12W_,(s,a) + |a|sle|a/2%\lfg(s, a).
(2.10.3) UV ,(0—1a)=1, ¥V ,(l—1,a)=—(1/2)(loga— J({ —1,a))

Here the derivative " is with respect to s. For F'(s) = F(2s'+/¢—1), one has (d/ds')F(s) =
2F'(s). Hence, for m > 0,

(d/ds"YWy(a) = logae™? —2.(1/2)(loga — Jo({ —1,a))e”?
(2.10.4) = J.(3/2,a)e%* = J(3/2,a)Wy(a)
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For m > 0, by direct computation or [BK] (4.75), from we get
! _ C ( 3) L/(XDm _1)
(2.10.5) C’'(y.m,0) = C(v.m,0)(4 = QL(XDm_l)
o,.(5/2) . T'G/2)
+ QW — log(w/4) + log|m/Dg| + T(5/2) ).

and from (12.6.1))

C'(y,m, 0) = 2°-3-5 -7 2[m|**L(xpy, 2)0,m(5/2)
L'(xpy,2) ,¢'(4) T(5/2) Ufy,m(5/2)>
L(xpy,,2)  ¢(4)  T(/2)  oym(5/2)/

(2.10.6) X <1og7r + log|m| + 2

2.11. Summary 2. For m > 0, using the formula above or (2.10.5)), we get
co(7,m, 0,v) = C'(y,m, 0)Wy(a) + C(v,m, 0)Wi(a)
= C(y,m,0)e™2(J4(3/2,a) + C'(v,m, 0)/C(y,m,0))
=20.3-5- 7 4m*2L(xpy, 2)0ym(5/2) €3 (J1(3/2,a) +

=27-3-5m/Do|**L(xpy, —1)0'%7”(5/2)6_(1/2( ¢
T 5/2)
o5.m(5/2)

And for m < 0, using ) and -

(2.11.2) co(y,m,0,v) = C'(y,m,0)Wy(a)

2371'5/2 m 3/27, ’2 B
B | 2(4) e >0%m<5/2)€ 1917205 ,5(3/2, |al)

— 24825 1 YLy, 2)0 i (5/2)e V2T (=32, |al)
= 2035 7 [m[**L{xpy 20 (5/2) "2 T_(3/2, |al).

(2.11.1) — log(m/4) + log|m/Dg| —|—

In our case, we have ¢(z) = 23 — xoxy — 7175, det L = 2,a = 4mmv and L'/L ~ Z/2Z,
hence v has just the two values 0 + L and 1+ L. These correspond to two cases, Case A
and B, where m € Z resp.m — 1/4 € 7Z which later show up again. In the formulae above,
the index m is related to the fundamental discriminant Dy via , namely by

(2.11.3) Dof? =4m form€Z Case A
(2.11.4) =4’m form—1/4€7Z Case B.
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The formulae for the coefficients of the Eisenstein series we took over from [BK], are ob-
tained for quadratic forms of signature (2,3) though, following Kudla, we have signature
(3,2). But as [BK] have Eisenstein series for a Weil representation dual to the one of Kudla,
we can take their formulae (as done for instance in 3.5.1 in Klocker [KI|).

Eisenstein coefficients and Geometry
2.12. As well known, the coefficients of our Eisenstein series also have a geometric meaning:
Above, in (2.9.1)) we got

(212.1) ey, m, 0,0) = =283 -5 772 m|*2L(xpy, 2)0ym(5/2) - €= for m > 0

In [BK] (4.3) for A € V with negatice norm, g € L'/L, m € Z + q(f) a negative number,

(2.12.2) HBm) = > A

AEL+B,q(N)=m

is a I'(L)—invariant divisor on Gr(V'), the Heegner divisor of discriminant (8, m). In [BK]
Gr(V) is the Grassmannian of positive definite subspaces v C V of dimension 2. From
[BK] (4.33), one has deg (H(v,—n)) = fH(%_n) 0?. [BK] Proposition 4.8 (4.52) specialized
to our situation, says

Eo(r,0)=2e0—(2/B) > > deg(H(y,—n))e,(n7),

~veL'/L neZ—q(y),n>0

(2.12.3) B=((-1)¢(=3) =237},
and (4.53)
(2.12.4) deg (H(v,—n))/B = —2°-3-5/7% - n**L(x Dy, 2)04n(5/2).

This is consistent with the usual results concerning the voluminae of Humbert surfaces
and we shall come back to this later in the calculation of the Green function integral (see

([2.23.9)).
2.13. Summary 3. Via Kloosterman sums [BK] (3.29) leads to
co(y,m,0,v) = =2°-3-5- 7 2m[*2L(xayp, 2)0m(5/2)e" "2,

where one has from [BK] (3.24) 4m = dpf? for m € Z and 16m = dpf? for m = M +
1/4, M € Z. As mentioned above, [BK] Proposition 4.8 (4.52) specialized to our situation,
says

Ey(7,0) =20 — (2/B) ) _ Z deg (H(y, —n))ey(n7),
vyeL'/L neZ—q(y),n>0

(2.13.1) B =((-1)¢(=3) =27°37%5" 1,
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and (4.53)
(2.13.2) deg (H(7y, —n))/B = —2°-3-5/7% - n*2L(xpy, 2)0ym(5/2).

The coefficients in the two cases A and B relate to integrals of appropriate versions of
Kudla’s Green function which will be introduced using the following object.

3 The Majorant

The majorant of an indefinite quadratic form and its description have been propagated by
Siegel while introducing and discussing thetas for indefinite quadratic forms and this is also
essential for the development of the Schwartz forms a la Kudla-Millson. There are differ-
ent approaches. At first we shall follow Siegel’s article [S4] and specialize it to our situation.

3.1. We have a vector space V' = R" with quadratic form

(3.1.1) q(z) = (1/2)(z, ), (z,y) = "2Qy, signature Q = (p,q),p + q = n.

and have (z,y) = q(z+y)—q(x)—q(y). Following Siegel, we also write Q[z] = (z, x) = zQuz.
A majorant of Q[x] is a positive definite quadratic form P|x] such that P[z] > Q[z] for all
x € R™ On the first pages of [S4] it is shown that P € M, (R) defines such a majorant
exactly if

(3.1.2) PQ'P=Q,'P=P>0.

And, if C'is such that for z = C'y one has ‘eQz ="yQoy = yi +--- + ¥ —yor1 — - — Ui
we get such a

(3.1.3) P=(C'O)
The orthogonal group G = SO(Q) = {4;'AQA = Q} via
A tAPA

acts transitively on the set P = P(Q) of these P, which Siegel calls the representation
space. For 7 =u +iv € H

(3.1.4) 0(r,P):=>_ W R=uQ+ivP

TEL"

is a Siegel theta series with its well known nice properties of convergence and transforma-
tion.
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3.2. The following approach (as for instance contained in [Kul]) is more adequate to
Kudla’s world. We restrict to the special case of signature (p,2) and realize the space
G/K by the set D of oriented negative planes X =< vy,vo >C V| i.e., with (vy,v9) =

0, (v1,v1) = (ve,v9) = —n < 0. A minimal majorant (x,z), of (x,z) with respect to X, is
given by

(x,2)x = (z,x) for v € X+
(3.2.1) = —(z,x) for x € X.

To make this more explicit, we decompose x € V' into its positive and negative part with
respect to X,. For

(3.2.2) r=12"+av + Buvy, a, ER

with

(3.2.3) (', v1) = (2, v9) = 0,

one has

(3.2.4) o = (2, v1)/n, B = —(2,03)/1

and, hence,

(3.2.5) (z,2) = (2',2") = (@® + %)y = (¢, 2") = ((2,2(2))* + (2, 9(2))*) /n-

Now we see that one has the minimal majorant given by

(z,2)x = (2',2) + (o + %) = (¢, 2) + ((z,v1)" + (z,v2)") /7
(3.2.6) = (z,2) + 2((z,v1)* + (2, v2)) /7.

Here we take over Kudla’s notation and write
(3.2.7) (z,2)x = (z,7) + 2R(z, X), R(x, X) := ((z,v1)* + (z,v2)?) /7.

Following Kudla, we also remark R(x,X) = —(pryz,pryz), where pry : V. — X is the
projection with kernel X, i.e., x +— pry(z) = ((z,v1)v1 + (2, v2)v2)/(—n).
Using (1.4.3), for z € Dy, we can also write as in [Kul] (1.16)

(3.2.8) R(z, X) := |(x,w(2))|*|ly| 2.

Lacking a better expression, we call R the kernel of the majorant.

3.3. Remark 1. With A € G = SO(Q), one has the following invariance property

(3.3.1) R(z,AX) = R(A™'z, X).
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Here, AX is the plane spanned by Av; and Av, and, with QA = A7, we have

R(z,AX) = ((z, Av))* + (z, Avs)?) /n
= (("2QAv)* + ('2QAv2)*) /1
= ({44710 )" + (444" 1Qua))
= (("(A7'2)Qu1)* + ((A™'2)Qu2)*) /n
= R(A 'z, X).
Remark 2. As a consequence, one has the following kind of covariance relation. For

tyQoy = 'xQx, x = Cy, we have ‘CQC = Q, and for A € SO(Q), A := CTAC € SO(Qy).
With X =< v,v3 > and Y = C71X =< uy := C oy, up := C~ vy >, we get

R(x,X) = ((z,01)* + (z,12)*)/n
= (("xQu1)* + ("zQu2)*) /n
= (("y'CQCuw1)* + ("Y' CQCus)*) /n
= ((y,u1)* + (y,u2)*) /n = R(y,Y).
ergo
(3.3.2) R(z,X) = R(u,U).

3.4. For signature (1,q), one takes as space the space D of positive lines X = (v),v €
V., (v,v) =n > 0 and the majorant is now

(3.4.1) (z,7)x = —(x,2) forx € X+
= (z,z) forx e X.
Writing « = 2’ + av, (2’,v) = 0, (v,v) =1 > 0, one has o = (x,v)/n and
(3.4.2) (z,2) = (2',2") + a®(v,v) = (', 2") + (2, v)?/n
(r,2)x = —(2,2) + a*n = —(z,7) + 2(z,v)* /7.

For pr : V — X, the projection with kernel X1, we have R!(x, X) := (pryz,pryz) =
(x,v)?/n. Hence, parallel to the notation from the signature (p,2)-case, here one has

(3.4.3) (z,7)x = —(2,2) + 2(z,v)*/n = —(z,2) + 2R (z, X).

3.5. Key Relation Using Siegel’s approach, the majorant can be determined as follows.
Given a matrix @ with the form ‘xQuz, look for a matrix Py with P,Q 'Py = Q. For
A € SO(Q), we have a majorant xtAPOAx In particular, this is helpful if one has an
homomorphism p : G — SO(Q) Where z€G/K=:Disa parameter for the representation
space P(Q). Hence, take A := A(z)7! p((gz) 1), where g, € G is such that g.(z) = 2
for a base point z, € D. For X = p((g.)~")Xo =: X., one has

(3.5.1) (z,2). = "(p((g:)"")2) Polp((g:) "))
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In the following examples below, this way, we shall get the same value for the majorant as
before.

3.6. Remark. It is a triviality but perhaps useful to observe the following: If one has
(z,7). = "p((9.) ) Po(p((g9-)"')x) and another form

(3.6.1) (y,y) = ‘yQy = (z,x) with z=Cy, A=CAC,Q ="'CQC,

as above one has (z, ), = (y,v).. Hence, also

(3.6.2) R(y,z) = R(C™'z, 2).

3.7. Summary. For V with (z,2) = ‘2Qz and signature (p,2) and D > X = (v1,v3) C
V, (v1,v1) = (v2,v2) = —n < 0 we have the majorant

(3.7.1) (,2)x = (z,2) +2((z,v1)* + (z,12)%) /0 = (z,2) + 2R(x, X),

R(z, X) = —(pry(z), prx(z)) = ((z,v1)" + (,v2)%) /1.
For signature (1,¢) and X = (v) C V, (v,v) =1 > 0 we have the majorant

(3.7.2) (r,2)x = —(2,2) +2((z,v)*/n = —(2,2) + 2R (x, X),
R'(z, X) = (prx(2), prx(2)) = (z,0)*/n.

if, as in the Key Relation above, one has a homomorphism p : G — SO(Q) where z €
G/K =: D is a parameter for the representation space P(Q), i.e., such that X = X, in
the following examples, we get the same value for the majorant (z,z), := (z,x)x,

(3.7.3) (z,2): = "(p((g:)"")2) Polp((g:) "))

Now, we discuss the explicit outcome for some special cases.

3.8. Example (3,2). We have from (|1.8.1

and with
t t
w="(ur, uz, uz, g, u5) = "(x1 + T3, T2 + T4, T3, 04 — T2, T5 — 71)/V2
i.e.,with u = Cz and z = C~'u we have (u,v) = ‘uQuv and

(3.8.1) LeQor = 2% + a5 + x5 — 27 — 22 = "uQu = 2(u3 — uyug — uLUs),
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hence Q = '{CQC, such that

(3.8.2) G =350(Q) = {A;'AQA = Q} = CGC™, G =S0(Q).
For
(3.8.3) o) =1(1,0,0,0,1), (v],0)) = =2, (v, u) = —us — uy

Ug = t(Oa —1,0, _1:0)> (vg,vg) = -2, (v?,u) = tUg + ug

Xp =< v(l),vg >

we get
(384) R(U, XO) = _(er0u7 erou) - —<<’U?, u)2 + (U(Q)a U’)2)/(_2)

= (ud +u3 + uj + ui + 2ugus + 2uguy) /2

(u,u)x, = (u,u) + 2R(Xo, u)

= u? +us + 2u3 +uj + ui =: ‘uPu,

where
1
1

(3.8.5) P=(C'O)"' = 2 . as it should, fulfills PQ'P = Q.

1

As in ((16.23.3]), we have the homomorphism
A:Sp(2,R) = SO(Q), g+ Alg),gM(u)'g = M(A(g)u)

In particular, for g = g,, as in (1.8.14)), such that g, < iE >= 2z = (Zl 22) € H,, with

Z9 23
(3.8.6) =1/ Y1Y3 — Y3, (= \/ L1T3 — a3,
one has from ([1.8.16)) and ((1.8.17))

n nrs/ys 2(xsys — Tays)/ys  (w3y5 — 22ay0ys + 11y3)/(nys) —C*/n

n/Ys 292/ y3 y3/ (nys) —x1/n
Alg.) = 1 Y2/M —Za/1
Yy3/n —x3/n
1/n
and
1/n —axs/n 2xa/n  —x1/n —¢*/n
ys/n  —2y2/n v3/(ysn) (zsy5 — 2x2y0ys + 2193)/ (nys)
Alg,) ' = 1 —y2/ Y3 (223 — y213) /Y3
n/ys ns/ys
7
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We take as a base point of D the plane from ([1.9.1))
Xo = X;p, =< vV, u® > oM =%1,0,0,0,1),u® =*0,-1,0,-1,0)
and then we get

(387) A(gz)u(l) = (1/77)t(772 - C27 —T1, — T2, —T3, ]-)7
A(gz)u(Q) = (1/77)t(2x29y — X1Y3 — Y13, —Y1, —Y2, — Y3, O)a

and with u(z) = (u(2), ..., us(2)) from (L.9.3)
ur(2) = 22 — 21z, up(2) = —21, us(2) = — 29, ua(2) = — 23, us(2) = 1
we have the negative plane
X, := < (1/n) Re u(2), (1/n) Im u(z) > = A(g.) Xi,.
where
(3.8.8) (Re u(z), Re u(2)) = (Im u(z), Im u(z)) = —? < 0.

Now, for our quadratic form we want to determine the majorant (u,u), := (u,u)x, with
respect to X,. From the key relation ({3.2.7))

(u, u) ax, = (u,u) + 2R(u, AXy) = "(A™ u)P(A )
and ((3.8.4)), by some calculation, we come to

_ ‘Ul — Ug23 + 2U329 — Ug2y + U5(Z% — ZlZ3)|2 _ Wu(z)|2
2(y1ys — v3) 21

(3.8.9)  R(u,z):= R(u,X,)

One observes that for Z = (4,0,7) one has

(3.8.10) (u,u): = (ud + uj + 2u3 + uj + uz).

3.9. Example (2,2). Slightly changing (1.7.1)) and ([1.7.2) we take

1 1 1 1
o= ', | e=| 7" | c=uwd

and

V={M= (Z‘ Z) a,b,c,d € R} ~ R*
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with
M =a:="(a,b,cd) = (1/\/§)t(x1 + x4, —Xo — T3, 9 — T3, 71 — X4), l.e.,a=Cx
and
(3.9.1) (M, M") = (a,a’) = (ad' + d'd — bd — b'c) = "aQa’,
(M, M) =2det M

q(a) = (1/2)(a,a) = detM = 2% + 23 — 23 — 22
We fix again as base point of the space D of oriented negative 2-planes X = (vq,vs) in
V' the negative 2-plane X spanned by v{ := M; = (! _;) and v§ := M = (_, 7') with
(Ml,Ml) = <M27 Mg) = -2= —n.

We stick to the action of G = SL(2,R)? on V via M + g- M = M9 := g, M'g, =: M’ and
one has a map a— a’ = A(g)a with A(g) as in (1.7.8) and get

Y1Y2 Y1T2 T1Y2 T1T2

T
(3.92) A(2) 1= Alga 9:) = (1/Vim2) .

1
and, hence,

_ — 1T —X _
gleltgzz - (y1y2) 12 (ylyQ_x2 . _11) - _<y1y2) 1/2 Re Z =: Ml(Z)

_ —XT — X - _
921M2t922 = (Y112) 1/2 < lyin 2 éjl) = —(y192) V2 Im Z = My (2).

where Z is given as above by Z = (*}* 7). One has

(M, My(2)) = (n/(Vi1y2)(=a = by — cxr — d(z122 = 4112))

(3.9.3) (M, Ms(2)) = (n/(Vy1y2) (=byz — cyr — d(z1y2 + y122))
and by for the majorant
(3.9.4) (M, M), = (M, M)+ 2((M, My(2))* + (M, Ms(2))*)/(2)

= (1/(y112))|a — bzy — cz1 + dz125)* + 2(ad — be).
The same way, we can take

1 To —XTq1 T1T2

(3.9.5) Algh o) = /v | 2 12
Y —Y1Z2
Y1Y2
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and via

(3.9.6) a' == A(g;', g2, )a
a+ bl’g —cry + d.Tl.TQ
bys + dz1ys
=(1/+/
(1/vise) cyr — dyi 2
dyry2
with Py = E,; get as above
(3.9.7) ta' Pal = (M, M),
and
(a,a)y, = (a,a) + 2R(a, 2),
(3.9.8) R(M,z) = R(a,2) = (1/(2y112))|a — bzy — cz1 + dz129|?

In particular, one has

(a,a)4) =2(ad —bc) + ((a—d)* + (b—c)* =a® + 0>+ * + d°
(3.9.9) = 2% + 23 + 23 + 27,

3.10. Example (1,2). Here we have

V={M= (ﬁ _ba> ca,b,c € R},

det M = —(a® + bc) = (M, M) = *aQa,Q = — 1/2
1/2

(3.10.1) (M, M") = —(ad’ + b /2 + cb' /2)

and we identify M = a ="(a,b,¢), x =*(x1, 22, 23). With a = 23,b = 29 + x1,¢ = T3 — 13
one has

—a® — be = 27 — x5 — 3.
As fixed in (|1.12.2), one has a homomorphism

G’ =SL(2,R) — G = SO(Q), g +— A(g)

Y2 gy=1/2
where, in particular, for z = x + iy, g, = ( “1/2 ) , we get

Y
1 0 z/y 1 0 —z
(3.10.2) Alg) = | —20 v —22/y |, Algsh) = | 22/y 1)y —a%/y],
0 0 1/y 0 0 Yy
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Looking at V of signature (p,2) with p = 1, we take D as space of negative oriented 2-planes
X C V, and as base point the plane

X, = (M, My), M, = (1 _1) My = (_1 _1) .

Via g, this plane is transported to

T

Xeima MU My >, M=) = () (VB ) g =amts = (T 5 1))

z

_5 32
ie., for Z = (1/y) (_1 ZZ) one has X, = (Im Z, Re 7).

To determine the majorant, as usual, we decompose M € V with respect to the negative
2-plane X, into its positive and negative parts

M = M' + aM;(z) + BMs(z).
We get
—(1/2y)(M, Mi(2)) = —(1/2y)(2az + b — c(2® — y?))
B =—01/2y)(M, My(2)) = —(1/2y)(—2ay + 2czy)
and, hence, the majorant
(M, M), = (M, M)+ (1/(2y*)) (M, My (2))* + (M, My(2))?)

—(a® +be) + (1/2°) (4> (2% + y*) +° + *(2” + ¢°)°
+ 4abx — dacz(z® + y?) — 2bc(x? — 3?)

(3.10.3) = (M, M) +2R(M, z)
(3.10.4) R(M,z2) = R(M, X,) = (1/4y*)|2az + b — c2*|*.

In particular, one has, as to be expected,
(3.10.5) (M, M); = (a®> 4+ b*/2 4+ */2) = 2(2F + 5 + 3)
3.11. Using the signature (1,q) version for the majorant, we take (M, M) = —(a? + bc),

vo = (0,1, —1) and have (vg,v9) =n =1 > 0. With (3.10.2) we get M(z) := A(g,)vg =
(1/y)!(—z, |2|?, —1) and from (3.3.2)

(M, M(2)) = —(1/(2y))(—2az — b+ c|2[)

(M, M), =2(M, M(2))* — (M, M)
= (1/(2y%))(a*(42* + 2y*) + b* + *|2|* + dabx — dacx|z|* — 2bea?)
RY(M,z) = (M, M(2))*
(3.11.1) (1/ Y(M, M), + (M, M) = (1/(4y*))(2azx + b — c|z|*)?
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3.12. Remark. The same formula for the majorant comes out in both cases (emphazising

p = 1or g = 2) and also using (1.12.2)) resp. (3.10.2) and the 'Key Relation’ with
1

Py = 1/2
1/2

ay — cxy
a’ = A(g;Ya= (1/y) [ a2x + b — ca®
cy?
ta' Pya’ = (1/2y%)(a*(42* + 2y*) + b* + *|2|* + dabx — dacx|z|* — 2bea?
= —(a® +bec) + (1/2y%)|2az + b — c2*|?
= (a® + be) + (1/2y%)(2ax + b — c|z]*)?

(3.12.1)
In [BF] one has the same result in a slightly different shape, namely

(3.12.2) R(z, M) = (1/2y*)(c|z|* — 2ax — b)* + 2(a”® + bc)

3.13. Example (1,2)bis. To follow the same procedure as in the other examples, we use
the alternative action from M — gM'g. For

(3.13.1) M=a= (Z i) (M, M) =ac—b* M+ gM'g=M = (A(g)a,

with (1.6.6]), we come to

aly — 2bx/y + cx?/y
a' = A(g;a= (1/y) b—cx
cy
(M, M), = (a,a), = ‘a’ Pya’
(3.13.2) R(M,z) = ((M,M), — (M, M))/2 = (1/4y*)|a — 2bz + 2*|*.

3.14. Example (1,3). Here we take

+1
V:{M:M(y>: ( yl' b2 y3>3y1>y2,y373/4€R}>
Y2 — Y3 Yq

-1
det M = (M, M) ="yQy = (1ys — ¥5 — ¥3), Q= 1

1/2
(3.14.1) (M, M") = (y1y4/2 — Y2y — Y3ys + Yay1/2).

41



Asin (1.15.2) G' = SL(2, C) acts transitively on HT = C xR where gp(0,1) = (z,r) = P
/2 ,,.—1/2
for gp = (T eril /2 | - As fixed in ([1.16.2), one has a homomorphism

p:G =SL(2,C) — G =S0(Q), g+— plg)

given by (g, M(y)) — gM(y)'g =: M(p(g)y). From (1.17.2) we get

r 2x 2y |z]*/r 1/r —2x/r —2y/r |z]*/r
- 1 /7 o 1 R
(3.14.2)  plgp) = Loy | plgp’) = 1 —y
1/r r
and
(3.14.3)
ry1 + 2xys + 2yys + |2 [Pya /7 y1/r = 2xys /T — 2yys /T + |2|*ya /7

_ Yo + xya/7 1y, _ Y2 — TYs

p(gp)y s+ Y/ » P(gp )Y Ys = Yl
Ya/7 T'Ya

For M, = (1 1) = M (vp),vo :="(1,0,0,1) one has (My, My) =1 > 0 and

r? 4 |2|?
x

Y
1

(M, M(P)) = (1/2r)(y1 — 2xy> — 2yys + (r* + [2]*)ya)-

(3.14.4) M(P) := M(p(gp)vo) = p(gp)vo = (1/7)

From (3.4.3) one has the majorant

(3.14.5) (M, M)p =2(M,M(P))* — (M, M) =2R"(M, P) — (M, M)
= (1/(2r%))(yi + (42 +2r%)ys + (4y° + 2r%)ys + (r* + |2*)%y3
— dayiys — dyyrys + 2|2 vy
+ 8zyyays — 4z(r® + |2*)yays — 4y (r* + [21*)ysya).

The same result comes out evaluating the 'Key Relation’, i.e., for the matrix P, =
1/2

(', ) with BRQ 1Py =Q and ¢/ := p(gp')y from (3.14.3) one has 'y’ Poy’ = (M, M)p

as in 1'
From (3.7.1]) and (3.7.2) we have
(3.14.6) RY(M,P) = (1/2)((M,M)p + (M, M)) = (M, M(P))?

= (1/(4r*)) (g1 — 22y — 2yys + (|2 + 7%)ya)”.
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3.15. Example (1,1). We take
V= R2 oY= t(yhyQ)?UO = t(lv 1)

(v, y) = "WQy = 2p1ys, Q = (1 1) :

A t

50390 = (* ) 9(0hn ="(.1/0) = v, 0y ="t a/) =
(3.15.1) D = {(v) C R%* (v,v) > 0},
With Fy = E, the Key relation gives the majorant

(Y 9)e ="yr-yo = ¥/ + 45t

and one has
(3.15.2) R(y,t) = (1/2)((y, y)e + (v, 1)) = (1/2)(y1/t + yat)™.
For
(3.15.3)

V =R?3 2 ="(21,3),00 = *(1,0)

(:L',$) = tl‘Q:L‘ = QS% - l‘g, Q= (1 _1) )

SO(Q) 2 g(t) = (S}ﬁi iii) , g(t)vg ="(cht,sht) =: vy, g(t)z = "(x1cht, wosht) =: xy,

D = {{v) C R%(v,v) > 0},
with Py = F, the Key relation gives the majorant
(z,2); ="'z -x_y = ((cht)® + (sht)®) (2] + x3) — 4cht - sht - v,
and one has

(3.15.4) RY(z,t) = (1/2)((x,2); + (v,7)) = (z1cht — zo5h t)?.

3.16. Example Summary. (i) From (3.8.9) one has
(3.16.1)

(u,u) = "uQu = 2(u3 — uyus — uguy), DT ~Hy >z = (j §2> ’
2 23

|ug — ugzz + 2uzze — ugzy + us(23 — 2123)|2
R(U,Z) = (1/2)(<u7 u)z - (u7 u)) = 2 . )
2(11y3 — ¥3)

U)(Z) = t<17 21,22, 23, —23 + 2123)7

(z,2) = af + x5 + 2 — af — a3,

Rlz,z) = [z, (1 + (2’22 — 2123)) + T2(21 — 22) + w320 + w4(—21 — 29) + x5(1 + (z% — zlz3)|2
’ 4(y1ys — ¥3)
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(i) From (3.9.8)) one has
(M, M) ="'aQa = 2(ad — bc), D' ~H>3 z = (21, 23),
R(M,z) = R(a,2) = (1/(2y112))|a — bzy — cz1 + dz125)?
(3.16.2) w(z) = (1, 21, 22, 2129),
(iii) From (3.13.2)) one has
(M,M) ="aQa=0b*—ac, D" ~H5 z,
R(M,z2) = R(M, X,) = (1/4y?)|a — 2bz + c2*|*, R* (M, X..) = (1/(4y*))(a — bz — ¢|z|*)*
w(z) = (1,2,2°)

(iv) From (3.14.6| we get
(M, M) ="yQy = (yiya—v5 —y3), DT ~H"23P=(z+iy,r),
RY(M,P) = (1/2)(M,M)p+ (M, M)(= (1/(4r*)) (51 — 2xy2 — 2yys + (|2|* + r*)yu)?

(v) From (3.15.1)) and (3.15.3]) we have

(9:9) ="yQy = 21y, D" ~R* 3¢,

R'(y,t) = (1/2)((y, 9)e + (3.9)) = (1/2)(1/t + yat)*,
(z,2) = "2Qr = 22 — 23, Dt ~R>t,

RY(x,t) = (1/2)((x,2); + (7,7)) = (z1cht — zosh t)?.

4 Kudla’s Green function

4.1. We go back to our original situation in (1.8.3) and (L.8.1)) with V' = R® and the
quadratic form G(u) = (1/2)'uQu = u3 — uguy — uyus The symplectic group G = Sp(2, R)

acts (transitively) on (16.23.1) V ~ V via

(4.1.1) (9, M(u)) — gM(u)'g = M(A(g)u) =: M(u)

preserving the quadratic form q. As usual, this leads to a homomorphism G — G where
g € G is mapped to the matrix A(g) with v’ = A(g)u. We coordinatize the homogeneous

space D := G'/K = {X(z) oriented negative plane inV} via z = (? §2> € H,.
2 23

4.2. We look at the majorant of the quadratic form ¢(u). From (3.16.1)) we know that
the majorant (u,u), = (M, M), with respect to the negative plane X (z) belonging to the
matrix Z = M(u(z)) is given by

(4.2.1) (M, M), = (M, M)+ 2R(u, 2),
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where
(4.2.2)
R(u,z) = R(u; 21, 22, 23) =

lup — ugzz + 2uzze — ugzy + us(23 — 2123)|2 . |1 (2)]?
2(y1y3 — ¥3) 2n?

4.3. Remark. As usual, for x € V with positive norm, one has the special divisor on D

(4.3.1) Z(x)={z€D;zlx}
={z € D; R(x,z) = 0}.

This comes out as follows. In our parametrization by Hj, elements of D are negative planes
X, = (Reu(z), Imu(z)), z € Hy with

(4.3.2) u(z) = zg — 2123, u9(2) = —z1,u3(2) = —29,uy(2) = —23,u5(2) = 1.
Hence,

(4.3.3) Z(x) ={z € D(V); zLz},
~ {z € Hy;'u(2)Qz = 0},

~ {2 € Ho; Yuz) e = &1 — 223 + 22329 — T421 + x5(25 — 2123) = 0}.

This is a Humbert equation for the tuple (z1,z9, 223, x4, x5), i.e., with discriminant A =
422 — dwyxs — Axomy = 4G(2).

4.4. Tt is well known that I' = Sp,(Z) acts on the set of Humbert surfaces H(y) with
equations H(y) = y1 — Y223 +y322 —Yaz1+ys5(25 — 2123) = 0 with primitive integer quintuples
y. I'—orbits with discriminants A(y) = 4m are parametrized by a,, = (1,0,0,0, —m), m #
0, and those with discriminant A(y) = 4m+1 by a/, = (0,1,1, —m, 0). From the discussion
of the coefficients of the Eisenstein series we have to look at u € L’ with ¢(u) = m and
m € Z and m € Z + 1/4. Hence, for m € Z we put

(4.4.1) Z(0m)= > Y Z(nyamm),

n,n?lm 'yEl"/l"am/n2

and form=M+1/4, M € Z

(4.4.2) Zam)= > Y Z(nydl, ).

n,n?[4m €T /T
4

m/n2
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With d, =1, resp. =2form € Z or m =M + 1/4, M € Z, we also put
(4.4.3)
L(y,m) = Z nLZ e

n,n?|d2m
LY ={y € Lymiged(y) = 1}
Lom = {y € Z°4(y) = v3 — 4195 — dyoys = 4m} form € Z
Lim={y €Z%4(y) = v3 — dy1ys — dyoys = 4M + 1 = 4m} form € Z + 1/4.

4.5. From Kudla’s work we know that B(2rvR(z,x)) is a Green function on D for the
cycle Z(z). Hence, we introduce a two component Kudla Green function on X = I'\D

(4.5.1) 2(0,m,v,2) = (1/2) Y B2ruR(z,z)) form €Z,
x€ELY,m
E(1,m,v,2) = (1/2) Y BRrvR(z,z)) form € Z+1/4.
x€EL1,m

4.6. Aim. We want to compare the s—derivatives of the Fourier coefficients ¢(vy,m, s, v)
(in s = 0) of the Eisenstein series with the Green function integrals

(4.6.1) I(O,m,v)::/XE(O,m,v,z)duZ:(l/Q) 3 /XB(QWUR(J:,z))duZ,

:EGLQmL

](1,m,v)::/XE(l,m,v,z)d,uZ:(l/Q) Z /Xﬁ(QMJR(x,z))duz.

xGLLm

4.7. Using (4.4.1) and (4.4.2) and unfolding X = T'\D, one has (by the invariance of
R(z,z))

(4.7.1) I(0,m,v) = (1/2) Z B2rvR(NGy 2, 2))d Y,

i I Ta 2\

I(1,m,v) = (1/2) Z / \DB(QWUR<TLCLI4m/n2,Z)d,uZ.

2
n,n?|4m @2

As a first step, we try to describe the unit groups appearing here and their covolume.

5 Notions from Number Theory

To prepare the field, we collect some elementary facts from number theory (see e.g.[Za]):
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For square free rational integer dy # 0 the maximal order in F = Q(j),j = V/do is given
by

(5.0.1) O=Z+wZ, w=j if dy = 2,3mod 4 (Case 1)

1+
w =

if dy = 1mod4 (Case 2).

The discriminant of F' is given by drp = 4dy in Case 1 and dr = dy in Case 2. Such a
discriminant also is called a fundamental discriminant and it is either = 0 or = 1 mod 4.

For an Z—module M C F, the complementary module M* is given by M* = {z €
F, Tr(xy) € Z for ally € M} and (M*)™' = {z € F;(zy) € M for ally € M*} is the
different. In particular, the ideal D := (O*)~! is the different of F. Hence, for Case 1 with
O =1Z[j| =Z + jZ, one has

(5.0.2) O = (1/(25))0 = (1/2)Z + (1/(2)))Z,
D =(0)"1=2j0=2j7Z+ 2dZ.

Then, in Case 2 with

(5.0.3) O=Zw=Z+(+1)/2Z,

={z = (221 + 22)/2 + 227 /2; w1,z € L}
one has
(5.0.4) O =(1/5)0

D=(0)"'=50
And for My =Z+ fjZ = {a = a1 + fjas; a1,a2 € Z}, one has

(505) M}k = (1/(2f]>)Mf = {C = 02/2 + Cl/(Qfdo)j; C1,C € Z},
(M7)™t =2fjMy = {b=b2f%dy + b12fj; b1, by € Z}.

We also need the order with conductor f, f € N, defined by
Of =7+ fwZ.
Hence, in Case 1, we have

(5.0.6) Oy =7+ fiZ={a= a1+ asfj; a1,as € Z},
OF = (1/(2f)))My = {c=c2/2+ 1 /(2fdo)j; c1,c2 € L},
(O;)fl = (2f7)M; = {b = b2f*do + b12fj; b1,bs € Z}.

Here one has

(5.0.7) aa = a; — fdoay, bb = Af*d*bs — Af?dobi, cc = c5/4 — ¢ /(4f3dy)
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And in Case 2, dgy =1+4+4M, M € 7Z,
(5.0.8) Or =Z+ f(147)/2)Z = {a = (2a1 + fas)/2 + fasj/2; a1,ay € L},
O} = (1/(£4))0; = {c=ca/2 + (2c1 + fea)j/(2fdy); 1,02 € Z},
Dy = (057 = (f5)O5 = {b=baf?do/2 + (201 + fbs) f§/2; by, by € Z},
with

(5.0.9) ad = a? + fajay — f2a3M,
bb = —(b] + fbiby + F2b3M) f3dy,
cC = (c%sz — cf — fclcQ)/(f2d0).

S
I

S
I

6 Some classical Unit Group Covolumes

6.1. Given a symmetric matrix S € M, (Q), we associate to it the unit group
(6.1.1) ['(S)={A€SL,(Z);'ASA = S}.
As we shall see later while determining the Green function integrals, we are led to treat
two special cases:
Case A. We take
2q(u) = 24(u) = u2 — duguy — dugus = ‘uQu = (u, u),

G =S0(Q) = {g € SL(5,R);"9Qqg = Q} ~ SO(3,2),

and
(6.1.2) am = "(1,0,0,0,—m), m € Z\{0}, i.e. 24(a,,) = 4m,
éam ={g € G: gay, = Um},
I, =T(Q,an) = {W € T(Q); Wan = an},
Case B. We take
(6.1.3) a,, ="0,-1,1,M,0), M € Z\{0}, i.e. 24(al,) = 4m = 4M + 1,
éa'm ={geG;gd =d},
Fu, = T(Q.a,) = {W € T(Q); Wa}, = a,},
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and, for a = a,, resp. a = a,, and D, the symmetric space belonging to éa, we want to

know

m?

(6.1.4) fom = vol(T'u\ID,).

As G,,, and Gaén are either isomorphic to SO(2,2) or to SO(3,1) we are in the world of
Hilbert or Bianchi groups.

6.2. Remark. In the book by Elstrodt, Grunewald and Mennicke [EGM], one has in their
Theorem 1.1 in Chapter 7 the following result:

Let K be an imaginary quadratic field of discriminant dx < 0 and let O be its ring of
integers. Then the covolume of the group PSL(2, Q) (in its action on the 3-dimensional
hyperbolic space HT) is

|dK|3/2
A7 2

B ‘dK’?’/Q
24

(6.2.1)  Vis:=vol(PSL(2, O\\HT) = "X (2)

L2, xx), Ls, xx) == Z(%m—s.

n>0

This is also called Humbert’s formula and goes back to a result of Humbert from 1919.
Here, with H" > P = (z,y,r), the volume is measured with the volume form

dxdydr

(6.2.2) dvgr = —

6.3. Remark. From [HG] p.172 for m = mgf? > 0,mq = di a fundamental discriminant,

K = Q(y/mg), we have

(631)  vol(SL(2, (05, O\H?) = 2 T[(1 - (%)p‘z)c@WO)(—l)

plf

=2 TT( = (SRl 7227 Gy (2)
plf b

=TJa- p )P L(2, X yimy) 1/ (127°)
plf

where, with H? 3 (21 = z; + iy1, 22 = T2 + 192), the volume is measured by

dxydy, dzadys
6.3.2 doyg = ———=—
( ) He (2my192)?
and we used the functional equation
(6.3.3) Cre(=1) = Cr(2)di* / (4m).
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Here Oy is an order of conductor f, and

(6.3.4) SL(2, (0, 0%)) = {(Z 2) sa,d € Op,c€ O},b € O;‘c_l,ad —bec=1}
with
(6.3.5) O} = {r € K;Tr(za) € Z for alla € Oy}

6.4. The formula above goes back to a result by Siegel. As a special case of [S2] (19), one
can conclude that

(6.4.1) vol(SL(2, O)\H?) = (2/7%)|dx|*/*Cx (2) = |dx|**L(xx,2)/3 =: Vo
= 87k (—1) fordg >0
where, here, the volume is measured by

dz dy,dzadys

6.4.2 dvoge =
( ) " (yly2)2

6.5. In [BK] section 4, Bruinier-Kiithn treat the general situation: If § € L'/L and
m € Z+ q(5) > 0, then

H(B,m) = Z xt

zeL+8,q(x)=m

is a ['(L)—invariant divisor on Gry(V'), called the Heegner divisor of discriminant (5.m).
It gets the same name as divisor on Xr. For a divisor D on X with volume form w, one

defines
deg(D) = / w.
D

By some highly nontrivial manipulations Bruinier-Kiithn get in [BK] Proposition 4.8 the
mysterious and wonderful result:

(651 Zdeg (H(3,m) = ~Co,m,0)
For the (2,3) case from the example above, this comes down to
(6.5.2)  deg(H(y,m)) = —(B/2)C(v,m,0) = =37 -7 2 [m|** L(x4y, 2)7,m(5/2)
with
B = /X O = ((=1)¢(=3) = (1/12)(1/120) = 27° . 372 . 57!

1 dzidyidzedys
872 (y1y2)?

(653) dUBK = QQ =
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4W(dx;dy1 + dxzdy?) and the generalized divisor sum [BK] (3.28) 0., ,,(5/2) which

will here reappear later.
6.6. Alm We try to relate these results to our volumes k,, resp. /.. Led by [BK] (3.24)
resp. ) and m for FF = Q( Vid d) with fundamental dlscrlmlnant dr, we have to

treat the tvvo cases:

where ) =

Case A

(6.6.1) 4m = dpf?, form € Z

and Case B

(6.6.2) 4-4m =dpf? form=M+1/4, M €7

At first, we come to the following.

6.7. Proposition. For a = a,, and a = a,, in both cases, we have
(6.7.1) I', = PSL(2, (Oy,0})).

Our proof again goes back to Siegel:

7 Siegel’s Approach

7.1. Siegel in [S3] Section 3, on his way to define a Darstellungsmass, discusses the
following situation: We are given a rational symmetric matrix .S belonging to a quadratic
form Sly| = 'ySy = (y,y) =: 2q(y) of type (p,q),p +q = n and a € Z™ (primitive) with
2¢g(a) = m. We have the notion of an associated unit group

['(S) :={U € GL(n,Z),'USU = S}
and want to determine the isotropy group
Ly :=T1(S,a) ={U €I'(5),Ua = a}.

Siegel proposes to describe the isotropy group I', as a unit group in one dimension less.
Following his procedure, this leads to

(7.1.1) ['(S,a) ~{W € T(K);'Wb= bmodm},

where one chooses a matrix B such that the matrix A with first column «, i.e., A = (a, B)
is unimodular and has

(7.1.2) b:="'BSa, K :="BSB —b'b/m.
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7.2. We give some details leading to his result: With G := (m r

b) , one has

(7.2.1)
asa= (i) 5@ = (pg en) = (5 xmm) =¢(" x)e
As for Ua = a, one has UA = U(a, B) = (a,UB), an element U € I'(S, a) has a form
UA=A (1 tc)
14

with integer (n — 1)—column ¢ and integer (n — 1) X (n — 1)—matrix W. Introducing this
into the condition ‘USU = S leads to

sy =tA-t (1 iasa(t CYar—g
c W %74

1 ; 1 te\
(C tW) ASA( W) —tA5A
and, with ((7.1.2)),

1 i (m7t 1 te\ o (m!
o) e w)e(t ) el w)e
and, moreover,
1 m D 1 te) ‘o m1 a_(m 2
c W) \b K+bb/m w) K)~ \b K+bb/m)"

Evaluating the left hand side and comparing to the right hand side, asks for the conditions
from the remark above

ie.,

mec+"Wb=0b, WKW = K.

We evaluate this in some cases near to our situation.
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7.3. Example. We look again at

q(u) = (1/2)(u,u) = (1/2)tuQu = U3 — Uglly — UiUs,

—1
1
S = Q — 2 )
-1
-1
G =S0(Q) = {g € SL(5,R);'gQg = Q} ~ SO(3,2),
L(Q) = {W € SL(5,2); 'WQW = Q},
a=am,="1,0,0,0,—m), m € Z\0, i.e. q(a) = G(a,) = m,
Go={g € G;ga=a},
[, =T(S,a) =T(Q,an) = {U € I(Q);Ua = a}
We take
1
1
(7.3.1) A= (a,B) = 1 ,
1
—m 1

and, by Siegel’s prescription, get

0 ~1
(732)  b='BSa=| | K="BSB—ybjem=|_, °

-1 —1/(2m)
Hence, we have
(7.3.3) T(Q, am) ~ {W € D(K);'Wb = bmod 2m},
or, as well,
(7.3.4) T(Q, am) ~ {W € I(K,,);'"Wb = bmod 2m},
where

—2m

(7.3.5) K, = 2mK = Am , b="1(0,0,0,—1),

—2m
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i.e., the unit group I'(K,) belongs to the quadratic form
(7.3.6) qm(w) = —dmuyug + dmus — uj.

7.4. Example. We look at

2q(u) = 24(u) = u2 — duguy — duyus = ‘uQu = (u, u),
—2
-2

N
I
&>
I
—

—2
-2
SO(Q) = {g € SL(5,R);"gQg = Q} ~ SO(3,2),
{W € SL(5,Z); 'WQW = Q}
= a, = '(1,0,0,0,—m), m € Z\0, i.e. (a,a) = 24(a,,) = 4m,

G

rQ)

Ga: {geé'ga:a},

I, =T(S,a) =T(Q,a,) = {U e T(Q);Ua = a}
We take

1
1
(7.4.1) A= (a,B) = 1 ;
1
—-m 1

and, by Siegel’s prescription, get

0 —2
(7.4.2) b="'BSa=| | ~'BSB—tibfam=|

-2 —1/m
Hence, we have
(7.4.3) T(Q, ay) ~ {W € I(K);'Wb = bmod 4m},
or, as well,
(7.4.4) T(Q, an) ~ {W € I(K,,);'"Wb = bmod 4m},
where

—2m

(7.4.5) K,, = mK = m . b="(0,0,0,-2),

—2m
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i.e., the unit group I'(K,) belongs to the quadratic form

(7.4.6) Gm (1) = —dmuyug + muj — uj.

7.5. Example. We look at

2q(u) = 2G4(u) = u2 — duguy — duyus = wQu = (u, ),

-2
A —2
S=Q = 1 :
-2
-2
G =50(Q) = {g € SL(5,R); "gQg = Q} ~ SO(3,2),
I(Q) = {W € SL(5,2);'WQW = Q},
a=ay,="0,-1,1,M,0), M € Z\0, ie. (a,a) = 24(a,) =4M + 1 = A,
Ga: {ge é;ga:a}a
T, =0(Sa) =T(Q,an) = {U € (Q);Ua = a}
We take
0 1
~1 0
(7.5.1) A=(a,B)=| 1 1 ,
M 1
0 1

and, by Siegel’s prescription, get

0 0 —2
(7.5.2) b="BSa = ; , K ="BSB —b'b/A = 8 1__2}/AA :Zﬁ 8
0 —2 0
Hence, we have
(7.5.3) T(Q,ap) ~ {W € D(K);'Wb = bmod A},
or, as well,
(7.5.4) T(Q, am) ~ {W € D(K,,); 'Wb = bmod A},
where
0 —2A
(7.5.5) Kn=A K= 8 A__zl :i 8 , b="10,1,2,0),
—2A 0
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i.e., the unit group I'(K,) belongs to the quadratic form
(7.5.6) Gm (1) = —4Aujug + (A — 1V)uj — dugus — duj.

7.6. Pseudo-Example. The same way as above, we are tempted to look at

2¢(7) = 2q0(7) = 27 + 25 + 25 — 25 — 2% = "2Qy7,

G =150(3,2)

a=a,="0000dad),a=(1+m)/2,a/ = (1-m)/2, ie. 2q(a,)=m,
Gy ={g € G;9a = a},

I, =T(S,a) =T(Qo, am) = {U € T(Qy); Ua = a}

But here a is not integer as it should be. Hence, cheating, we take anyway

o —1
1
(7.6.1) A=(a,B) = 1 ,
1
o 1
and, again using Siegel’s prescription, get
0 1
t 0 t t 1
(7.6.2) b="BSa = E K ="BSB —1b'b/m = 1
-1 —1/m
Hence, we get formally
(7.6.3) I'(Qo, am) ~ {W € T'(K); ‘Wb = bmod m},
or, as well,
(7.6.4) I'(Qo, am) ~ {W € I'(K,,);"Wb = bmod m},
where
m
(7.6.5) K,=m- K = m . , b="10,0,0,—1),
-1
i.e., the unit group I'(K,,) belongs to the quadratic form
(7.6.6) ¢ (u) = mut + mui — mu3 — u3.

But we don’t really know what we got?
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8 Proof of the Proposition [6.7, Case A

8.1. Orthogonal and SL;—matrices. The matrix W of the examples above can be
realized by an SLo-matrix. We try the following approach. With j = /m’,m’ € Z,m' # 0,
and y1, ...,y € Q, we put

X(y) = ( ! y2+jy3>7

Yo — JYs Ya
where
1/2
(8.1.1) det X (y) = 1y — y2 +m'ys = "YDury, Do = - o
1/2
With

o= (2 4) estzau)
we get a map p: SL(2,Q(j)) = SO(Dy), g — p(g) given by

(8.1.2) X(y)—=gX(W)'g=XW), v =plg)y,

|a]? ab + ab (ab — ab)j |b]?
(ac+ac) (ad+ad+bc+cb)  (ad—ad+cb—cb)j  (bd4-bd)
p<g) = aEEcm azz—c_tda—bé—l_;c acz+ad2—cg—6b bzizl_)d )
2j 25 2 25
|c|? cd + ¢ed (cd — ed)j |d|?

where p(g) has elements in Q. We want to use this to analyze units of the quadratic forms
coming up in the examples by Siegel’s method.

Case Al.

8.2. Asin (2.5.2)), from [BK] (3.24), we are led to treat the relation between the index
m € 7Z of the Fourier coefficient of the Eisenstein series and fundamental discriminant dg
of the associated quadratic field F = Q(V/d)

(8.2.1) dm = dpf?, f € Z.

At first we treat the case where d = 2or 3 mod 4, i.e,.dp = 4d. Hence, with m = df? we go
to Example [7.4] where for our unit group fixing a,, = (1,0, 0,0, —m) we have as in ((7.4.4))

T(Q, an) ~ {W € I(K,,);'Wb = bmod 4m},
with
—2m

K,, = mK = , b="(0,0,0,-2),

—2m
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. . W3 b . . .
i.e., W should be a matrix W = tcg d) , where the entries are rational integers and c

and d — 1 are multiples of 2m and the unit group I'(K,,) belongs to the quadratic form

gm (1) = —4muyus + mui — u3.

Now, in (8.1.1), we choose m’ = d and compare

(8.2.2) Yiys — ya + dys = —dmuyus + muj — uj,

= —4f dujus — u3 + f2du3,
and, with j = Vd, put

(8.2.3) —Af%duy = y1, fus = Y3, U3 = Ya, Ug = Yo,
or
—4df?
(8.2.4) y=Cu,C = f !
1

Hence, the matrix p(g) for the y—variables from (8.1.1)), via the map v given by A —
C~1AC, changes to a matrix for the u—variables

(8.2.5) Wsie = pro(9) = (wij)
|a|2 _ (ab—ab)j _ b __abtab
~ 4fm’ 4f%m’ ~ 4f2m/
__4fm/(ac—ac) ad+ad—bc—zcb bd—bd  ad—ad—cb+cb
— 2j _ 2 ) 2fj 2fj
—4f%m/|c|? (cd —dc)fj |d|? cd + cd
_9 me’( aé + &c) (ad—fldzcb—éb)fj bd;bd ad+ad2+bé+éb

8.3. Remark. We get an integer element U € f‘am if the components of p! (g) are integer
and ¢ and d — 1 are divisible by 2m. And this is the case if we take M, from (5.0.6) and
(8.3.1) g € SL(2, (M, My)), i.e., a,d € My, be (M})™", ce Mj.
This can be seen by some tiny standard verifications. We present some examples. We have
b=2f2dby + 2fjby, b1, by € Z, and ¢ = (1/2)c; + (1/(2f7))ca, c1, ca € Z. Hence, we get
(8.3.2)
wiz = b0/ (4f%d) = (4f'm™bi — 41°5703))/(4fd) € Z,
—wsz = 4f%dce = 4f*md((1/4)c — (1/4f%5%)c3) € Z,
—wyy = 2f%d(ac + ac)
= 2f%d((ar + fjaz)((1/2)er = (1/2f])e2) + (a1 = fiaz)((1/2)er + (1/2ff)e2)
= 2f%d(ayc; — azcy) € 2f°7Z,
Wgg = (CCZ— Ed)Zf] = ((61/2 + CQ]/(2f)>(d1 — f]dg) —+ ... )2fj == 2(62d1 — Cldgfzd) S Z
Woy = (—a1d2 + a1d2 + b162 — bgCl)/Q.
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From ad — be = (ay + aof§)(dy + dofj) — (012f*m' + 022f5)(c1/2 + a5 /(2fd)) = 1 we get
(833) a1d1 — bQCQ + (a2d2 — b101>f2m, = 17 a1d2 + Clgdl — bgCl — blcg = 0.
Hence, one has

(8.3.4) wyy = d = (ad + ad + bé + be) /2
= CL1d1 — agdgfzml + b1C1f2m/ — bQCQ
=1+ (blcl — a2d2)2f2m'.

8.4. Summary. As remarked above, in Case Al, we have M; = Oy. The map p/ = vp:
SL(2,Q(j)) — SO(K,,) restricts to p’ : SL(2, (O, 0})) — I, and, hence, we have the
formula (6.4.1)

(8.4.1) r

from Proposition [6.7]

~ PSL(2, (Oy, 03%))

am

8.5. Remark. Strangely enough, the same procedure doesn’t seem to work starting with
the example [7.3] for the quadratic form G(u) = u3 — uyus — uguy : As in (8.2.2), we would
be led to

(8.5.1) Yiys — Y5 — dy3 = —4muyus + dmu; — uj,
= —4f dujus — u? + 4 dul,

and
—4f2du1 =Y1,2f Uy = Y3, U3 = Ya,Us = Y.

Hence, using the same way as above, we get an element 1y, = W but which is not
an integer.

Case A2.

8.6. We take d = 4N + 1,N € Z, i.e., dr = d and, this time, have 4m = df%. Again we

relate
1/2
det X (y) = y1ys — y3 + m'ys = YDy, Dy = ,
1/2
and

Gm(u) = —4muguz + muj — uj.
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We choose m’ = d, and
(8.6.1) df*uy = y1,us = Y, fus/2 = ys, us = ya.
Hence, the relation y' = p(g)y = (a;;)y with

|al|? ab + ab (ab — ab)j |b]?
(ac+ac)  (ad+ad+bc+eb)  (ad—ad+cb—cb)j  (bd+bd)

P(9) = | wclac  adadibeitc  adtad-cha  vicsa | = (i)
27 27 2 27
|c|? cd + ¢d (cd — ed)j |d|?

from (8.1.2)) changes to v’ = p'(g)u = (w;;)u with

ail —a13/(2df) —a14/(df2) —a12/(df2)

862 gl =wy) = | 2l 0w wdl ]
—andf?  asf/2 a2 a2

We take

(8.6.3) (Z Z) € SL(2,0;,0)

ie.,

(8.6.4) a = (2ay + fay + fjaz)/2,b = fj(2by + fba + fiby)/2,
c=(f))7' 21+ fea + fie2)/2,d = (2dy + fdy + fjda)/2,

and get

(8.6.5)

ad = Ay + Ay fj, Ay = ardy + (aydy + asdy) f/2 — agdy N, Ay = (agdy — aydy) /2,

ab = —fj(AL + AL f5), AL = aiby + (arbs + asby) f/2 — asbyN, Ay = (ashy — a1by/2,

ac = —(1/fj)(A] + A5fj), AT = arc1 + (arcz + ager) f/2 — ageaN, Ay = (azer — arc2) /2,
bc = —((B1+ By fj), By = bicy 4 (bicy + bact) f/2 — bycoa N, By = (bact — bics) /2,

bd = fj(By + Byfj), By = bidy + (bidz + bady) f /2 — bada N, By = (bady — bids) /2,

cd = (1/f5)(Cy + Cafj),C1 = crdy + (crda + c2dy) f/2 — c2da N, Co = (cody — c1d3) /2.
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Hence, with 4m = df? = (1 + 4N) f?, by some standard computation, we come to
(8.6.6) wi = |af* = af + aazf — a3 f*N

wiy = —(ab — ab);j/(2df) = Aj,

wiz = —|b2/(df?) = b2 + bibyf — BN,

wig = —(ab+ab)/(df?) = 245,

wa = —2f(ac — ac)/(2j) = 247,

wyy = (ad — be + ad — cb)/2 = A, + By

was = (b — bd) /] = 2B,

wyy = (ad + be — ba + cb) f/j = 2(Ay — By),

wy = —df?|c]* = ¢} + cieof — 3N,

w3y = (cd — de)jf/2 = Cy,

wsz = |d? = d? + dydyf — 2N,

w34 = cd + cd = 2Cs,

wyy = —df*|(aé + ca)/2 = df*A”,,

Wiz = (ad + cb — ad — @) fj = (As + By)df?/2,

wys = (bd + db) /2 = df* By,

wyy = (ad + bé +da + cb)/2 = A, — By.

We observe that these expressions are integers as one has Ay, 245, A}, 24} € Z etc. because
in 4m = (14 4N)f? f must be even. Concerning the congruence relations, we prepare
some identities: From the determinant relation

1=ad—bc= [(2@1 —|—fCL2 +a2fj)(2d1 —|—fd2 +d2f]> - <2b1 +sz +bgf])(201 +f02 +02fj)]/4
we get for the 'imaginary part’
(867) 0= Clldg + CLle + fa2d2 - b102 — b201 — beCQ

and for the 'real part’ using

(868) 1= [(2&1 + agf)(2d1 + fdQ) + (Igdgdf2 — (2b1 + fb2>(261 + fCQ) — bgngfZ]/ZL,
= aldl — blcl + (1/2)((11d2 + CLle — blcg — bgcl)f + (a/2d2 — b262)f2(1 + d)/4,
= a1d1 — b101 + (1/2)(b2€2 — agdg)f2 + (agdg — b2€2)f2<]_ + d)/4,
= CL1d1 — blcl + (a2d2 — b262)f2(d — 1)/4 = Clel — b101 + (a2d2 — b2CQ)f2N.

Hence, using (8.6.5)), (8.6.6) and 4m = f?(4N + 1), we have

(8.6.9)
Al — Bl = aldl — blcl + (1/2)(&2(11 + Clldg — bgCl — blcg)f + (agdg — bgCQ)fz(l — d)/4
=1- (CLQdQ — bQCQ)fZN + (1/2)(b202 — agdg)f2 — ((lgdg — bQCQ)fQN
=1- (Clgdg — bQCQ)Zm,
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and

(8610) A2 —+ BQ = (1/2)(&2611 — Cleg -+ b261 — bng)
= (1/2)(5201 — aldg + (bQCQ — agdz)f — CleQ + bgCl)
= bQCl — a1d2 + (1/2)(b202 — agdg)f.

Finally for Siegel’s congruence relations, using (8.6.6)), (8.6.10) and f even, we get

(8.6.11) wyy = Aydf? = Aj4m = 0mod 2m,
wye = (As + B2)2m = 0mod 2m,
wyz = Bydf? = Bydm = 0 mod 2m,
wyy = Ay — B; = 1 mod 2m.

We see that we have integral elements w;; and Siegel’s congruence conditions are fulfilled
(f odd is not possible in 4m = f?d = f2(1 + 4N)).

8.7. Summary. In Case A2, we have the formula (6.4.1))

(8.7.1) L4, ~ PSL(2, (0, 0))

am

from Proposition [6.7]

8.8. The treatment of the square free case, i.e., f = 1 also is contained in the careful
considerations of unit groups for quadratic forms in Section 10.2 in [EGM]|: For m’ € N,
they take

(8.8.1) Q (1) = —27 — m'z; + 2374

and, via a prescription g — ¥/ (g), in analogy to the one given above, provide an isomor-
phism

(8.8.2) ¥ :PSL(2,R.) — SO} (Z,Q.) ~ PSO} (Z,Q.)

where the group with entries in R, = Z[v/—m/] has an index in the group with entries in
the ring O of integers in Q(v/—m') given by

(8.8.3) [PSL(2,0) : PSL(2,R,)]=1 m=1,2mod4,
=6 m=T7modS8,
=10 m = 3mod8.
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Namely, with j = +/—m/, here one has

ad+ad+be+be  (ad—ad+be—bc)j  actac  bd4bd
_ 2 _ _ 2 _ 2 _2_
ad—ad+bc—bc ad+ad—bc—bc ac—ac bd—bd

8.8.4 U (9) = 2 _ 2 2 2]
(884 W= gl @-a; a6
cd + cd (cd —ed)j cc dd
In (7.4.6)
'K pu = —dmugug + dmus — uj = ¢ (u).

we change —m = m’ and, to compare to (8.8.2) put
T3 = —4dmuy, T4 = Uz, To = 2Ug, T1 = Uyg.

Hence, the matrix ¥/ (g) changes to a matrix for the u—variables which is the same as in

B23) for f = 1,m = ms

(8.8.5) Wie = 01,(9)
lal? _ (ab—ab)j B2 _ abtab
_ 2mp Amo _ 4dmg
_ 2fmg(ac—ac) ad+ad—bc—abh bd—bd  ad—ad—cb+cb
= 27 _ 2_ 47 _4j
—4dmyg|c|? (cd — dc)2j d*  cd+ad
—2mg(ac+ac) (ad —ad+cb—cb)j b edradtberd

The same way as in Remark we have
8.9. Remark. The components of U/ (g) are in Z, if g is of the type

(8.9.1) g= (Z Z) ,a,d € Ron,b € (1/§)Rom, ¢ € jRom.

And if g is of this type, Siegel’s congruence condition from Remark ({8.3)) is fulfilled auto-
matically.

8.10. As well, we find a discussion of the (2,2)-case in Bruinier’s text [Br] Section 2.7.
For squarefree d € N take F = Q(\/c_l) with discriminant D = d,Op = Z + %g 7. for
d=1mod4 and D = 4d, Op = Z +/dZ for d = 2,3mod 4 and different 9 = (D). For a
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fractional ideal a, one denotes

(8.10.1) F'Op®a):={g= (CCL Z) € SL(2,F), a,d € Op,bea',cc€a}

‘7:: {X: (yl w) y17y4€Q>w€F}7

W Ya

Q(X) = —detX,

w) ev, Y1,Ys € Z,w € Op}

L::Z@Z@OF:{(% "

/ ~
L/\ :Z@Z@OFlz{(% Z;) EV? yl;y4€Z7w€a;‘1}

L(a) := {<?ZU1 ;;;4) eV, y,yu €Z,we al, A= N(a).

Sp(2, F) ~ Spiny, acts isometrically on V' by
(8.10.2) X = gX'q

and (Proposition 2.25) one has Spin; = I'r and, (Remark 2.26) I'(Op @ a) preserves the
lattice L(a).

9 Proof of the Proposition [6.7, Case B

9.1. Again, we look at the quadratic form

(9.1.1)  24(u) = u2 — duguy — dugus = ‘wQu = (u,u), Q

I
—_

-2
—2

This time, we take
(9.1.2) a' :="0,-1,1,M,0), such that (a’,a') = 4m = 4M + 1 =: A.
We want to determine 'y := SO(Q, Z),.

9.2. From Example in Siegel’s approach, we have

—2A
A—-1 =2

(9.2.1) Kp=K-A= P

. b="(0,1,2,0)

N O OO
S OO

—2A
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and

(9.2.2) Gm(z) = "0K, 0 = —4Az134 + (A — 1)25 — dapzs — 423,

and, via Siegel’s prescription

(9.2.3) Ty ~{W e SO(K,,,Z);'Wb = bmod A}.

These matrices W can be realized by SLy—matrices. From we have
4A = dpf?.

Case B1.

For dp = 4d,d = 24+ 4N or d = 3+ 4N one has A = 4M +1 = (2 + 4N)f? or
4M + 1 = (3 + 4N) f? which both is not possible. Hence, we only have to look at:

Case B2.

9.3. For

(9.3.1) F=Q@),j =d=dp, 4N = 4(4M + 1) = f*j* = f%d

with d = 1mod 4, we put d = 4N + 1, N € Z. We observe that here f must be even.

For
932)  g- (‘CL Z) e SL(2, F),

w .
X(y): (:l,l/j—jl y4)7w:y2+y3w7y177y4€@7w:1+fj/27f627f7£07

we use the standard proceeding

(9.3.3) X(y) = (yl w) = gX ()G =X,y = p(g)y.

W Yu

This map preserves the determinant and, for w =14 f5/2, f € Z, f # 0, one has

det X (y) = thys — 0w = Y1y — 3/% — 2y2y3 — ’WPZ/:%
=y1ys — y5 — 2yoys — (1 — f2d)y5/4 = yiya — y3 — 2y2y3 + 4My3

0 1/2

- o -1 -1 o0

(9.3.4) =YDy, D= | o | i 0
1/2 0

65



Hence, generalizing [EGM] p.463 for A < 0, one has an isomorphism

(9.3.5) p: PSL(2,F) — SO"(D,,, F),
where
|a|? ab + ab wab + wab |b]?
@ac—wac —w(ad+bo)+w(be+da) —w?cb+w?eb—|w|?(da—da)  —wdbt+odb
(9-3.6) PO =| b  adadiha (iboe—d-ctis b
TCTQU cczw —T—w(_:d cczww—;wéd@ Tcﬂg

9.4. Remark. We observe that matrices g with elements in O are transformed into ma-
trices p(g) with components in Z.

9.5. We use this for the description of our isotropy group I'ys : One has

(9.5.1) w=1+ fj/2,4A = 4(4m) = 4(4M + 1) = f%j> = f2d = f*(1 + 4N),
w—o=2 wHo=jf lw?=1-f2d/[4=1-A,*=1+A+ fj,
Op=Z+ f(14))/2-2,05 = (jf) Oy, (07) " = jfO;.

From (9.2.2)) and (9.3.4)), we take

Gm () = —4Ax174 + (A — 1)35 — dapzs — da3,
det X (y) = yiya — y3 — (w + @)yays — |w[*y3
= Y10s — Y5 — 2yays — (1 — A)y3,

and we put

(9.5.2) — 4Axy = Y1, 04 = Yy, 203 = Yo, Ty = Y3.
From y' = p(g9)y = (a;;) with (9.3.6)
|a|? ab + ab wab + wab |b|?
wat-—wac ~—w(adtbo)+e(betda)  —wlcb+w?eb—|w|*(da—da) —wdb+idb
PO = | s ad—ad+be—cb (ad—be)o—(da—zd) bd—bd
|c|? cd 4 ed cdw + edw |d|?
we get ¢/ = p/(A)x = (w;;)x with
(953) l’/l = a1’y — CL13/<4A)I2 — CL12/(2A)$3 — CL14/(4A).§L’4
23/2 = —4A(1,31£E1 + a33T9 + a322$3 + 344
Ié = —2Aa21x1 + CL23Z)32/2 + A29T3 + CL24I4/2
Ty = —4Aaq 11 + a43T + a42273 + Q4474
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We take

a b «
(9.5.4) g= (c d) € SL(Q;Of,(’)f)

ie., with ay,...,ds € Z,

(955) a = (2@1 + f&z + fjaQ)/Z, b= fj(2b1 + be + fjbg)/2,
c=(f1)"2c1 + fea+ fica)/2,d = (2dy + fdy + [ids)/2,
and get
(9.5.6)
CLd = Al + Agfj, Al = a1d1 + (a1d2 + agdl)f/Z — GQdQN, AQ = (agdl — aldg)/Q,
ab= —fj(A] + A5 f7)
= —f2dA/2 — Allfj, All = albl + ((11(72 -+ agbl)f/Q — nggN, AIQ = (agbl — a1b2>/2,

ac = —(1/fj)(A{ + A3 f5)
= —A/Q/ — Alll/(f2d)fj, All/ =aic, + (a102 + ClQCl)f/2 - CLQCQN, A/2/ = (CLQCl — CL102>/2,

bc = —(By + Bafj), By = bicy + (bica + bacr) f/2 — byeaN, By = (bacy — bica)/2,
bd = fj(By+ Byfj)
= B} f*d + B} fj, Bi = bidy + (bids 4 bady) f /2 — bada N, By = (bady — b1ds) /2,

cd = (1/f3)(Cy + Caf5)
== 02 + 01/(f2d)f]7 01 == Cldl + (Cldg + ngl)f/Q — CQdQN, 02 == (Cle — Cldg)/Q.
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Hence, by some standard computation, one has

(9.5.7)
wyy = |a|®* = a3 + ajasf — a3 f*N
wia = —(abw + ab) [(4A) = (— 2 — A4 £5)(1+ £5/2) + ... )/(48) = —24] — A]
wiz = —(ab+ ab)/(2A) = 4 Aj,
wig = —|B2/(4A) = b2 + bibof — B2f2N,
wy = —4A(ac —ac)/(fj) = 247,
waz = ((ad — cd)w — (ad — bo)w) /()
= (A, + Aofj+ By — Bofj)(L+ £5/2) — .. )/(fj) = 245 — 2By + A, + B,
w3 = 2(ad + be) — (ad + cb))/(fj) = 4Ay — 4By
Way = (bJ_ dl;)/(fj) = 2B,
w3y = —2A(acw — acw)/(f7)
= COA(— A — AP+ £i[2) =)/ (F) = 24U — AL,
w3z = ((da — ad)|w|* + bew? — bew?) /(2£5)
(240§~ A) + (B + Baff)(1+ A+ ) — .. )/(2F)
=-—A(1-A)+By(14+A)— By
=A(Ay+ By) + By — Ay — By = 4M(Ay + By) + 2By — By,
w3z = ((da + cb)w — (ad + bew)) /(f7)
— (A1 — Aofj = By + Bof ) (1 + f5/2) — ..)/(f§) = Ay — By — 24, + 2B,
wsy = ((dbw — db) /(2f7) = By2A — B!,
wy = —4A|c]? = —(F + cieof — AfPN),
Wyp = cdw + dew = (C, + Cof )1+ £5/2) +--- = 2C, + C,
wyz = 2(cd + de) = 40y,
wyy = |d]* = & + didyf — d3f>N.

We observe that these expressions are rational integers as one has 24, € Z and for even
f has also A; € Z etc. Concerning the congruence relations in (7.5.4)), we prepare some
identities: From the determinant relation

1 =ad—bc=[2a+ faz+asfj)(2di+ fda+daf7) — (2014 fba+baf7)(2c1+ fea+caf7)] /4
we get for the 'imaginary part’

(958) 0= a1d2 + a2d1 + fa2d2 - blcg — b261 — beCQ
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and for the 'real part’ using (9.5.8))

(9.5.9) 1 =[(2a1 + asf)(2d1 + fdo) + asdaf?d — (2b1 + fby)(2¢1 + fca) — bacof2d) /4,
= a1dy — bicy + (1/2)(aydy + agdy — bicy — bacy) f + (agds — boco) F2(1 4+ d) /4,
= a1dy — bicy + (1/2)(bycy — agdy) f2 + (agdsy — bycy) f2(1 4+ d) /4,
= a1dy — bicy + (agdy — bacy) f2(d — 1) /4 = aydy — bicy + (axdy — bacy) f2N.

Hence, using (9.5.9) and 4A = f?(4N + 1), we have

(9.5.10)
Al — Bl = aldl — blcl + (1/2)(&2(11 + a1d2 — bgCl — blcg)f + (agdg — bgCQ)fz(l — d)/4
=1- (CLQdQ — bQCQ)fZN + (1/2)(b202 — agdg)f2 — ((lgdg — bQCQ)fQN
=1- (Clgdg — bQCQ)fQ(QN -+ 1/2) =1- <a2d2 — bQCQ)QA.

Finally for Siegel’s congruence relations, using (9.5.10)), we get

(9.5.11) woy + 2w3; = —2A5A =0 mod A,
Way + 2wy = 4BLA =0 mod A,
Wae + 2wsy = 2(Ag — Bs) + Ay + By — 2By + 2By — 2A5 + 2A(Ay + Bo)
=A; — B; +2A(As 4+ By) =1 mod A
Way - 2wss = 4(As — By) + 241 — 2B) — 44y + 4By = 2(A; — By) = 2 mod A.

We see that we have integral elements w;; and Siegel’s congruence conditions are fulfilled.

9.6. Summary. In Case B2, we have the formula (6.4.1])
(9.6.1) v ~PSL(2, (O, 0}))

from Proposition [6.7]
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10 Some subgroup considerations

10.1. One has the following standard facts (Shimura [Sh] p.23)

(10.1.1) SL(2,Z/NZ) = [ [SL(2,Z/p;Z), N = [ [ vf"
i=1 =1

SL(2,Z/fZ)| = £ [0 - 1/p%),

plf
IGL(2,Z/p'Z)| = p* D (p* — 1)(p* — p), (Z/p'Z)"| = p' — p"*

IPSL(2,Z/fZ)| = f2/2]J(1 = 1/p%), f > 2
plf
|PSL(2,7Z/27)| = 6,

and with ¢ = p® (Artin [Ax] p.169)
(10.1.2) IGL(2,F))| = (¢ = 1)(¢° — 9),

10.2. For mq € Z, there is the Legendre symbol

(10.2.1) (?) = +1

if p is prime and does not divide mg and one finds x with 22 = mymod p or not. For p|mg
one has (*¢) = 0. We observe that, for all odd mo, one has (*3*) = 1.

Moreover, if D is a fundamental discriminant, i.e. D € Z with

(10.2.2) D = 0mod 4, D/4square free, D/4 =2or3mod4 (case 1),
or

D = 1mod 4, D square free, (case 2),
there is [Za] p.38) a function xp : N — Z modulo |D| defined by

D
(10.2.3) xp(p) = (5) p an odd prime

xp(2)=0 if D =0mod4,

=1 if D =1modS8,

= —1if D =5modS§,

xo(Py" - pi*) = xp (") .- xp(pi").
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And xp defines a primitive Dirichlet character modulo |D| (also denoted by xp) with

(10.2.4) xp(=1)=1 if D>0,
——1 if D<0.

And [Za)] p.40, for Dy, Dy fundamental discriminants

(1025) XD1D2 = XD1XD2'

10.3. We want use this to verify the formula from [EGM] above cited as (8.8.3): For
j = +v/—m,m € N, square free, R,, = Z[j] has an index in the ring O of mtegers in Q(j)
given by
=[PSL(2,0) : PSL(2,R,,)] =1 m=1,2mod4,
=6 m=7 modS,
=10 m=3 mod8.

The first relation is trivial as O = Z + jZ. For m = 7+ 8M (case a) and m = 3+8M (case
b) one has O =Z + wZ,w = (1 4 j)/2, where

w?=w-—2-—2M, casea,
w?=w—1—2M, caseb.

Here, we have

Rm:(’)2:Z+2wZ

20 = 27 + 2wZ
and, hence,
(10.3.1) 0/20 = (Z/27)|w] ~Fy x Fy, case a,
~ [y, case b,
02/20 =TF,.
Now, using
(10.3.2) SL(2,0/0,) = SL(2,0/20)/SL(2, 0, /20)

and ((10.1.1)) and ((10.1.2)), we get r,, = 6 X 6/6 = 6 in case a and r,, = 60/6 = 10 in case
b. In both cases, with (10.6.1]), one also may write

(10.3.3) T = 22 (1 — x_m(2)/2%).
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10.4. We look at F' = Q(j),j = Vd,d € Z,d # 0 square free, f € N, and want to
determine

(10.4.1) Y(d, f) :== [PSL(2,0) : PSL(2, Oy)],

where O = Z+wZ, O = Z+ fwZ. Already for m = dp f* > 0, from van der Geer’s formula
(6.3.1) one may deduce

(10.4.2) SL(2,0) : SL(2,0y)] ~ f* T[(1 -
plf

with the Legendre symbol (g), but we look into this a bit more closely:

10.5. We have

(10.5.1) SL(2,0/0;) = SL(2,0/fO)/SL(2, 0}/ fO),
where

(10.5.2) 0;/fO ~ 17/ {7

O/fO=(Z+wZ)/(fZ+ fwZ) ~ (Z]Z)|w].

This is a special case of the general classic formula for a number field F' of degree n =

Z?:l e fi
(10.5.3) O/fO=0/(p]" x -+ X pg?).

10.6. For a rational prime p in F = Q(v/d) with discriminant D, one has (e.g. [Za] p.100)

(10.6.1) xp(p) =1 iff pis split: p = p1 X pa, p1 # pa2, hence O/pO ~F, x F,,
xp(p) =0 iffpis ramified: p = p*, hence O/pO ~ Z/p*Z
xp(p) = —1iff pis inert: p = p, hence O/pO ~ F,p.

Hence, in the first case we have O/pO ~ F, x F, and

(10.6.2) |GL(2,0/p0O)| = ((p* — p)(p* — 1))?,
ISL(2,0/p0O)| = p°(1 — (1/p%))?,

in the third case O/fO ~ F,» and

(10.6.3) |GL(2,0/p0)| = (p* — 1)(p* — p*),
ISL(2,0/pO)| = p*(1 — (1/p")) = p°(1 — (1/p*))(1 + (1/p%))
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and in the second case O/pO ~ Z/p*Z and
(10.6.4) SL(2,0/pO)| = p°(1 — (1/p*))-

With [SL(2, 0,/pO)| = p*(1—(1/p?)), consistent (at least for odd primes) with the formula
of van der Geer, we get

(10.6.5) SL(2,0/0y)| = p*(1 = xp(p)/p?).

10.7. In the case f = pp/,p # p' one has Z/ f7Z = Z/pZ x 7./p'Z and

(10.7.1) O/fO =7+ wZ/(fZ + fwZ) = F,[w] x Fyw],
SL(2,0/ fO)] = p°(1 = (1/p*)) (1 = xp(p)/p*))P"° (1 = (1/p*))(1 = xp () /P"?),
ISL(2,0/fO)|/|SL(2,Z/ fZ)| = p*p”(1 = xp(p)/p*))(1 = xp(P)/P"?),

again as in van der Geer’s formula (6.3.1)).

10.8. For f = p', we follow Shimura as in his proof of ((10.1.1) and look at the exact
sequence

(10.8.1) 1 = X — GL(2,0/p'0) & GL(2,0/p0) — 1,

where the homomorphism p is given by p(a + p'O) = a + pO,a € O. For xp(p) = £1
the elements of O/p'O are of the type («, 3) resp. aw + B,«, 3 € Z/p'Z. Elements from
p~1(0 + pO) show up if @ and 3 are represented by

(10.8.2) vp, v="0,1,...(p' = 1).

Hence, in both cases, we have [p~1(0 + pO)| = p*!~Y and the kernel X of p has |X| =

p*#=2)_ Using ((10.6.2)) and ((10.7.1)), from

(10.8.3)
|GL(2,0/p'0)| = |X[|GL(2, 0 /pO)],

=p" (P —p)(p* = 1))> =p¥(i — 1/p*)*(1 = 1/p)” if xp(p) = 1,
=p' At = 1)(p* - p*) = "1 - 1/p") (1 = 1/p°) if xp(p) = —1
we deduce
(10.8.4) SL(2,0/p'0)| = p®(i = 1/p*)* if xp(p) =1,
= p™(1—1/p") if xp(p) = —1,

as one has [(O/p'O0))*| = (p' — p'~1)? resp. = p*~2(p? — 1). Finally, with SL(2,O0;/p'O) =

p3(1 —1/p?) from we get
(10.8.5) SL(2,0/0p)| = p*(1 = xp(p)/1").
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One gets the same formula in the ramified case xp(p) = 0 as one has O/p'O ~ Z/p*7Z
and, hence, |[SL(O/p'O)| = p®(1 — 1/p?).

Thus we have proved

10.9. Proposition. For F = Q(\/a), d squarefree, with discriminant dr, maximal order
O, and order O with conductor f one has

(10.9.1) Y(dp, f) = [PSL(2,0) : PSL(2,0/)] = f* H(1 — xap(p)/P%).
plf

10.10. Summary. We looked at the following ingredients.

Case A. We take

(10.10.1) am = "(1,0,0,0,—m), m € Z\0, i.e. 24(a,,) = 4m,
G =19 € G gam = an},
Lo, =T(Q,am) = {U € T(Q); Uty = am }-
Case B. We take
(10.10.2) al, ="'0,-1,1,M,0), M € Z\0, i.e. 24(am) = 4m = 4M + 1 = A,
GAa;n - {g € G/;ga;n = a;n}a
Lo, =T(Q,a;,) ={U € T(Q); Ua,, = a,,},
and we want to know in both cases

kY =vol([,, \Ga,), resp. K = VOl(f‘a;n\GA!a;n)
(10.10.3) kom = vOl(Ly, \Da,, ), TeSp. k., = vol(]f‘%\ID);;n),
where D, stands for the respective symmetric space. Above, in Proposition [6.7], we already
related the unit groups I', and I';, to discrete groups belonging to the SL-theory. Thus,

at first we shall determine the volumes of these groups in their associated homogeneous
spaces H™ resp. H2.

10.11. For the integers m resp. A, we have to distinguish the way they are related to
fundamental discriminants dr of quadratic fields F' = Q(v/dr). With d, f non-zero integers,
we put

Case 1.

(1011.1) F=Q() DO =Z+jZ> O =7+ fjZ,j* = d = 20r3mod4,dr = 4d.
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Case 2.

(10.11.2)
F=Q()20=Z+((1+45)/2)Z>0; =Z+ f(1+5)/2)Z,j*> =d = 1mod4,dr = d.

Hence, from Proposition [6.7] we have in both cases

(10.11.3) [, and T, =~ PSLy(Oy, O%).

10.12. Remark. One has

a a b\ (1/a _( a ab
1) \c d 1) \c¢/a d )
Hence, PSLy(Oy, OF) is conjugate to PSLy(Oy) and their fundamental domains in H? resp.
H* have the same volume. For F = Q(v/d),d < 0, we have

(10.12.1) volgz+ (TL\H™) = volgs (PSLy(O)\H*)[PSLy(O) : PSLy(O;)]

and a similar formula for d > 0.

Hence, using Remarks [6.2.1| and |6.3.1| and Proposition [10.9, we get

10.13. Proposition. For dr < 0, with dvg+ = dxdydr/r?, one has

(10.13.1) volizs (T\HT) = volgz+ (PSLy(O)\H)[PSLy(O) : PSLy(O;)]

3/2
= @ P TI0 - xa 0))
plf

L(Xap, 2)Y(dr, f) =t v

- ’dF‘3/2
24

and for dp > 0, with dvg+ = dzidydzadys/ (y1y2)?,
2 |dF’3/2 3 2
(10.13.2) volge (Ta\H®) = ———L(x4y, 2)f 11 = xar (0)/p%)
plf
d 3/2
e 200, 1) = s

3

11 Siegel’s volume of our fundamental domains

11.1. As already said in the Summary [10.10, we want to know

(11.1.1) K = vol(T,\G,) and kg 1= vol(I'g\ID,).

a
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Above, we related the unit groups [, to discrete subgroups of SL, and determined the
volumes of their fundamental domains in H* resp. H2. We will use this to calculate x,.

11.2. Siegel’s Volume Formula. In [S4], Siegel treats the following situation (simplified
for our application): One has a quadratic form

(11.2.1) Slz] ="'aSx = Z surpz, S = 'S € M, (R),sign(S) = (n,m — n).
kl=1

Let be z = Cy such that S[Cy| =yi + -+ Y2 —yop1 — -+ — Yoy, TESD.
¢ Ly,

(11.2.2) S[C] ="CSC = Sy, Sy = ( B ) .

Hence, P = (C'C)~! is a majorant for S and one has
(11.2.3) PSTM"p=S8"'P=P

The set D(S) of these majorants is a homogenous space for the orthogonal group SO(S)
of S (the representation space from p.88 in [S5]) and can be parametrized as follows.

At first look at S = Sp. Take a matrix Y € M, ,—»n(R) with E — Y'Y > 0. Hence, an
element P of D(Sy) is given by

(11.2.4) p— =g (B _E{@_ly
L. ¢ ¢ o ¢ .
Y(E - YY) 1YY

For the general case, one has to choose a fixed C' = Cyy with S[Cy] = Sj and, in the equation
above, replaces P by P[Cy].

We put
(11.2.5) Dpmn =D(Sy) ={Y € M, n(R); E - Y'Y >0}

G = SO(Sp) acts transitively on D(Sy)
A B -1
(11.2.6) G>g= <C D) mapsY — g(Y) = (AY + B)(CY + D)

A G—invariant volume element is given by ((6) in [S4])

n m-—-n

(11.2.7) dvgie = (det(E = Y'YV)) " ] T dyw-

k=1 =1

If T'(S) is the unit subgroup of G, i.e. I'(S) = G N M,,(Z), 1(S) the measure of a fun-
damental domain of I'(S) in G (with respect to the form dw given by (12) in [S4]) and
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ks = vol(I'(S)\Dy, ;m—n) the volume of a fundamental domain in the representation space
(with respect to (11.2.7))), one has ((13) in [S4], Theorem 7 in [S5], or (1) in [GHS|) Siegel’s
volume formula

! k/2
9 _ - —(m+1)/2 _ m
k=1
(11.2.8) pr =1, po =, pg = 27°.
We rewrite this as
(11.2.9) 2volg(T(S)\G(S)) = pnpm—n|detS|” ™/ 2501 (D (S)\Dpymn)-

Es

Forn:2,m:4andS:SO:E272:< E
— Ly

) , we get our prototype formula

(11.2.10) volg(T(So)\SO(2,2)) = (72/2) vols(T'(Sp)\Dy.s).

11.3. The (2,2) Case. It is well known that in this case the representation space is
isomorphic to H2. We shall need some more details and put

(11.3.1) QO:(E2 _EQ),Q=(1/2) 1 O = 11
1 1 —1

As in Example 2.2 in [1.7] one has the standard way to connect Gy := (SLy(R))? with
G =S0(Qo) =50(2,2) :

We identify a = *(a,b,c,d) = M = <CCL Z) . For g = (91, g2) € G1 the map

a=Mwr gMg =M =a =: Alg)a

preserves the determinant, i.e. A(g) is an element of SO(Q), the orthogonal group of the
2

quadratic form ‘aQa. For z = (21, 2) € H? and g., = [~/ ;J 1/ | one has
J
q1 T242 113'1/(]2 $1$2/Q1
0 z
(11.3.2)  A(2) == A9z, =) = & v | o VU2 @2 = Y1/ Yo
/o x2/q1
1/Q1
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To go over from A(z) € SO(Q) to G = SO(Qy), we change to = Ca with ‘zQz =

2., .2 .2 2
x{ + x5 — x5 — x5 and have

m@:@m@@4=c43)60

C D
(11.3.3)
G+ 1/ + /g —xeqe+x1/q2 Tage +x1/q2 1 — /g1 — T2/ (0
=(1/2) (—z1 +x2)/qn @ +1/q —q2+1/¢2 (11 — 29)/qn

(21 + 22) /1 —q2 +1/q ¢+ 1/q —(z1 +22)/ .
G — 1/ + /1 —xeqe+ 21/ Taqe + 21/ @1+ 1/q1 — 21z /qu

D, 5 is a symmetric space belonging to G = SO(2,2) and from ((11.2.6)) one has a map

(1134) G > g = (é g) — .BD_1 =7 € DQVQ.

A

If we take g = A(z) from (11.3.2]), with

¢ =detD = (1/(41192))¢, € = ((|21]* + Dya + (|22 + D),
we get the map ¥ : H? — Dy, we wanted

H* > z=(z,2)~ Z=BD""
=179 (L e e )
—(|21P = Do + (|22 = D 21y — Tou1)
(11.3.5) _ (z Z) €Dy,

With ) )
—(Iz2 + Dyz = (22" + D
(212 + D)ya + (22 + D

0 =ad— bc=

Y

a small calculation leads to

A=det(E-Z2'Z)=1—0a*>—b* - —d* +¢°
(11.3.6) = 2%1ys /(|1 + Dy + (|22 + 1)yn)* = 72

Another, a bit more substantial, calculation leads to
(11.3.7) da Adb Adc A dd = 2°yy5 /(|21 + D)y + (|22]* + Dy1)* day A dyy A daa A dys.

Hence, for our case, Siegel’s formula (11.2.7)) shows up to the factor 1/4 the 'usual’ volume
element for H?

(11.3.8) dvsie - U* = (1/(4yiy3)) dxy A dyy A dag A dyy = (1/4)dvge.
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11.4. The (1,3) Case. Forn=1,m=4and S= 5y = FE 3 = (El 5 > , we get the
— L3

prototype formula

(11.4.1) volg(I'(Sp)\SO(1,3)) = 7*volg(I'(Sp)\ Dy 3).

As in Example 1.3 in [1.14] similarly, one may treat the case n = 1,m = 4 where Siegel’s
representation space comes out as the hyperbolic 3-plane H*. For instance from the first
pages of [EGM], we know that G = SL(2,C) has H* as homogeneous space and, with

_(a b +
g—(c d),actsonH by

H" > P =(2,7) = (z,y,7) = g(P) = (¢,7)
(az +b)(¢z + d) + acr® r

11.4.2 " — = .
( ) & cz +d2 + |22 ez + d|2 + |c[2r2

With gp = (\/; Z/\/F) and j = (0,1) € H, one has

1/\r
(11.4.3) gp(j) = (z,1)
and the G—invariant metric and volume form
dz? + dy? + dr? d dy N d
(11.4.4) ds? = = T Zé a ; Vpr+ :%.
r r

There is the standard procedure to relate G = SL(2, C) to an orthogonal group of signature
(1,3): Fory; e R,j =1,...,4, we take a matrix

Yy1ow ;

11.4.5 X =" y W = Yo + Y3,

( ) (y) (w y4> W = Y2 T Y3
with

1/2
- 1
(11.4.6) det(X (y)) = yiya — y3 — v5 = "yQu, Q = 1 :
1/2
and, with g = (¢ °) € G, via
nd, with g = { = , vi
(11.4.7) X(y) = 9X()'g = X), v = plg)y
get a surjection p : G — SO(Q), g — p(g) where
(11.4.8)
|a|? ab + ab (ab — ab)i |b]?

(g) = (ac+ac)/2  (ad+ad+bc+cb)/2  (ad—ad+cb—cb)i/2  (bd + bd)/2
P = (ae—ac)/(2i) (ad — ad + be —eb)/(2i) (ad +ad — cb—eb)/2  (bd — bd)/(2i)
Ic|? cd + de (cd — ed)i |d|?
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In particular, for ¢ = gp, we have

r 2z 2y |z|*/r
_ 1 A
1/r
We want to transform this to G = SO(1,3) = SO(Qo) and introduce

(11.4.10)
1 1/2 1/2 1 1
Qo = -1 1 , O = 1 L O =

-1 1/2 ~1/2 1 ~1
With 2 = Cy, we have ¢(y) = 'yQy = 'zQox = ¢(z) and get
(11.4.11) v :S0(Q) — SO(Qy), A v(A) = CAC™! =: A.
Hence, we get

(|Z|2+177“2>/(2T) v (r* — |Z|271)/(2T)
(11412) I/(Ap) = y/r 1 —y/r =: Ap
(2P =1+7%)/2r) = y (=P +1)/(2r)

and we have a map p : Ht — SO(1,3), P — Ap. For G = SO(1, 3), Siegel’s representation
space is parametrized by the unit ball

(11.4.13) Dag) = {X = (21,72, 23) € RY || X||? = 2] + 25 + 23 < 1}
From ((11.2.6) we know that G = SO(1, 3) acts transitively on D 3 via

(11.4.14) G>g= (é g) maps X — ¢g(X) = (AX + B)(CX + D)™

where, here, A is a scalar, B and C are triples and D is a three by three matrix. We get
a map ¥

(11.4.15) H*> P+ Xp=BD'eD;
if we take

1 —z/r
(11.4.16) B = (z,y,(r* = [2]* = 1)/(2r)), D = 1 —y/r

oy (=l +1)/(2r)
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We put Z:=det(D) = (1 +r* +2? + y?)/(2r) and get

E—2%/r —xy/r x)r
(11.4.17) Xp=BD"'=(2,y,r —Z)- | —axy/r Z—y*/r y/r|(1/3)
—x -y 1

= (/2= - 1)
One has 1 — Xp!Xp = 272 and with 7= = (1/2)(2% + y* + 1?)
d(x/(rZ)) Ad(y/(rE)) Ad(1 — 1/(rZ)) = (rZ) *rdx A dy A dr.
Hence, for n = 1,m = 4 Siegel’s volume element comes out as

dvgie = (det(E — X'X)""2 T [] dow.
k=1 I=1
dvgie - U* = Z* - (r2) *rda A dy A dr,
de Ady Ad
(11.4.18) R
T

i.e., exactly the standard volume element for the hyperbolic three-space.

1

11.5. The (3,1) Case. By conjugation with C'=( !, ), one has an isomorphism
1

Qg4 Q42 Q43 A41
a a a a
(11.5.1) 0:50(3,1) = SO(1,3), A= (a;)+— a24 22 Gz Q21|
34 Q32 433 Q31
aiy a2 a3z ai

Hence, similarly, for A : SLy(C) — SO(3,1) and the map ¥ : H" — Ds;, we have
—|z*+1+7r* 2xr 2yr 42> -1

—2x 2r 2
(11.5.2) Ap = A(gp) = (1/2r) oy o 2
—|z2 =147 2zr 2yr 24|22+ 1
and
%+ ’ZF —1 Ty
Xp="b-d"" = 2y (1/2)= |22 |, E=r*+2+¢y*+1
2(1; [,U3
We get

dzy A dxo A dxs = (47 /Z8)dx A dy A dr,
det(Bs — Xp'Xp) = 4r°Z72,
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hence, for dvsi. = (det(Es — Xp'Xp))2dzy A dzy A drs again

dxz N\dy A dr

k
Y dUSie = 7“3

= QUy+

11.6. The (1,2) Case. In the case n = 1, m = 3. we get Siegel’s prototype formula
(11.6.1) volg(I'(S0)\SO(1,2)) = 7/2vols(I'(Sp)\D1 2).

One has the standard way to relate the signature (1,2) groups to Gy := SL(2,R) : Take

(11.62)  g= (g‘ ?) xen

~1
M(a) = (Z _ba>,det(M):—aQ—bc:taQa,Q: ( —1/2) .
—1/2

One has a map p : G; — SO(Q), g — p(g) where

ad+ By —ay SO
(11.6.3) gM(a)g~ = M(p(g)a), p(9) = | —2a8 o> —p*].

270 -2 52
We put a = x3,b = 29 + 21, c = x5 — 71, i€,
1 1/2 —1/2
(11.6.4) a=0Cx,C=[1 1 ,x=C0""a, 07" = /2 1/2
-1 1 1

to get
1
taQa:thox:x% —x% —x%, Qo = —1
-1

and an isomorphism
v :SO(Q) — SO(Qy) = SO(1,2), A — CTLAC.
Hence we have the surjection o' =v - p: Gy — SO(1,2), g+ C~'p(g)C =: A(g) with
Q2+ B2+ +62 a?+ B2 -2 =62 2(a@+75))

(11.6.5) Alg)=1)2)- [®+ 52 =7* = o> =2 =72+ 2(y0 —af)
—2(ay + 39) —2ay + 236 2(ad + B)
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In particular, for g, = (\/§ z/ \/ﬂ) , we obtain

1y
1 0 =z/y
(11.6.6) p(g.)=| -2z y —2?/y
0 0 1/y
and
2+l —? 4yt -1 2y A B
(11.6.7) Alg)=1/2y) - |22+ =1 —2®>+92+1 22y | =
¢ D
—2x +2x 2y
where

(11.6.8) B =(1/(2y))(—a®+y* — 1, —2zy), D = (1/(2y)) <_x2 Zfz o _22;@) '

One has det(D) = (1/(2y))(|z]* + 1) =: (1/(2y))¢ and

(11.6.9) X =X(2)=BD"

(—2® +y* = 1,—2ay) (_2390 P N 1) (1/€)
(1/(l21* + 1))(|12]* = 1, —22) = (1/€)(C, —22)

with 1 — X'X = 4¢y?/£2. Hence, we have a map

(11.6.10) U:H—-Dy=D={X=(r,75) € R%, X'X < 1}

a2 (/(l2 + D)(|* = 1, =22) = (1/€)(¢, —22) = (21, 22)
and get
(11.6.11) dry A dry = d(C/€) Ad(—2x/€) = (2%y/&E3)dx A dy.

Thus, in this case, Siegel’s volume ([11.2.7)) comes out as it should

(11.6.12) dvgie = (1 — X' X)732dxy A day

dz N dy
v

dvgie - W* = (4y° /&%) (2%y/€%)dw A dy =

11.7. Volumes of fundamental domains in the representation space. We want
to use these singular relations between the orthogonal and the SLy—world to determine
the volumes vol(I'\GG) with the formula ((11.2.8) where we determine the volume of the
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fundamental domain F of I' in the representation space of G with the information from
the SLy—world we got above. We have the following general situation.

(11.7.1) I r
Gy 2 G
D, v D

Fi~D\D, N\D~ F

Hence, one has

(1172) / d'USz'e Ut = / deie~
Fi W(F1)

We have to make this concrete in our different cases.

11.8. For F' = Q(j),j* = d > 0, we have the situation with the natural maps and the
maps explained below

(11.8.1)
I') = PSLy(O5, 0%) rm I

PSL,y(F) P . S0 (Dy, Q) Y > SO (K, Q) —2—S0"(2,2)

(PSLy(R))2 —2—= SOT (Do, R) X~ SOT(K,,,R) —2—S0%(2,2)

H? v Dm’/./> D 5
Fi ~ PSLy(Oy, OF)\H? ™\D,, [\Dy, = F.
/ ’

Here I'"" =T, or =T, in Case A or B, and I = o(I'"™),
and in Case A1l

1/2 ) 21/2 —2m
(11.8.2) Dd:< -1 >,D0=< LV )),Km=<fzmm )
1/2 -1

1/2
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- pq is given by

forg € SLa(F),X(0) = (% ) cw = -+ s one Basg X ()9 = X(pu(9)0)

- po is given by
b
forg = (n,92) € (SLa(R)% X(@) = (&), one hasgr X (@' = X (o)

- for m = df?*(i.e.,case A1), v, 1,0 are given by conjugation with (respectively)

—4m —4m . —1/(4m) 1/(4m)
CI( fll)acb:( _MM 1)7C,U:< 1 1w 1 )7”2\/%7

1 1

- ¢ is given by ¢(g) = (g,9) and ¢4 by conjugation with
1
_ /2 172 _
J = ( 1/(2u) —1/(20) )4‘ =V,
1

- Dy, and Dy, are Siegel’s representation spaces of the groups above, and ¥ is the map

[L33).

11.9. Proposition. Applying (11.7.2) to the diagram we have
(11.9.1) Fim = VOlgie(I°\Dg,2) = voly2 (PSLy (O, OF)\H?) /4

= (1/12)[dr[**L(xr,2) - f* ] [(1 = xar (p)/P%).
plf

11.10. To get the volume of the fundamental domain of I'V in the group G we want to
apply Siegel’s formula ((11.2.8]), resp. the prototype formula ((11.2.10)

vol(T'(S)\G(Sp)) = (1/2)7*Kg, ko = volgie(T'(Sp)\Da2).

for Sy = (E2 o ) and
— Lo

SO(2,2)" =: G(Sy), T°NT(Sy) =: T°Sy), [[°: T°(S)] =: Am, [L'(So) : T°(S0)] =: ptm
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From (|11.8.1]) we deduce

(PSLy(R))? SO*(2,2)
H2 v / ]D)272

Fl ~ PSLQ(Of, O})\HQ — F ~ FO\DZQ I FO(SO)\DQQ —_— F(S())\]DQQ

Hence
volsie(TY(S0)\D2.2) = fmvolsic(T(Sp)\Da2) = Apmvolgie(T?\Dy ),

and
volgie (T (So)\G(S0)) = ftmvolsie(T(So)\G(S0)) = Amvolsi(T°\G(Sp)).

From here, finally
11.11. Corollary. We have

kY = vol(T"\SO(2,2))
(11.11.1)

= (tm/Am)vol(I'(So)\G(50))

= (pan [ Am) (7% /2)vOlsie (T (o) \ D2 2) = (7% /2)v0lgie(T7\Ds 2)
= (7 /8)voly2 ((PSLy(Oy, OF)\H?)
= (

w2 /24)|dp* L(xr, 2) - P T[(1 = xar (0)/P).
plf

11.12. In Case A2, we have 4m = df?. with d = 1mod4. Everything is essentially as
above: only in the description of v, we have to change C' to

and again we come to the result (11.11.1)).

In Case B2, we have to look at 4A = 4(4M +1) = df?,d = dp = 4N + 1, = V/d, and we
have more changes in the interpretation of the diagram above. Here Dy and K, change to

1/2 —2A
pa=( dah )Ea=( )
—2

1/2
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and pg changes to the the map pa : PSLy(F) — SOT(Da), where pa is given by

forg € SLa(F), X() = (% 1) w =g+ (L £3/2)i one has 4X(4)'g = X(pa (),

v changes to va, 1 to vy, 0 to o5 and ¢4 to ta given by conjugation with

—4A
(1)
1
~1/(4A)
_ 1/(29) 1/(26)
Coa = 1/2-1/(26) 1/2+1/(26) )’
1
—1/(14) 1/(48)
_ 1/6 _
Cos = < ~1/(26) 1/2 )’5 = VA,

1

(T 1-1/(26) 1+1/(26)
Ta= (e e ).
1

Using all this, the same way as in Case A1, we get (11.11.1])).

11.13. For F = Q(j),j? = d < 0, we have slight changes in our diagram and come to

(11.13.1)

I'y = PSLy(Oy, 0%) rm IO
PSLy(F) M . S0*(Dy,Q) v SO* (K, Q) —Z—SO™ (1, 3)
L lbd id id
PSL,(C) © SO (Dy,R) X - SOT(K,,,R)—2—SO*(1,3)
H+ v DV D3
F1 =~ PSLy(Oy, OF)\H* ["™\Dy, TAD, 3 =~ F

Here, we have I'™ =T, or =Ty, in Case A or B, and I'’ = o(I'™),
and in Case Al



- pq is given by
w . _
forg € SLa(F),X(0) = (% ) = -+ s one BasgX ()15 = X(pa(9))
- po is given by

+1 . _
forg € SLy(C), X (v) = <v2 31“,3 2 ,04“)3) ,i* = —1, one has g X (v)'g = X(po(g)v),

- for m = df?*(i.e., Case A1), v, 1,0 are given by conjugation with (respectively)
—4m —4m —1/(4m) 1/(4m)

OZ( f 1)7COZ< n 1>7CH:< 1w )7,u:m’

1 1

1 1
1

- ¢ is given by ¢(g) = g and ¢4 by conjugation with
1
JZ( 11/# >7M: V_da
1
- D,, and D, 3 are Siegel’s representation spaces of the groups above, and ¥ is the map

(TT.4.15).
1
e 1)

1
In Case B, we have 4A = df?, A =4M +1,d = 4N + 1 and we change Dy and K,, to

In Case A2, hence 4m = df? < 0, we change v to 7 with C' to C' = (

1/2

Da=( st )oEa=( 23

1/2 -

Moreover, we change v4, v, 0 to va, V), 0’ given by conjugation (respectively) with

_4A _4A —(1/(40)) s —(1/(44))
— 2 I /.
CA_( f >’CA_( 12 )’C_( ~1/(26) 1/2 )
1 1 1 1

. again is the simple injection and ¢, is to be replaced by ta with y = Cv given by
conjugation with
1
5 —1/51
c=( W)

1

From the diagram ((11.13.1)) in all cases, one can compute the same way as above for d > 0.
Usig the protoformula (6.2.1) from [EGM] and Proposition [10.9]

(11.13.2) Fom = VOlgie(T°\D1 3) = volg+ (PSLy(Of, OF)\HT)
= (1/24)|dp[**L(xr.2) - £2 T](1 = xar (0) /17).

plf
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From Siegel’s formula (11.2.8)), resp. its prototype (11.4.1]), we have
1
/<L<51> = VOl( (Sl)\G<Sl)) = 7T K1, K1 = VOISw( (Sl)\Dng), Sl = < —E3> .

Applying (11.7.2)), one has

(11133) V01H+ (PSLQ(Of, O})\H+) = VOlSie(FO\DL:;).
With
L% NC(S) =T* [I% :T* =\, [[(Sy) : T¥] =:
one has
volgie(T*\Dy 3) = g k1 = Avolgie(T0\Dy 3),
hence

volsie(T"\D13) = (1/A)kir
and finally with (11.13.3))

(11.13.4) K2, = vol(T°\SO(1, 3)) = (u/\)72k1 = m*volge (T2 \Dy 3)
= 7T2V01H+ (PSLQ(Of, O;)\H+)

( 2/24)|dF|3/2L XFa f3H 1 - XdF )

plf
11.14. Summary. For m > 0, we have the voluminae
(11.14.1) Ky = volgie(T"\Da) = (1/12)|dp[**L(xr,2) - f* T[(1 = xar (0)/P%),
plf
i = vOl(T\SO(2,2)) = (x*/24)|dr[**Lxr,2) - f* T](1 = xar () /),
plf

and for m < 0

(11.14.2) Ky = volsie(T\Dy 3) = (1/24)|dr**L(xr, 2) - 2 [ [(1 = xar (9)/P),
plf
k9, = vol(T°\SO(1,3)) = (n°/24)|dp[** L(xr, 2) - f* [ [(1 = xar (0)/P°).
plf

Apparently, these voluminae could be determined more elegantly: x,, may be interpreted
as the real Tamagawa (Haar) measure a..(L,,) of the lattice L,, belonging to K,,, and
hence, essentially is the inverse of the product of the (finite) local densities oy, (L,,). But
here one easily is lost in subtle calculations in particular concerning the prime p = 2.
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12 The Kudla Green function integral for signature
(3,2)

We want to determine the value of Kudla’s Green function integral from (4.6.1)).

I(O,m,v)::/XE(O,m,v,z)duZ:(l/2) 3 /Xﬁ(sz(m))duz,

feLO,m

](1,m,v)::/XE(l,m,v,z)d,uz:(l/Q) Z /XB(QWUR(x,Z))d,uz,

mGLlym

resp. from (4.7.1))

I(0,m,v) = (1/2) Z/ BRTVR(NGy, 2, 2))dpt, =: Z I1(0,m,n,v),

n2lm " " %/ n2 \D n2|m

I(1,m,v) = (1/2) ) / \Dﬁ(sz(nagm/nz,z)duz =: Y I(1,m,n,v).

2 a
n |4m am/n2

Kudla’s Green-integral formula

12.1. To evaluate the integrals, we try to follow closely Kudla in [Kul] p.318. There, he
looks at the integral

(1211) / /80'+1(27TUR($7Z))dM27 Ba—‘rl = / G_tVV_U_ldV,
I \D+ 1

where he treats a more general SO(p,2)—case and z € V(R) with Q(z) = m : For m > 0,
he chooses a basis v for V(R) so that the inner product has matrix I, and so that
the respective special element x is a nonzero multiple of the first basis vector vy, i.e.
x = 2awv;. Then SO(V)(R)* = SO™(p,2) = G and the subgroup stabilizing z is isomorphic
to SO*(p — 1,2) = G,.. Kudla further proposes 2y € D to be the oriented negative 2-plane
spanned by v,41 and v,40 and let K = SO(n) x SO(2) be its stabilizer in G. The plane
spanned by vy and v,41, the first negative basis vector, has signature (1,1). The identity
component of the special orthogonal group of this plane is a 1-parameter subgroup

(12.12) A={ast € R} = {(hi i) st € RY

where a; - v; = vy cosht + v, 41 sinht. Let A, the subset of ajs with ¢ > 0. Then, from
the general theory of semisimple symmetric spaces - with Flensted-Jensen [FLJ] Sect.2 as
a reference - Kudla has a 'double set decomposition’

(12.1.3) G =G, AK
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and the integral formula (3.21)

(12.1.4) /@(g)dg:/ / /q’(gxatk:)|sinht|(cosht)p_ldgwdtdk.
G G, Jay JK

For z = g,a; - 2z, one has
(12.1.5) R(x,z) = 2msinh’t.

and, from [Kul] (3.23) with a positive constant C' depending on normalization of invariant
measures, what we will cite as Kudla’s Green-integral formula

/ / —2mvR(z, Z)Tdr/rd,u( )
Z\D+

(12.1.6) = Cvol(T, \ G)vol(K / / e Amelmlsib® i g fe ginh ¢(cosh )P dt.
We abbreviate
(12.1.7) IV (v,m) ::/ / e‘4m|m|sjnh2"dr/rsinht(cosht)p_ldt

o J1

and will determine this for p = 1,2, 3 later in Summary [12.22 For m < 0, we do alike
and choose a basis for V(R) such that z = 2av,41,Q(z) = —2a® = m. Here, we have
G, ~ SO(p,1) and, with a similar reasoning as above, with ((12.1.3]) and

(12.1.8) R(z,2) = 2|m/|cosh®t.
/ / G—QWUR(x,z)Tdr/TdM(Z)
ra\D+ J1
(12.1.9) = Cvol(T'; \ G)vol(K)I? (v, m)
with
(12.1.10) I” (v, m) ::/ / 6_47”’|m|COS]“Q”"dr/r(sinht)p_1 cosh tdt.
0o Ji

Flensted-Jensen’s integral formula

12.2. We add some comments and variants to Kudla’s formulae. The background to the
integral formula is something like

(12.2.1) / :/ :/ .
=\D =\G/K L \Gz A4+
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The main point is the formula G = G, A, K, a variant of the Cartan decomposi-
tion to be found for instance in Theorem 2.4 in Heckman-Schlichtkrull [HS]. This is the
background to Flensted-Jensen’s important integration formula (2.14) in his Theorem 2.6
in [F1J] which Kudla is using above.

To discuss this, for a moment, we go back to the (3,2)-case: Elements of G = SO(3,2) are
described by 10 parameters, elements of G, = SO(2,2) =: H by 6 parameters, elements of
K =S0(3) x SO(2) by 4 parameters. Hence on the right hand side of (12.1.3]), one has 11

parameters. And, moreover, the element

cosht 1 sinh ¢
(1222) ( 1 1 ) = exp(tXl,g,) ed

sinh ¢ cosht

looks as if it is not to be found on the right hand side. But one easily verifies Ad(¢)expX; 5 =
0-1

1
expXi 4, for £ = {( '
10

following: For the corresponding Lie algebras, we have

) € K. As to be extracted from [FLI] Sect.2, we get the

g==t+p
={(45).,A€ Ms(R)skew, B € My(R)skew} + {(.,¢).C € M;,(R)}
= <X1,27 X1,3> X2,3a X4,5> + <X1,47 X1,57 X2,4a X2,57 X3,4a X3,5>
=bh+q
(1223) = <X2,37 X4,57 X2,47 X2,57 X3,47 X3,5> + <X1,27 X1,37 X1,47 X1,5>-

There are the Lie relations

[(Xi5, X12] = Xos,  [Xi5, X13] = Xa5

[(Xi5, Xos] = Xu2, [Xis, X35] = X3
(12.2.4) (X1, Xus) = Xu5, [Xi4,Xo25]=0
and many similar. Here € p are the £1 eigenspaces of the Cartan involution 7 with
7X = —'X and b, q are the £1 eigenspaces of the involution o with 0 X = E; ;X F 4. Cor-
responding groups are K = SO(3) xSO(2) and H ~ SO(2,2). Weput L = KNH,[ = Lie L,
choose b maximal abelian in p N q, and

M =Z,(b)={¢ € L;Ad({)B = B forall B € b}.
In our case, we have [ = tNh = (Xo3, Xus), PN g = (X14,X15), and b = (X 4). Hence
M = {exptXy3;t € R} >~ SO(2).

The background of Kudla’s and Flensted-Jensen’s integral formolae is in the following
geometric consideration: In [FLI] p.261, one observes that the map L/M x b — pNq given
by

(12.2.5) (IM, B) — Ad(l)B
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is a diffeomorphism onto an open dense set. Therefore, the map
(12.2.6) P:pNhx L/Mxb—G/K

given by

O(X,IM,B) = n(expX lexpB),
where 7 : G — G/ K is the canonical map, is a diffecomorphism unto an open dense set and
also @ : X — expXL is a diffeomorphism of p N'h unto H/L.

The Killing form defines Riemannian (i.e., Euclidean) structures on p Nh,b", and L/M,
and one lets the measure on L/M be vol(L/M)~" times the volume element. Via Killing
form, one has Riemannian structures on G/K and H/L, and by their volume elements also
measures. Moreover, following Flensted-Jensen, we take measures on G and H such that

/Gf(:c)dx = /G/K/Kf(xk)dkd:cf(, /de =1, forfeC.(G)

(12.2.7) /Hf(x)dx:/H/L/Lf(xk)dkde, /Ldkrzl, for f € C.(H).

Taking the Jacobians J(X,IM, B) = |det d®(x )| and J;(X) = |det d@%X)| with refer-
ence to the respective Riemannian structures, one has for f € C.(G) and f, € C.(H)

fx)dx = vol (L/M) / F(®(X,IM, B))J(X,IM, BYdBdIMdX
G/K pnb JL/M Jot

(12.2.8) = vol (L/M) ] (hexp B)S,(B)dBdh

H/M

where 01(B) = |det d®cr,p)|, B € b". From here (his formula (2.9)), Flensted-Jensen
comes to the formula (2.14) in his Theorem 2.6

(12.2.9) /G F(g)dg = vol (L/M) /K /H ; F(kexp H'h)S(H')dH'dhdk  for f € Cu(G)

where § given by formula (2.12) comes from the d;. This also is taken on in a similar way
by Kudla-Millson [KMII| (4.35) and (4.37) as

(12.2.10)
f(g)dg = Vol(L/M)/ / f(hexp X'k)§(X)dXdhdk for f € C.(G).
NG T\H Jo+

In the sequel, we shall use this to interpret Kudla’s Green integral. At first, some remarks
concerning the function to be integrated:

93



The integrand

12.3. In the (3,2)-case, one has a two-component Green function and, as above from

(4.7.1), the Green function integrals

(12.3.1) 1(0,m,v) = (1/2) Z B2TR(NGy, 2, 2))dpt. =: Z I(0,m,n,v),
n2|m Fam/nz \D n2|m
I(1,m,v) = (1/2) Z / BERTuR(naY,, 2, 2))dp, = Z I(1,m,n,v).
n2|dm ailm/HQ \D n2|4m

We want to determine I(y, v, m,n) and may use Flensted-Jensen’s resp.Kudla’s formulae,
as we know from that our R(z, z) is left G,— and right K — invariant and depends
only on the hyperbolic group A. To do this, we have to assemble and clarify step by step
several items. We distinguish between m > 0, Case I, and m < 0, Case II. Moreover, as
above, Case A for m € Z and Case B for m € Z + 1/4.

12.4. In Case I, the formula
R(x,z) = 2msinh®t
can be derived as follows. We remember the 'Key Relation’
(2,2): = (z,2) + 2R(2, 2) = "((A(g:)) " '2) Po((A(g:)) ).
Here we have (x,x) = "22F;3 92,2 = (2,0, 0,0,0) and A(g.) = g(z)as, g(x) € Gy, Py = E,

hence

“((A(g.))'x) = (cosht, 0,0, —sinht,0)2a
and, as (z,7) = 2Q(r) = 4a® = 2m, the Key Relation says

(z,7) + 2R(x, 2) = 402 + 2R(z, 2) = (cosh®t + sinh? t)4a* = (2sinh? ¢ 4 1)4a?,
i.e., R(x,2) = 2msinh®t.,

For m < 0, i.e., Case II, we do alike and choose a basis for V' (R) such that x = 2av,.1, Q(z) =
—202 = m. Here, we have G, ~ SO(p,1). And for z = *(0,...,0,2a,0) and A(g.) =
g(x)as, g(z) € G, hence

“((A(g.)) 'x) = (—sinht,0,0, cosht,0)2a
and, as (z,z) = 2Q(z) = —4a® = 2m, the Key Relation says

(z,7) +2R(z, z) = —4a® + 2R(x, 2) = (cosh® ¢ + sinh® t)4a? = (2cosh? ¢t — 1)4a?,
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ie.,
(12.4.1) R(z,2) = 2|m|cosh®t.

Hence we have verified the following.

12.5. Remark. From ((12.1.5)) and (12.4.1)) with z = g,a; - 29, one has

R(x,z) = 2msinh®t in Case I with m >0
= 2|m|cosh?*t in Case II with m < 0.

Differential forms and measures

12.6. In Kudla’s Green function integrals above for the (p, 2)—case, the measure du(z) on
X is given by Q2 as in [Kul] (5.8) or [BK] (4.50) with

5 .
(12.6.1) 0 = ~T6.3 det(y)_3(%)3dzl Adz Adzg AdZy A\ dzs A dZs.

In the paper [BY] by Bruinier and Yang, there is another formula relating differential forms

and measures. From Proposition 3.4 in [BY], we have

. p_ o D
(12.6.2) (dl,)"(—Q)P = + IR

Here, we are in the following situation. We have a vector space V' of dimension n + 1
with a quadratic form @ of signature (p,2), bilinear form (.,.), the associated orthogonal
group H = SO(V), and the homogenous space D = H(R)/K,, and Shimura variety
Xy = HQ\(D x H(A)/K).

One has amap @ : V" — Sym,,, « — ((x;,2;); ;). Let a be a gauge form for V", i.e., a top
level differential of V™, a generator of (A""+1)V/")* and similarly 3 a gauge n(n+1)/2—form
for Sym,,. In [BY] Section 2.2, it is explained that one can find v € (A""*D/2V)* on V2,
with a = Q*(5) A v. This v may be identified with a top degree invariant form on SO(V)
which again is called v., and gives a Haar measure dh = d,h = dh;dh_dh, on SO(V).
Here, we apply this with n = 4,p = 3 and, hence, may identify v, with dz in (16.16.12)).
We take this to realize the Flensted-Jensen formula for an integral of a Green function f
as above via

f(z)du(z) = (p!/(2m)?P) - Vol(L/M)/ / f(hexp X'k)6(X)dX dhdk,
I;\D K JT.\Gy Jot
(12.6.3) = (p!/(2m)?) - vol (L/M) - vol(T', \ G) - I (v, m),

where du(z) = QP and ', and I% (v, m) has to be spezified in each case.
Now, for G = SO(3,2), Case I, and H = SO(2,2), with ag /> =: = (12.2.10)), by the usual
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unfolding we have

(12.6.4)
I(m,v)=(1/2 mmR(x, z))du(z
(m, v) </>/F\D162me2 (2, 2))dp(2)
=(1/2) Y \ B2rmR(x, 2))du(z).
2€l\ Ly, ¥ L= \D
= ZI(O,m,n,v)

n2|m

1(0,m,n,v) = (1/2)/ / e AR 2 2T g [y ()
aO,m/n2\]H[2 1

- “/2)(237!)3 / L

3! e b £)2
=(1/2) vol (SO(Z))/ / / e~ AmomSmh D \sinh (1) |cosh? (t)dr /rdtdh
AHJoo

(2m)?
= (1/2) (2?7):)3\/01(80(2))/F \Hdhlf’;(v,m)

— (3/(4n%)) / dh I (v, m)

x

13 (0,m) = / / e=dmomsinhrginb () cosh? (¢)dr /rdt
0 1

Similarly, for Case II, H = SO(3, 1), we get

(12.6.5)
2-1(0,m,n,v) = / / e MmO RMa 2 2T Gy (2)
a / Q\HQ 1

3!
= P /FG\G/K f(z)dz=

= (;;!)3vol (SO(3)/S0(2)) /Fx\H /000 /100 e’““m(cosm)%(sinh(t))2cosh(t)dr/rdtdh

3!
(27)

:(3/7r2)/F \Hdhli(v,m).

ol (SO(3)/50(2)) / dh I3 (v, m).

Do \H
Ii(v,m):/ / e~ 4mom(cosh®r (ginh (¢))2cosh(t)dr /rdt.
o J1
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In (12.22.1)) below, we assemble the I, —integrals (with a = 47mmv) and get

I (v,m) = (1/3) /OOO e ((w+1)3? = Ddw/w = (1/3)J.(3/2, a)

I3 (v,m) = (1/3)e7 /100 el 32y [(r 4+ 1) = (1/3)e7191T_(3/2, |al)

Here we used that, e.g., from |[GHS| (3) and (4), one has vol (SO(2)) = 2, vol (SO(3)) =
872 and vol (SO(3)/SO(2)) = 4r. Hence, we have to find the concrete meaning of the
measure dh and to determine

(12.6.6) vol, (I, \H) = / dh.
Do\ H

As cornerstones we have the classical results ((10.13.1)) from [EGM] and (10.13.2)) from [HG]
For F = Q(\/c_l) with discriminant dr < 0, with dvg+ = dadydr/r® = dvs;., one has

volg+ (T, \H") = volg+ (PSLy(O)\H")[PSL2(O) : PSLy(Oy)]

3/2
= v 2 TTO  xar 0)/8) = o

plf

and for dp > 0, with

dvge = dody doadys ) (y1y2)? = 4mdvge = Stdvpk = 4dvsie,

vol: (T, \H?) = vol(SL(2, (Of, O7)\H?)

AL :
T3 L(xar:2)f* T[(1 = Xar (0) /97) = 03
plf

Moreover, there is Siegel’s volume formula ([11.2.9) relating the volumes of fundamental
domains in the group to those in the homogeneous spaces. In our situation, one has from
(11.2.10)

volg(T'(Sp)\SO(2,2)) = (72/2) vols(T'(Sp)\Da2),
volg(T'(S)\SO(3,1)) = 7% volg(I'(Sp)\Ds3.1 ).

But in Flensted-Jensen and also in [Kul], one usually works with the normalization [, dk =
1. Moreover, by the geometric meaning of the Eisenstein series (see ) we are led
to measure the volumes as volumes in the representation space, i.e., here Dy, ~ H? resp.
D3, ~ H*. We try to put all this together starting by (and do NOT use Siegel’s
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formula above!): From ((11.14.1]) and (11.13.3)) we have
VOlsie(FO\Dlg) = VOIHZ (PSLQ(Of, O;)\HZ)/ZI
= (1/12)|dr**L(xr,2) - £* ] (1 = X (0) /07),

plf
(12.6.7) volgie(TY\D; 3) = volg+ (PSLy(Oy, O;)\Hﬂ
= (1/24)|dp[L(xp.2) - T = xar (0)/9).
plf

where I'? stands for the image of T, resp. I';, in the corresponding group H. (This comes
up to interpret dh in (12.6.6]) as dvs;e.)

12.7. To introduce these voluminae into the formulae above, we still have to work out the
sum of n*|d2m and discuss 0, (5/2) from (2.5.3)) . This is helped by the discussion of the
geometric content of the Eisenstein coefficients for positive indices m:

Humbert volumes

12.8. From [vdG] p. 211, resp [Kul] p.338, for A = Dy f?, Dy a fundamental discriminant,
and Hx a Humbert surface in T'y\Hy, we have

(12.8.1) Ga = Ur2|AHA/r2-
and
(12.8.2) volpaHa = (1/120%) 2 T (1 = xp, (0)p2) Dy * L(x 1, 2) = 2volpx Ha
plf
ie.,
(12.8.3)
voluaGa = Y _(1/127)¢(Do, £ /1) Dy * L(xpy, 2) = (1/127%)7(Do, £) Dy *L(x 1y, 2),
rlf

where, to abbreviate, for A = Dy f2, Dy a fundamental discriminant, we introduce

(1284) w(D07 f) = f3 H(l - XD()(p)piQ)ﬂﬂ(DOa 1) = 17
plf
DOa ZwDOaf/d Zw(DOLf/d)
d2|A d|f

From [vdG] p.213, to Ga we associate ga € H%(V,Q) and the series > gag® can be
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identified with Cohen’s modular form 37y _o 04, H(2, N)g", where

(12.8.5) H(2,Dof?) = L( DO Z“ “Ndos(f/d)
Cdf
= (2, (P0) D2 (2n) Y () (2 oy ).
' dif

Again, to abbreviate, we introduce {(Do, f) = >_y; pu(d )(22)d os(f/d) and verifying for
f = p* immediately, remark

(12.8.6) §(Do, f) = 7(Do, )

12.9. In Bruinier-Kiihn [BK] (4.3) the Heegner divisor of discriminant (4, m) is introduced
as a I'(L)—invariant divisor on Gr(V') for 8 € L'/L and negative m € Z + q(f3)

(12.9.1) HBm)= > A

AEL+B,q(N)=m

From [BK] p.1721, we take that the Heegner divisor (1/2)H(5,—D/4) (5 determined by
D = Dy f?) can be identified with the Humbert surface G(D) of discriminant D of [vd{].
And (5.3) says

(12.9.2) deg(G(D)) = —(B/4)C(D,0) = (1/2)¢x(—1) = 27237 1(1/272) D’ L(x p,, 2).
From [BK] (4.56) and (4.18), for 4dm = Dy f?, i.e., m¥? = Dy/*(f/2d,)?, we have
(12.9.3) (2/B)deg(H(B,m)) = —C(B,m,0)
where the [BK] formulae reproduced above, e.g. (2:9.1)), give

C(B8,m,0) =2°-3%-5- (1/30*)m**L(x, 2)03.m(5/2),
ie.,
(12.9.4) volpr ((H(B,m)) = —(1/37*)m**L(x, 2)o5.m(5/2)

(showing that in ((12.9.2)) resp. |[BK] (5.3) D is a fundamental discriminant). With (12.8.3)
volgaGa = 2volgrGa = (1/127T2)7'(D0,f)D3/2L<XDO,2) we come to the important rela-
tion

(12.9.5) m*205.,(5/2) = (1/8)D3*7(Dy, f).

Further down, we will discuss generalized divisor sums following [BrKul, and give hints to
a direct proof of this relation even for nonpositive m (see (12.23.8))).
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12.10. To compare, we also reproduce Kudla’s treatment. In [Kul] p.337ff, things look
like this. We have

(12.10.1)  E(1,3/2¢0) = 1+ ((=3)7" f:H 2,4m)q™ =Y _ Ag(m,v)
m=1

E(1,3/2; 1) = ¢(—3)7 Z H(2,4m)q™ = Ai(m,v)

m—1/4=0

C(=3)'=2%.3.5, 4m = Dyf* Dy=0,1mod4 ([Kul](5.18)),

H(2,4m) = L(=1,xp,) ) _ p(d)xpy(d)dos(f/d)
dif

—L(2,x,) D3/ (27*) " pld)xp, (d)d o5(f /d)
d|f

—(1/(27°))L(2, x,) Dy *€(Do, f),
E(Do, £) = ld)xpy(d)d os(f/d).

daf

Hence, Kudla’s Eisenstein series is half of the series in Bruinier-Kiihn and here we have
the coefficients

(12.10.2) A(m,v) =2%-3-5- H(2,4m)

=2%.3.5- L(2,xp,) D0 %/ (27%) > p(d)xp, (d)d os(f /),
dlf

=20-3-5- L(2,xp,)m*?/(2x%) f *¢(Do, f).

From [Kul] (5.22), one has
(12.10.3) deg (Z(m, p,)) = deg Gy, = —(1/12)H(2,4m)

= (1/(247%)) - DY L(xpy, 2)E(Do, ).
Together with and 4m = Dy f?, again we get

(12.10.4) > (Do, f/d) = 7(Dy, ) = &(Do, f)-
d|f

12.11. [BrKu| on p.447, for 5 € L'/L with ¢(5) € Z look at the Eisenstein series

(12.11.1) Es(r) = (1/2) > eslr (M, @)

(M) €T 00 \Mpy (Z)

=D D as(ym)e(n7).

v€L' /L n€Z—q(v),n>0
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Remark. From [BrKu] Example 10 p.454, for —4m = Af?, one has

23 5/2 3/2 L(2 XA
TG2) ) dlzfu xXa(d)yd?o_s(f/d)

= —2°-3.5/7% - m*’L(2,xa) ) n(d)xa(d)d"* o5(f/d)
as

= —26.3.5/n% - m*2L(2, xa)f? Z,u(d)XDo(d)dU:S(f/d),
daf

(12.11.2) q(y,m) =

i.e., here we find ¢(y,m) = —2A(m,v).

Remark. Comparizon of the A(m,v) with the coefficients (2.12.1]) from Bruinier-Kiihn
co(y,m, 0,v) = =2°-3-5- 77 2m[*2L(xpy, 2)0ym(5/2) - €2 for m > 0

again leads to

(12.11.3) 0ym(5/2) = [2¢(Do, f).
From [BK] p.1721, with D = Dy f? we also have
(12.11.4) 05.0/4(5/2) =Y pld)xp,(d)d > o_3(d/ ),
dlf
=/ 32# )X, (d)da3(d/ f) = fE(Do, f).
dlf

12.12. Summary. We have

(12.12.1) Y(Do, f) = LT[ = x0o()p™2), (Do, 1) = 1
plf
&(Do, f ZM XDO d)dos(f/d) = Uﬁ,m(5/2)
dlf
-D07 Z¢ f/d DO’ )
dlf

Our final aim

We go back to the determination of the Green function integral ((12.3.1) and want to use
the preceding to show:

12.13. Proposition. For m > 0, with a = 4mmv, and J,(3/2,a) = [ e " ((r + 1)*? —
1)dr/r, one has

(12.13.1) (4/B)I(0,m,v) = C(0,m,0)J,(3/2,a)
27.3%.5.1(0,m,v) = 2°-3-5/7% - m32L(2, xp,)0o.m(5/2) ] (3/2, a)
1(0,m,v) = (1/67%) - m*2L(2, XD, )00.m(5/2) T4 (3/2, a).
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Proof. In the (3,2)-case, one has a two-component Green function and, as above from
(4.7.1), the Green function integrals

12.13.2) I1(0,m,v) = (1/2 BRrvR(nay, /2, 2))du, =: 1(0,m,n,v),
r \D /
n2lm "> " %2 n2|lm
I(1,m,v) = (1/2) Z / B2rvR(ndl,, 2, 2)dp, = Z I(1,m,n,v)
n?|dm n2[dm

a’
4m/n

For Case I, m € N, H = SO(2,2), with a,,/,> =: x, we got above with (12.2.10) and
2.17.2)

(12.13.3)
I1(0,m,n,v) = (1/2)(3/27r2)/

I, \H

dh I (v,m) = (1/2)(1/27%) / dh (1/3)J2(3/2, a).

I \H

As we already assembled

dvge = dody doadys ) (1y2)? = 4ridvge = Stdvpk = 4dvsge,

and (11.14.1)) and (11.13.3]), we have

(12.13.4) volsie (["\Dy2) = volyz (PSLy(Oy, OF)\H?) /4
= (1/12)|dp*L(xr, 2) - 2T = xar (0) /7).
plf

VOlSie<FO\D173) = V01H+ (PSLQ(Of, O;)\H+>

— (1/29)[de 2L (xr,2) - P T = xar (9)/2).
plf

If we use this, with
(Do, f Z¢ Do, f/d) = Zﬂ(d)XDo(d)dgs(d/f) =&(Do, f)

d|f dlf
and
> (Do, f/r) =1(Do, f) = fPopm(5/2)
r|f
we get
(12.13.5) 1(0,m,v) Z[ (0, m,n,v)
n|f
_ 2y [ Dol*?
S (145 2 Ly, 20Dy, £/ (3/2,0)
n|f

= (1/(67*))[Dol** L(x 0y 2)(f/2)°05.(5/2) T+ (3/2, ).
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With m?/? = DS/Z(f/Q)?’, this is the formula ((12.13.1) we aimed at. O

12.14. For m € Z,m < 0, with J_(3/2,a) = e [~ e~ 19"+*/2(r + 1)~'dr, one has the
corresponding formula
(12.14.1) (4/B)I1(0,m,v) = C(0, |ml|,0)J_(3/2,a)e

I(Oa m, U) = (1/67"2) ) ‘mIS/ZL(Z XDO)O-O,m(5/2)J* (3/27 a)eia'

Proof. We have H = SO(3,1) and from (12.6.5) with vol ((SO(3)/SO(2)) = 4 and
(12.13.4)

I(0,m,n,v) = (1/2)/ / e 2R 2 2T g [y (2)
1

aO,m/n2 \H2

— (1/2) (2?:)3\/01 (1s06)/50(2) [ A )

— W2/ [

L \H

3/2
Dol 1 200D, £/m) T (3/2, a)e

dh I3 (v,m) = (1/#)/ dh (1/3)J_(3/2,a)e”

L \H

= (1/27?)

Above, the relations in E(Do, [) = gy id)xpy(d)dos(f/d) = 7(Do, f) =

f305.m(5/2) came up for positive m but, as to be seen later in (12.22), may be used
here too to give

I1(0,m,v) = ZI(O,m,n,v),
n|f

3/2
=Z<1/27r2>—’D;'l L(Xap> 2)0(Do, £/n).J (3/2,a)
nlf

= (1/(67))| Do[** L(Xar 2)(f/2)*00,m(5/2)J-(3/2, a).

Here again, for the determination of the integral J_(3/2, a), we refer to below in ((12.22.1)).
([l

With corresponding considerations and results, one can treat the case B with m —1/4 =
M € Z (This may appear a bit more subtle and lead to Example 10 in [BrKu|. One has
to be careful as in [BK] one has D =4-4-m and in [Kul] D = 4m all the way). O
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Finally, with the relations already introduced above and to be shown below in ((12.22.1)))

(12.14.2) I (v,m) = (1/3)J:(3/2,a), a = 4wv|m|,
I_(v,m)=(1/3)e *J_(3/2,a),

J+(3/2,a) = /000 e~ ((r+1)*% = )dr/r,

J,<3/2, CL) = ea/ €7|a‘rr3/2(r + 1)71d7,7
0

we obtain

12.15. Proposition (Green Integral Summary). We have the Green function integrals

[(fy,v,m):/ =(y,m,v)dp

= (1/(67))m**L(x Dy, 2)0.m(5/2)(1/3)J(3/2,a), for m > 0,
(12.15.1) = (1/(6m))|m|**L(XDy> 2)0.m(5/2)(1/3)J_(3/2,a)e™?, for m < 0.

If we join this with the results for the coefficients of the Eisenstein series

(12.15.2) C(y,m,0) := =2%-3-5- 77 2m|**L(Xdp, 2)0.m(5/2)
C 0)e=%%form > 0
CO(%m,O,v) _ (77m7 )6 orm ,
0, form <0,

C(vy,m,0)e"%(J.(3/2,a) + CC/((,Z’;”’(?))), form > 0,

co(v,m,0,v) =
o7 ) {C’(%m,())e“'/2 - J_(3/2,a), form < 0,

we get our central result.

12.16. Theorem. For the (3,2) case, one has

) C(y,m,0)J(3/2,a), form >0,
(4/B) - 10y, m,v) = {C(%m, 0)J_(3/2,a)e” 1%l form < 0.
(12.16.1)

_C 0 C/(f%m,()) 1 4 —]_—V 1 f 0
(4/B>.JBK<%_m,U>:{ (7,m, 0) (S0 4 1og(4r) — T'(1)), form > 0,

C(v,m,0)

0, form < 0.

Here IP%(y,m,v) = [, G, m(Z)Q? is the integral of the Green function G.,,(Z) from
Bruinier-Kiihn [BK] Definition 4.5 and Theorem 4.10.

12.17. Corollary. We have

(12.17.1)  cy(y,m,0,v) = e~ ¥2((4/B) - (I(, m,v) — IPX (v, —m,v)) + * co(v,m,0,)).
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Now, we treat the results we used above.

The I} —Integrals
Here, we determine the integrals I (v, m) from and
(12.17.2) 12 (v, m) = / N / " g amolmlsin gy G (cosh £ L,
o J1
I (v,m) = /00 /OO e~ Amvlml cosh® tr gy /1 (sinh ¢)P~ ! cosh tdt.
o J1

We will do this for p = 3,2 and 1:

12.18. To evaluate I_(v,m) in the (3,2)-case, we try the substitution sinh®t = w, i.e.,
2 coshtsinhtdt = dw. We get (at least formally) with o = 4mv|m|

I_(v,m) :/ / 6_4””|m|C°Sh2”dr/r sinh? ¢ cosh tdt
o J1
= (1/2)/ / e~ W g [rdwn/w
o J1
= (1/2)/ e_o”/ e """ dw~/wdr |1
1 0
= (1/2)/ e_m([e_amw3/22/3};o+/o (ar)e™ " dww?/?2/3)dr /7
= (a/3) / e~ WD dp dapa®/?
1
— (a/3) /0 [(—1/(aw + 1))e @)™ /2
= (1/3) [ @+ )
0

(12.18.1) = (1/3)e™® /OO w32 (w + 1) e dw =: (1/3) e™*J_(3/2, ).

1
0

12.19. For m > 0 we do a similar evaluation starting by (12.17.2)). With a = 4mmv and
the substitution sinh? ¢ = w, dw = 2sinht cosh tdt, we get
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L.(v,m) = /0 h /1 " pmmsinn? r g, /rsinh t cosh? tdt

= (1/2) /Ooo /100 e~ dr Jrdw(w + 1)Y/?
=(1/2) /100 /Ooo e~ dw(w + 1)Y2dr /7
= (1/2) /100( [e7m (w+1)¥22/3] 7 + /Ooo(ar)eawdw(w +1)%22/3)dr /r
=(1/2) /100(—2/3 + /Ooo(ar)e—de(w +1)%/22/3)dr/r
—(1/3) /0 h /1 " e drdu((w + 172 — 1)

(12.19.1) = (1/3)(/0oo e w (w4 1)%% = 1)dw) =: (1/3)J4(3/2, ),

where we used

/ / aeamd'r’dw:/ / aeamdwdr:/ [—(1/r)eawr]8°dr:/ dr/r.
o J1 1 Jo 1 1

12.20. For p =2 and m > 0, with the same substitution as above, we get

I (v,m)= / / g~ dmomsinh? " dr /r sinh t cosh tdt
o J1

—(1/2) /0 h /1 " ey frduw

— (1/2a)) [ deyr?

(12.20.1) = (1/(20)) = 1/(8wvm).

And for m < 0 again with o = 4mwv|m)|

I _(v,m) :/ / e’4ﬂv|m|C°Sh2"dr/r sinh ¢ cosh tdt
o J1

= (1/2)/ / e‘a<w+1)rdr/rdw

o J1
= (1/2)/ e‘”/ e ““dwdr/r

1 0
= (1/2@)/ e~ dr/r?

1
(12.20.2) — (1/2)(e Ja / e dr /).
1
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12.21. For p =1 and m > 0, with the same substitution as above, we get
I (v,m)= /00 /00 e dmomsinh® i g /1 ginh tdt
o Ji
= (1/2) /oo /Oo e~ rdr/r(w + 1)*1/2dw
o Ji
=(1/2) /00(_1 + /OO e (w 4 1)V 2dw)dr /r
1 0
=(1/2) /°° /oo ae” " ((w + 1)1/2 — 1)drdw
o Ji
(12.21.1) =(1/2) /Oo e (w4 1) = 1)dw/w.

0

And for m < 0 again with o = 4mwv|m)|
I (v,m)= /00 /OO g~ 4mvlm| cosh? " dr /r cosh tdt
o Ji
= (1/2) /OO /OO e~ g [ ™2 du
o J1
= (1/2) /00 e " /OO e_o‘wrw_l/dedT/r
1 0
(12.21.2) = (1/(2v/a))[(1/2) /OO e 32y,
1

12.22. Summary (The /—Integrals). We sum up what we got (with a = 4mmv) and
239)

Ji(s,a) = /000 e ((w+1)° = 1)dw/w,

J_(s,a) == /OOO e widw/(w+ 1),
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where the first line is for positive and the second line for negative m.

p=1: I.(v,m)=(1/2) /OOO e ((w+ 1)V2 = )dw/w = (1/2)J.(1/2,a)
I_(v,m) = (1/(4+/|m|v)) /100 e~lalr =32y — (1/2)e71J_(1/2,al)
p=2: I.(v,m)=(1/2a)

I (v,m)= (1/(2|a|)(e‘“| — /OO e“‘”dr/r)

1

p=3: I.(v,m)=(1/3) /000 e ((w+1)3? = Ddw/w = (1/3)J.(3/2,a)

I_(v,m) = (1/3)e” /00 el 32y /(r + 1) = (1/3)e7191J_(3/2, |a])

1

(12.22.1) = (1/(4|a\3/2)ﬁ/100 e\l dy /15/2,

The Generalized divisor sum

12.23. In the formulae for the Fourier coefficients of the Eisenstein series in Bruinier-
Kiihn [BK] and (implicient) in Bruinier-Kuss [BrKu|, the notion of a generalized divisor
sum 0. ,(s) appears which albeit rather complicated can be related to our 7(Dy, f) from
12.8.4] In [BK] (3.28) (for r = 5 odd) we find the definition (which already came up in
259)

1 — xp, (p)p/?~* (3/9)s
(12.23.1) o'%m(s) = H 1_Op1725 L’(ﬁ)n(p (3/2) )

pl2dZmdetL

Here one has a lattice L ~ Z",r = 5 with quadratic form ¢(z) and L'/L ~ Z/2Z. For
v € L'/L, we take over from [BK] (3.17), (3.23), (3.18), (3.14) and (3.20) (having its
source in [BrKul] (22))

dy = min{b € Z-o;by € L}
(12.23.2)
2d3m detL = D, f?
wy, =1+ 1v,(2md,), v, the (additive) p — adic valuation on Q
Nym(a) == |{x € L/aL;q(x —~) +m = 0mod a}|, the representation number mod a,

wp—1

L) (X) = Ny (p*) X" + (1 = p*X) > Ny m(p") X" € Z[X].
v=0
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1-r/2—s

From here with X = p we get with the notion from [BrKu]

(12.23.3)
wp—1
L%m(é’,p) — Lsypjm(X) _ N%m<pwp)pwp(1fr/2fs) + (1 _pr/Qfs) Z N’y’m(pu)pu(lfr/Qfs).
v=0

For X = p~* and s = 5/2 the definition above specializes to

-2
(12.23.4) ovm(5/2) =[] %Nw(w@)p%, D = 2d’mdetL.
p|D

In [BrKu] Theorem 6 (a partial reformulation of Siegel [S1] Hilfssatz 16), one finds ex-
pressions for the representation numbers N, ,, namely for r > 3, odd, D = Dy f? (where
Dy € Q and f € N) such that (f,det L) = 1 and v4(Dy) € {0, 1} for all primes £ with
(0,2det L) = 1. Let Dy = Dod? and D = 2(—1)C+) 2Dy det L. Then, for a prime p not
dividing 2det L and o € Z With a > v,(m) one has

(12.23.5)

1— plfr
a(1-7) oy — volf)) (1-r)/2 volf)=1
PN (P%) = 7 ) (02— (p") = X (P)p" ™" P2 (P71 77)).

If we specialize to our case r = 5,v,(f) =: k, = k, and a = w, > v,(m), we get

1—p k —2 k—1yy, 4
Nym(p"?) = ————— x (0-3(p") — xp(P)p “0_3(p P,
(D7) [E—— (0-3(p") — xp(P) 3(0"7))
— 1_—1)_4 X (]_ +p_3+ +p_3k _X,D(p)(p_2+ +p_3k+1>>p4wp
1 —xp(p)p? ’
1—p* b
12.23.6 = xpM RO+ p(1 = xo(p)p ).
( ) [ ( ; ( (p)p~))

Remark. For f =], pfi, one has

(12.23.7) (Do, f) =Y w(Do, f/d) = H (1+ Zp (1= xpo(pi)pi ).

dlf d;i=1

Proof. For primes p and ¢, one has

k
(Do, ") = (Do, p*) + (Do, p" 1) + -+ 1= Zpgy(l — Xpo (P)p %) + 1
v=1
7(Do,pq) = (Do, p)7(Do, q)
Hence, for f = [T, p", 7(Do, f) = [L(X0_y p*(1 = xpy (pi)p;*) + 1). O
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For appropriate m, with ((12.23.7)) we get from ((12.23.4])

1 — xp,(p)p~> BR—
(12238) O—’y,m<5/2) = H 1 i)ozg‘)l N'y,m(p p)p * ?,

p|D

= [+ ) "1 = xo)p™),

plf v=1

= 7*7(Do, f).

In the case SO(2,2), there is a similar relation with ¢'(m) := m[[,,,(1 +1/p) and the
nice formula

(12.23.9) D W(m/n®) =o(m)=> d.
dlm

n2|m

13 The Kudla Green function integral for signature
(2,2)
13.1. We treat Kudla’s approach to calculate the Green function integral for the case

p = 2, ie., here G = SO(2.2),G/K ~ D,L = My(Z), X = SO(L)\D*. As already in
previous sections, we take M = (28) € V >~ R* 2z = (21, 29) € H?resp. X, and from ([3.9.8)

la — bzy — c21 + dz120|?

R(M7 Z) - 2Y1Y2

For m # 0, we have
(13.1.1) I(v,m) = / E(m,v, 2)du(z), X = (I'\H)?,
X

with Kudla’s Green function

E(mavvz) = (1/2) Z g(vvzv M),

MEeELp,
£(v, 2, M) = B@roR(M, 2)), fos () = / e du, B = fh,
1
L = {M € My(Z): det(M) = m)},

(13.1.2)
1 dxydy,dzodys
du(z) =P = — —L =72 — 2dvge Q = ddlog (— (v, BY| Lemma 3.3).
1(z) 27 ()’ HG g(—(y,y)) (BY] )
One knows
(13.1.3) L ={M € L,,; M primitive} = T' (™ ;) (Fo(|m|)\I'), I' = SL(2, Z),
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and for m > 0

m)==m][(1+1/p) =L}, :T] = [[': To(m)],

plm
(13.1.4) o(m) =Y _d=> 1(m/n?)
dlm n2|m
[ =T x I acts transitively on L*, via M + v, M'y, and we have
(13.1.5) Ly, = (T/Ta,)am, an ="(1,0,0,m)
ie.,
(13.1.6) = 0Ly = > (/T ) amme.

n?lm n?|m
Hence, unfolding, we get

(13.1.7) I(v,m) = (1/2) ) / : BTOR(My 2 ) )dp(2).
@ 2 \E?

n2|m

13.2. To evaluate this, Kudla proposes the procedure already explained in [12.3, For

m > 0, choose a basis v for V(R) such that the inner product has the matrix I, i.e.,

x,v) =2+ 22 — 22 — 22, and z = 2aw;. Hence, one has ¢(2) = 2a®> = m and
; 1T Ty —x3 — a3, ;

G =SO(V(R)) ~SO(2,2) = G, - A- K

and in Flensted-Jensen notation ([FL]] Section 2) H = G, ~ SO(1,2),L ~ SO(2) and
M ~ {£1}. Evaluating ((12.2.10]) as above in the previous section, we get

/ / e~ 2R AT g fr gy (2),
I \D+ J1

— (1/252)vol(SO(2)/SO(1))vol(T', \ Gy )vol(K) / / e~ AmomSI I G g cosh tr frdt,
0 1

(13.2.1)
= (1/m)vol(T'; \ G)vol(K)Iy(v,m).

G,) = vol(I'; \ Dy 2), we relate our

13.3. To evaluate vol(I'; \ G.), again with vol(T', \
L(2,R))? acts on V = My(R) via M

orthogonal groups to the SL—theory. G = (S
g M = g Mgy, =: M’'. Hence, we have a map

G = (SL2R))" = G =500(Q), Q = (1 = 1)

0518 04152 51042 5152

do P12 Pi0e
13.3.1 = = Alg)= | D12 T2
( ) g (g17g2> (g) 71042 7162 5]_052 61/82

Y172 ﬁ152 5172 0102
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As above, we use Siegel’s method to determine T, with

fam = F(Q, am) = {7 € F(Q)77am = am}; Ay, = t<17 0,0, m)
With S = Q and
1
A= (ap,B) = < b > ,(am, am) =2m
m 1
one has from (7.1.1)) and (7.1.2)

Lo, =T(S, am) = {W € I'(K);'Wb = bmod 2m}

s =s( ) (L) =) (D=0

K ='BSB - /2m) = (""1 ) (01 11) (91 1) —1/m) (%)

(1832) = (%’21 Télg) (?1 1) — (1/2m)) <0°1> - (%u/(zm)))’

Hence, to simplify, for the following, we assume m > 0 and look at

0 2m

(13.3.3) (u,u) = "uK,,u = (dmujuy +u3); K, = <2m 0 1)

and want to determine I'(K,). One has the standard way to relate the signature (2,1)
groups to G := SL(2,R) : Take

(13.3.4) g= <: ?) xen
2

M(a) = (Z _ba> ,—det(M) = a® + be = (1/2)'aQa, Q = 1
1
One has a map p : G; — SO(Q), g — p(g) where
ad+ By —ay SO
(13.3.5) gM(a)g™" = M(p(g)a), p(g) = | —2a8 o —p7
276 -2 52
We have 4mujug + ui = a® + be and put a = uz, b = 2uy, ¢ = 2muy, i.e.,
1 1/2m

(13.3.6) a=Cu, C= 2 ,u=C"1'a 07! = 1/2

2m 1
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and get an isomorphism
v :S0(Q) = SO(K,,), A— C7LAC.
Hence we have the surjection o' =v - p: Gy — SOu(K,,), 9 — Cp(g9)C =: A(g) with

2 —*/m  yd/m
(13.3.7) A(g)= | —-mp* o —af | =W = (wy).
2mpBo  —2ay  ad + By

We want to have w;; € Z and Siegel’s condition "Wb = bmod 2m, i.e.,
w31 = wzp = 0, w33 = 1 mod 2m.

Now, if g € T'y(m), one has v = Omodm and all these conditions are fulfilled. Thus, we
get

(13.3.8) Lo, ~ To(m)/{£1.}.
Similarly to (11.8.1]), with I'™ = v/(p(I'y(m))) and I = o(v(p(Ty(m)))) we get
(13.3.9) To(m) m o

SLy(R) —24—~SO™(Q) Y > SOT(K,,) —Z—=S07(1,2)

. S—
F1 >~ To(m)\H r\D,, IN\D; 5 ~ F

V

For z + iy € H and X = (x1,22) € Dy o, from (11.6.12) we know
dx1dxs dxdy

(13.3.10) dvgie = =22 — ) 1 dvgie 0 U = " = dvy.
One has vol(I'\H) = 7/3, vol(I'y(m)\H) = ¢ (m)x/3, and
(13.3.11) vol(T\D; ») = ¢(m)~ /3.

13.4. We use this for our calculation of the Green function integral |13.1.1]).
I(v,m) = / =(m,v, 2)du(z) = (1/2) Z / / e 2 REDT dr [rdp(2)
X vy, J (M\H2 J1

_ (1/2> Z / / 6_2ﬂvn2R(Z’nam/”2)rdT/Td[L(Z>.
Fam/n2 \H2 J1

n2|m
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With Li(v,m) =1/(8mvm) and 3 -, ¥(m/n?) = o(m) we get

(13.4.1) I(v,m) = (1/2)(1/m)o(m)m/3-(1/(2a)) = (1/2)(1/(6a)o(m), « = dwvm > 0.
The same way, using , we get for m < 0

(13.4.2) I(v,m) = wo(m)r/3 - (1/2]a]) (el + |a|Ei(—|a|)), a = 47vm.

Both formulae are up to a factor from different normalization of measures the same as
those from Theorem 4.2 in [BeKII].

14 The Green function integral for signature (1,2)

Here, one has a lot of material in the literature. We take out small pieces which may be
related to the procedure we followed above, mainly from the report [Ya] by Yang and the
detailed paper [KRY] by Kudla, Rapoport and Yang.

14.1. In [KRY], Kudla, Rapoport and Yang treat the case of an indefinite division quater-
nion algebra B over Q with maximal order Op. Here D(B) is the product of all primes p
at which B is division. One takes V = {z € B|tr(x) = 0} with quadratic form Q(z) =
—x? = N%x) given by the restriction of the reduced norm, H = GSpin(V),I" = O}, and
L=V(Q)NOg,L(m)={z € L|IQ(z) = m}.

D is the space of oriented negative planes in V(R) and, as usual, R(z, z) = (pr,(x), pr,(z) >
0 for z € V(R,z € D, and Z(m, ) =3 er. (0?2, 2),&(x, 2) = —Ei(—27R(x, 2)).

In Section 12, for m = Q(z) > 0, (so that I'; is ﬁmte) and D(B) > 1, they calculate
(14.1.1) k(m,v) : = (1/4) / Z 2z, 2)du(z),  du(z) = 1/(2n)dady/y?,
D xzeL(m)

SLCID VI BRCLRTO

z€L(m),mod T

OIS S RGBS

z€L(m),mod T
= >IN g 2)dn(z)
z€L(m),mod T’ D+
Since £(gx, gz) = £(x, ) for g € GL(2,R), one may assume that
V2 g = mi2 (1),

Then, writing z = kg(e'i) € H ~ DT, Kudla, Rapoport and Yang come to R(z,z) =
2msinh?(t). Hence, with

r=1m

(14.1.2) J(t) = /OO e ((w+ 1)Y? = 1)dw/w,
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they get

(14.1.3) k(m,v) = Z |FQE|_1/DJr —Ei(—2rR(v'2x, 2))du(z)

z€L(m),modT

- Y /e /0 ' /0 " _Bi(—4rmusinh?(1))2sinh(¢)dtdo

z€L(m),mod T

= X A [ et s
0 1

z€L(m),mod T

= > T2 /0“} /1006_4”m”wrdr/r)(w+1)_1/2dw

z€L(m),modT

. ym—l/ e~ (4 1)1 — 1)duw fw
0

z€L(m),mod T

— Z IT.| ' J(4mmw)

z€L(m),modT

= 6(d, D)Hy(m; D)J(4mmv).

where the last equality uses [KRY] Lemma 9.2 and one has 4m = n?d, —d a fundamental
discriminant, and [KRY] (8.20) and (8.19)

5(d. D) = [](1 - xal0)). Ho<m,D>=%< S L0 - o)
{

plD cln,(e,D)=1

~—

where h(d) is the class number and w(d) = |0y |.

14.2. For our SO(1,2), if we follow the usual procedure as in (3.10.1]). here we have

V={M= (CCL _ba> ;a,b,c € R},

G(M) =det M = —a® — be = (1/2)(M, M),
(14.2.1) —(M, M") = 2aa’ + bc' + b

and we identify
M =a="a,b,c), v ="x,12,73).
With a = z3,b = 29 + x1,¢c = x5 — 1 one has
G(M) = —a® — bc = 27 — 13 — 5 = qo(x).
As fixed in (|1.12.2)) one has a homomorphism
G’ =SL(2,R) — G = 0y(Q), g+ A(g)
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o2 172
where, in particular, for z =z + iy, g, = ( “1/2 ) , we get

Yy
1 0 =z/y 1 0 -z
Alg) = | —20 y —2®/y |, Alg:") = | 22/y 1)y —2°/y |,
0 0 1/y 0 0 Yy

As usual, we take D as space of oriented negative 2-planes Y C V| and as base point the
plane

1 -1
Xz‘ =< Ml,MQ >, M1 = ( _1> ,M2 = (_1 > .
Via g, this plane is transported to

B . 2 _ .2
Xoma g =) (U2 ag—am (2] 7).

—Z
-1 z

2

I8}

ie., for Z = ( ) one has X, =< Re Z, Im Z > .

As at the beginning, in (3.10.4), we get the kernel of the majorant
R(z, M) = R(X., M) = (1/2y*)|2az + b — c2*|*.
In particular, one has, as to be expected,

(M, M); = 2a® + b* + ¢ = 2(z] + x5 + 23)

14.3. For m > 0, we can take over the computation from |[KRY] reproduced above. We
supplement their reasoning. For z = m'/? . xy = m'/2 . (_; 1), the equation

R(z,2) = (1/(2¢%))|2az + b — c2*|* = 2m(sinh 9))?
comes out in the "hyperbolic coordinates’ from ((1.13.1)) as in ([1.13.4)) as well as the relation

dz N dy
Y2

= sinh 9 dr A d9.

Hence, one has

_ dxdy
C2my?

I(v,m) = /XE(m,v,z)d,u(z), X = (T\H), du(z)
= Z T, |t (4mmu)
z€L(m),mod T’

(14.3.1) = Hy(m,1)J(a),a = 4mmu.
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The last equation follows as Lemma 9.2 from [KRY] works also for D = 1.

14.4. For m < 0, again we can follow the computation in [KRY]. Given x € V,G(x) = m,
by conjugating with a suitable g € SLy(R), one can assume

vi=g-x=/Im|(! ).

Let IV be the corresponding conjugate of I' in SLy(R), and remark that I}, will generated by
+F, and () 6(33),1) for €(x) > 1 the fundamental unit of norm 1 in the order i, !(M5(Z))

in Q(y/|m|). For x = 2/, one has R(z, z) = (1/(2y%))|2az + b — ¢2?? = 2|m|/y?|z|?. Using
2|m)|

i) and

polar coordinates x = rcos ¢,y = rsin we get R(g-x,z) =

Ho.m). = 1/m) [ BemoR(y -0, )dul=). du) = 5
[y \H Ty

* _tmvlm|——w drde
14.4.1 —1/(2n / / eI duy ) —
( ) /(2m) FI\H( 1 / )r(smw

As in [Fu] p.309, 2’ = (“ .-1) acts on z € H as z +— |m|z. Hence, a fundamental domain F
of I',/\H is the domain bounded by the semi arcs |z| =1 and |z| = €(x)? > 1 in H. So, we
get

I(v,m), = 1/(27) / B(2mvR(2’, 2))du(2)

T,/ \H

(14.49) = (1/mogle(o)] [ ([ MR )

With ¢ = (sin ¢)~2, one has (sin @) 2dy = —(1/2)(t — 1)~/2dt, and
I(v,m), = (1/7)log |e(x / / e~ mImiviv quy
(v,m)e = (1/7) |()|1(1 /)\/t——l

— (1/7) log e(x)| /1 " g / " el gy 1t /) dw

0

= (1/7) log |e(z)|T(1/2) (4mmw) =12 /00 e~ dmimlve gy a3/

1

— (1/(2m) og e(a) (o) [ T emtmmien gy 13,

(14.4.3) I(v,m)= Y I(v,m),.

€\ L,

As again Lemma 12.3 from [KRY] is valid for D = 1, namely

(14.4.4) (Y 26, 'log|e(x)|) = 45(d; D)Ho(m, D),

€D\ Ly,
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one has

(14.4.5)  I(v,m) = Z I(v,m), = Ho(m, 1)(1/(2m+/|m|v)) /OO e~ Ammlvw gy f3/2,

(EGF\Lm 1

14.5. As an alternative, we treat Kudla’s approach to calculate the Green function integral
using Kudla’s formula [Kul] (3.23) for the case p = 1. In the case of signature (1,2) the
use of Kudla’s formula (12.1.6)) resp.Flensted-Jensen’s formula depends on the
decomposition

G=80(1,2) = G, - A- K, K = SO(2)
For x =*(0,0,1), one has G, = SO(1,1)

cosht 1 sinh ¢

(14.5.1) G, =SO(1,1), A = {a(t) = ( ) — exp(tX,3),t € R},

sinht cosht

while, for z =*(1,0,0), one has G, = SO(2), i.e., a Cartan decomposition G = K AK. For
m < 0, we have

_dxdy
©2my?

(14.5.2) I(v,m) = / =(m, v, 2)dp(2), X = (C\H), dp(2)
X
with Green function

=(m,0,2) = (1/2) Y €(,2m)

MeL,
E(v, 2,m) = B@rvR(z, M), By (f) = / " et du, B = By,

R(z, M) = (1/2y*)|2az + b — cz*|?,
(14.5.3) Ly, ={M € My(Z);tr(M) = 0,det(M) = m}

I' =T(L) acts on L,, via M — yM~~! =~ - M and on has L,, = U; T"- M;
Hence, unfolding, we get

(14.5.4) Iom) = (1/2) Y /F , BOTUR(E My)d(2),

To evaluate this, Kudla proposes the procedure already explained in [12.3, For m < 0, as
explained above, choose a basis v for V(R) such that the inner product has the matrix
Iy ie, (z,2) = 23 — 23 — 22 and z = avs. Hence, one has ¢(z) = —a® = m and

SO(V(R) ~ SO(1,2) = G and G, ~ SO(1, 1). Similar to (12.4.1]) we get

R(x,2) = 2|m|cosh®t
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and with (12.2.10) and (12.22.1)

/\D+/ e—?ﬂvn2R(x,z)rdr/rdu(z)
z 1

(1/27)vol(T, \ Gy) / N / " gl eost e oty Tyt
(1/2m)vol(T'y \ Gz)I_(v, m)

(1/2m)vol(T'y \ G2)(1/(4+/|m|v)) /100 el dy /13/2,

(14.5.5)

14.6. As above, we apply Siegel’s method to determine an example of an isotropy group
I',. We choose
r=M,=(_1")=(0,m,—1) = a,

with ¢(M,,) = m and want to know

T, = D@, am) = {7 € T(Q); vam = am}-

~ 1
With S = Q = — ( » 1/2) and

A= (an,B) = (Tl11> 2q(am) = (am, a) = 2m

one has from (7.1.1)) and ((7.1.2)

L., =T(S, ay) = {W € T(K);'Wb = bmod 2m}
b= (f).
(14.6.1) K ="'BSB—b'b/m=— (™ ).

Hence, to simplify, for the following, we look at
(14.6.2) Gm = UK pu = (ud +4mu3); K, = (1,,.).

Here, we find some information in [S6] p.258, namely Siegel treats the example ¢(z) =
x3— Sx?, S not a square. Let ¢, u be solutions of Pell’s equation ¢* — Su? = 1 with smallest
t+uvS > 1, then, 0 < z; < %y describes a fundamental domain with respect to the
group of unities with determinant 1 and one has

dz
1—.522

(14.6.3) vol(T\R?) = (V/'5/2) / v — (1/2)log(t + uV/'S).
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If we put ((14.6.3|) together with ((14.5.5)), we get

\/\D+/ e—ZTrUnQR(a:,z)rdr/,r,d“(z)
- 1

= (1/2m)vol(T'; \ G) /OO /00 e Amvlmlcoshir g tdr /rdt
= (1/2m)vol(I'y \ G)I-(v,m)
= (1/2m)vol(T'; \ G,)(1/(4 |m|v))/1 e\l dy /13/2

(14.6.4) = (1/27)(1/2)log(t + uV/'S)(1/(4 |m|v))/oo e~lalrdr /r3/2,

1
As Pell’s equation produces fundamental units e this is up to a factor the formula

I(m,v), = (1/(27T))10g!€(1f)\(!mlv)1/2/ e Ty o2
1
from (|14.4.3)).

Remark. If m is a square, say m = —n?, we have q,,,(u) = (u; +2nus)(u; — 2nus), i.e., one
has G, ~ SO(1,1), I', ~ {+E>} and vol(I',\G,) = co. Hence the Green integral diverges.
This is consistent with the observation at the end of Yang’s [Ya] (Part (3) of Proposition
3:1).

For m > 0, as explained above, choose a basis v for V(R) with
x = av;. Hence, one has G, ~ SO(2). Similar to (12.4.1)) we get

R(z,2) = 2msinh*¢
and with (12.2.10) and (12.22.1)

/ / 6727rvn2R(:t,z)rd7,/rdﬂ(Z>
r,\D+ J1

= (1/2m)vol(T, \ Gy) /0 N /1 T pmm s gy Jrdt
— (1/2m)v0l(T \ G, (v.m)
(14.6.5) — (1/2)vol(T, \ Gu)(1/2) /1 T e (4 1)Y2 = 1)dr /1.
Hence, one has as above in
Io.m) =[Sm0, 2)du(e). X = P\, di(2)
— Y I )

z€L(m),mod T’
= Hy(m,1)J(a),a = 4mmu.

_dxdy
o 2my?
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14.7. Eisenstein series. It is natural, to ask how much of these results for the Green
function integrals lead to the Fourier coefficients of the derivatives of the 3/2-Eisenstein
series (7, s) as for instance Theorem 3.2 in Yang’s report [Ya]. In Theorem 3.4, he affirms:
The Eisenstein series £(7, s) in Theorem 4.2 has the following Fourier expansion

E(r,s) = Z A (v, 8)g™
m=0,—1mod 4
where
(14.7.1) A (v,8) = A(1/2 — 8, Xm) (d7mo) VD2 0 (s, drmu) form > 0,
(s = 1/4)A(1/2 — s, xm) (47| m|v) S YD2W 5 (s, A |mv)
4\/%647”””
L (G(s) + G(—s)), Gls) = (40)V2/2(5 1 1/2)A(1 + 2).

or

Ap(v,s) = form < 0,

Ap(v,s) = —
Here, U, (s,a) is as in (2.3.5)) and
A(s, xm) = [m|*2a= 92D ((s + a) /2) L(s, xom) = A(L = 5, Xm)s @ = (1 + sign(m)),/2
with
1= xa(P) X + xa(p)p" X2 — (pX2)1HE

L(Saxm) - L<S7Xd)pr(n7 8)? bP(”? S) - 1 —pX2

pln

S

where X = p~* and k = ord,n. In Yang’s paper, he writes m = dn? such that —d is the
fundamental discriminant of K,, = Q(y/—m). Part 2 of his Theorem 3.2 states that

1 1 - m 2
(14.7.2) E(1,1/2) = Ezagier(T) = T + W + mleo(m)q + Z 2¢g(n,v)q

n>0

where Hy(m) is the Hurwitz class number of binary quadratic forms of discriminant —m,

and . -
o —4mn2ur 3/2
= d .
g(n’ U) 1677'\/5 /1 € r/r

And Part 3 of Yang’s Theorem 3.2 states

(14.7.3) E(r1/2)=> " < Z(m,v),& > q"

m

The Fourier coefficients of £'(7,1/2) are to be found in Kudla-Yang [KY]. There, in
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Theorem 6.6, one has (with —m = dc?, u = 0,1/2)

(14.7.4)
! 3 2 (1)
EE)(Ta 1/2, @3/2#) = (507“<§ logv — 7.‘_—\/5(5 logv i logSﬂ- + C(_l)

when m > Oandm € —p> +7Z

)

¢(=1) 1
¢(=1) 2

L,(O;X—m) _ p\
" T 2 mm0)

E! (1,1/2,®%%F) = —12H (4m)q™(1 +
1.1
= Zky()logp) + 5 J (5, dmmv))

when m < 0Oandm € —u® + Z, and — mis not a square,

3 H(4m) [
E;n 7_’1 2’(1)3/2,;1 - _ / 647Tmm"dr 7,3/2 qm
/20t = 22 | /
when m =—¢% € > + 7,
E! 2<T> 1/27(1)3/2’“) 1 1 1 C/(—l) b/<_m70> \Ijg/Q
¢ =1 2 —2log2 + ~log2mr — =y + 2 — . :
B o(r1/2, 0520 2 8V B2 F ORI T YT S b,(—m,0) | Uy

pl2c

From (15.2.1)) and Proposition 6.5 in [KY], we may deduce
E(r,s) = C(—1)(E(4r, s, D¥20) 4+ B(4r, s, §¥/21/2),

14.8. Comparison. We relate this to our results for the Green function integrals. From
(14.3.1]) we have for a = 4mmov, m > 0

1+7)"—1

I(m;v) = Ho(m,1)J(s) = Hyo(m,1)J(1/2,a), J(n,a)= /000 e‘"( dr,

r

and, for m < 0, m not a square, from ({14.4.5))

I(v,m) = Ho(m, 1 ‘alrdr/r3/2,

e ¢

Using Kudla’s approach to the Green integral, we got (14.6.4)

/ / efQWUnQR(z,z)rdr/rdlu(Z)

T \D+ J1

(1/2m)vol(T'; \ G,)vol(K) / / g dmvlmlcosh®ir oo tdr/rdt
0o Ji

(1/2m)vol(T'; \ G)vol(K)Ii(v,m)
(1/27T)V01(K)(1/2)10g(t+U\/g)(l/(ll |m]v))/ e"“lrdr/r3/2,

1

122



and with Lemma 12.3 from [KRY] and the footnote to (8.23) from |[KRY] 2Hy(m,1) =
H(4m)

I(m,v) = (1/2m)vol(K)Hy(m, 1)(1/(4+/|m|v)) /100 e~lalrqr /r3/2,

Hence, up to some still mysterious (or erroneous?) factors, the same principal values for
the integrals and the Fourier coefficients.

15 Epilogue

Here, we look back to give an overview over what we have done up to now. In the main
body of the paper, we treated the following situation. We are given an R—vector space V'
of dimension n with a bilinear form (., .) of signature (p,2) and a lattice L. Expressed in a
pedestrian way, Kudla’s conjecture relates the Fourier coefficients of the s—derivative of the
associated Eisenstein series E(7, s) at s = 0 up to a volume factor B to the integral I(m, v)
of an appropriate Green function Z(m, v, z). As mentioned in the Introduction, there are
already a lot ofl papers to make this precise and extend it to more general situations. Here,
we assemble to an overview our explicit calculations above for the cases p = 1, 2, 3 following
an approach proposed by analyzing the formula (3.23) in Kudla’s seminal paper [Kull:

Kudla’s Green function integral formula.

15.1. In the special cases, the following has to be more refined and adapted. Let
(15.1.1) G=SO(V)>I'=8S0(V,Z),D=G/K,X =T\D,
Ly, ={u€Z";q(u) =m},

2R(u, z) = (u,u), — (w.u), (u,u), the majorant of the bilinear form (.,.) inz € D,
B(s) = / e dr/r,
1

E(m,v)(2) = (1/2) Y B@2rmR(x,2)),z € D,v >0,

Im.0) = [ S o)) = (1/2) [ 3 pmmAG)ducz)

And, as I' acts on L, with finitely many orbits, i.e., L,, = > (I'/I';)a, and one has the
invariance R(yw,z) = R(x,7 '2) one gets by the usual unfolding

(15.1.2)  I(m,v) = (1/2) /F\D " BErmR(z, 2))du(2)

wGLm

=(1/2) Z I,(m,v), I.,(m,v):= B2rmR(x, z))du(z).

2€T\ L Fz\D
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Now, one has to determine I,(m,v). One has a ’double set decomposition’
(15.1.3) G=G,A.K.

For x € V with Q(z) =m > 0, and z = g,a, - 29, in our special cases, one has

(15.1.4) R(x, z) = 2msinh®t.

Going back to [F1J] (and [BY]), we interpreted this by the ’Flensted-Jensen formula’
(12.2.10) via

f(2)QP = (p!/(2m)P) -vol(L/M)/ / f(hexp X'k)§(X)dX dhdk,
I\D K JTo\G Jot
(15.1.5) = (p!/(2m)?) - vol (L/M) - vol(I',. \ G,) - vol(K) - I (p, a),

For x with
Q(x) =m <0,

similar we deduce

I(m,v) = / / e—27rvn2R(z,a)rdr/rdlL(Z)
r.\DJ1
= (p!/(2m)?) - vol (L/M) - vol(T'a \ Ga) - vol(K) - I_(p, a),
(15.1.6) I (p,a):= / / e dmelmlcosh®tr gy /e ginhP =1 ¢ cosh ¢t
o J1

In (12.22.1)) we assembled the I-Integrals (with a = 4wmuv):
p=1: IL(lLa)= (1/2)/ e ((w+1)Y? = Ndw/w = (1/2)J+(1/2,a)
0
I_(1,a) = (1/2)e|“/ el 12ar ) (r + 1) =: (1/2)ellJ_(1/2, ]a))
1

— (1/(4/Tm]o)) /1 "l 3/2gy,
p=2: 1:(2,a) =(1/2a)
I_(2,a) = (1/(2lal) (e — |a / e bldr /1)

p=3: I,(3,a)=(1/3) /Ooo e ((w+1)3? = 1)dw/w = (1/3)J(3/2, a)
I_(3,a) = (1/3)el /OO el 324y (r 4+ 1) = (1/3)el?J_(3/2, |al)

= (1/(4|a|3/2>ﬁ/100 e—\a|rdr/rr5/2.
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Below, we will discuss the other factors in Kudla’s formula but at first we assemble the
terms with which we have to compare the Green integrals.

The Eisenstein series.

15.2. For p = 1, in [Ya] Theorem 3.4 the 3/2-series £(7,s) has the following Fourier
expansion

E(rs) = Y Aun(v,s)q"

m=0,—1mod 4

where

(1) An(v,s) = A1/2 = 5, Xm) (4mmo) VD205 0 (s, d7mo), m > 0

(s = 1/4)A(1/2 — s, X)) (47 |m|v) S YD2W 5 5 (s, 47 |m|v)
4\/%6471'77111

(3) Aofw.s) = —o-(G(s) + G(=s)), Gls) = (40)/=2(s +1/2)A(1 +2s).

™

(2) Apn(v,s) = ,m <0

For more details see ((14.7.1). In Yang’s paper, he writes m = dn? such that —d is the
fundamental discriminant of K,,, = Q(v/—m). Part 2 of his Theorem 3.2 states that

1 1 - m 2
(152.1)  E(1.1/2) = Bragu(r) = —55 + g+ ;Ho(mm +) " 2g(n,v)q

n>0

where Hy(m) is the Hurwitz class number of binary quadratic forms of discriminant —m,

and . -
. —4mn2or 3/2
= d )
9(n,v) 16m/v /1 ¢ r/r

And Part 3 of Yang’s Theorem 3.2 states

(15.2.2) E(r1/2)=> < Z(m,v),d>q"

m

The Fourier coefficients of £'(7,1/2) are to be found in Kudla-Yang [KY]. There, in The-
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orem 6.6, one has (with —m = dc?, u = 0,1/2)

(15.2.3)
1 3 1 ¢'(-1)
El(1,1/2,®%%1) = (507“(5 logv — W_\/E(§ logv — v — log8m + = )
when m > Oandm € —p® +7Z
: 3/2 mep . (=1 1
E! (1,1/2,®>/%") = —12H (4m)q™ (1 + 1) ilogﬂ —logd
LI(OJX—m> b;(—m,()) 1 1
- -~ — 2k, (c)] —J(=,4
L0xm) ~ 2 (m,) ~ ZlNoBR) 57 )
ple
when m < 0Oandm € —p® + Z, and — mis not a square,
3 H(4 *
E;n<7—7 1/27 @3/2,#) — ( m) / 6471'm”urdr/r3/2 qm
N
when m =—¢% € —*> + 7,
Bl (7, 1/2,@%20) 1 1 1 (=D b (—=m,0) Wy,
—< = —logv+2—2log2+ = log2m — =y +2 — L + :
E (1, 1/2,®%20) 2 %8 BT OB T T T £ bp(=m,0) " Wy

From (15.2.1)) and Proposition 6.5 in [KY], we may deduce

E(1,5) = ((—1)(E(47, 5, 9*>%) + E(47, s, &*/>1/?),
15.3. For p = 2, in [BeKII] we took over classical material from Zagier’s article [Zal]
p-32f. One has the analytic Eisenstein series, respective their modifications

/ V8

BE(r,s) =1 /2)Zc’dm
E*(1,8) :=m °T'(s)E(T,s)
Es(t,s) := (1/(2m0))0, E* (T, s) = Z a(v,s,m)q™

B R :
Eo(7, s) := —12¢(s) Ea(T, 8), ¥(s) = —1 4+ 4( =) + 5)(3 —1)+O0((s — 1))
= Z A(v, s,m)q"

Denoting by FE(7, s) the derivative of Ey(7,s) with respect to s, and so from [BeKII], we

126



take over

(o(m) =2 gmd form>0
(15.3.1)  a(v,1,m) =4 —1/24+1/(87v) for m =0
L0 for m <0
(o(m)(1/(4mmv) + o' (m)/o(m)) for m > 0
—(1/24)(24¢ (= 1) + v — 1 + log(47v))

—(1/(87v))(—v + log(4mv)) for m =0
Lo (m)(Ei(—4rn|m|v) + 1/(4r|m|v)e*"mv)  for m < 0.
(0(m)(4(¢'(=1)/¢(=1) +1/2) + 1/ (4mmw)

+0* j5(m) /07 ;5(m)))  for m >0

A'(v,1,m) = =124 3¢'(=1) — (1/8) + (7/24) + (1/24) log(4mv)
+(1/87v)(—48¢'(—1) — v+ 2 + log(4mv)). for m =0
Lo (|m])(Ei(—4r[ml|v) + 1/ (47 |mfv)e=4rimiv) for m <0

(15.3.2)  d'(v,1,m) =

The sigmas in these terms are those from the paper by Zagier

oi(n) = n|" > d7* = 0" (n).
d|n,d>0
Hence one has \/ma7 ,(m) = >, d = o(m) and o'(m)/o(m) = "' (m)1/2/07 )p(m) =
(o(m)logm —2%_,  dlogd)/o(m).

15.4. For p = 3, one can find similar formulae for weight 5/2-series determined by the
lattice L and the associated Weil representation in [Kul] and [BK]. As we did from the
beginning, we follow [BK] and from (4.52) have

(15.4.1) Ey(1,0) = Z Z co(y,m,0,v)e(mu)e,

~vyeL'/L meZ—q(y), m>0

— Z Z C10 (’77 m, 0)6"1<m7—)

~YEL'/L meZ—q(y),m>0

= 2eq — % Z Z deg (H(y, —m))e,(mT).

~veL'/L meZ—q(y),m>0
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From (12.9.1)), (2.11.1)) and (2.11.2)), we have

—a/2

co(v,m,0,v) = C(v,m,0)e form > 0,

=0, form <0,

CE)<77 m, 07 U) - &co(ry? m'S‘U)|S=0
—a C'(y,m, 0
= C(v,m,0)e"*(J.(3/2,a) + C’((%—m,())))’ form > 0,
= C(y,m,0)e 142 J_(3/2,a), form < 0,
(15.4.2) C(y,m,0) :=—=2%-3-5. 77 2|m**L(xa,, 2)04m(5/2).

Comparisons.

We relate the results for Fourier coefficients to our results for the Green function integrals.

15.5. For p =1 and a = 4mmv,m > 0, from (14.3.1) by the direct calculation of the
Green integrals in [KRY] we have

147" —1

I(m:v) = Ho(m, 1)J(a) = Ho(m, 1) (1/2,0), J,(n,a) = /OOO eor dr,

r

and, for m < 0, m not a square, from (14.4.5)) as well

(15.5.1) I(v,m) = Hy(m, 1 lalrqy /132 = e~lel J_(1/2, |al).

v ¢

For z with ¢(x) = m < 0, one may also try to use Kudla’s approach to the Green integral.

We got ((14.6.4])

/F.\]D+ /10062”””2R(’”’Z)Tdr/rdu(z)
= (1/2m)vol(T'; \ G.)(1/(4+/|m|v)) /100 e"“'rdr/r?’ﬂ,
= (1/2m)(1/2)log(t + U\/g)(l/(él |m|v)) /00 e_|a|rdr/r3/2.

1
Here, for the fundamental domain volume term, we used a result from Siegel [S6]: For
q(x) = x3 — Sz?,S no square, he comes to the volume of a fundamental domain of the

full group of units as v(S) = \/Tg fou/t =, = Llog (t + uV/S), where ¢, u the solutions from

2 — u2S = 1 with smallest ¢ + u+/S > 1. And with Lemma 12.3 from[KRY] and (8.22)
from [KRY] 2Ho(m, 1) = H(4m)

I(m,v) = (1/2m)Ho(m, 1)(1/(4+/|m|v)) /100 e~lalrqr /r3/2,
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Hence, essentially up to a factor 12 (from somewhere different normalizations?) we get the
same principal values for the integrals and the Fourier coefficients of the Eisenstein series.
Moreover, we see that, as for m = —d? one has a finite unit group, the Green function
integral diverges and has to be modified as proposed in Yang’s paper.

15.6. For p = 2 and m # 0, as in [BeKI] (2.0.2), we have

dydy,dzad
(15.6.1) Io,m) = [ Zmv.2)dn(z), X = (DVEP, duz) = S22

X (yly2)
with I' = SL(2,Z) and Green function

=(m,v,2) = (1/2) Z &(v, z,m),

MeLpm

&(v,z,m) = B2mvR(z,M)), R(z, M) = |

a—bzy — cz1 + dz120]?
29192

Y

(15.6.2) Ly, ={M € Ms(Z);det(M) =m}

In [BeKII| Theorem 4.2, by a direct evaluation of the Green function integral with du(z) =
dvgz, for m > 0 resp.m < 0, we got

I(v,m) = o(m)(27*/(3a)), a = 4rmu,

= o(|m)(@x*/Blal)) (e — |al / " elrdr ),
(15.6.3)

Remark. If we relate this to the Fourier coefficients of the Eisenstein series (15.3.1), we
get

1
(15.6.4) —i ~I(m,v) = A'(m,1,v) + ...
7T

where the factor in [BeKII] is identified via the Chern class

_ 2 d dy, N\ dzs A d
61(5)227— r1 N\ ayy Ta N\ Ay

An? Yiys
i.e., a factor B’ = 36 if the Green function integral is done with the measure

1 del VAN dyl VAN dI‘Q VAN dy2

15.6.5 Q2 =
(156.5) H 8r? yiy3
from [BK] (5.7) (while in [vdG] p.59 wye = ﬁ%’#)
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Now, as an alternative, above we evaluated the Green function integral using Kudla’s for-
mula following the procedure already explained in [12.3]

With du = Q? = (1/47%)dvyz in (13.4.1) and (13.4.2)), we got

I(v,m) =0(m)/(6a),a = 4drvm > 0.
= o(m)/(6]al)) (e + |a|Ei(—|a]), a = 4mvm < 0.
Both formulae are up to a factor 22 (from somewhere different normalizations?) the same

as those from Theorem 4.2 in [BeKII].

15.7. For p = 3 one has a two-component Green function =(vy, m, v) with v = 0 for m € Z
and v =1 for m € Z+ 1/4, and as in (4.6.1)) the Green function integrals

I(0,m,v) : = /XE(O,m,v)(z)duz = Z BRrvR(z, z))dp.,

xGLo,m F\H2

(15.7.1) I(1,m,v) : = /}(E(l,m,v)(z)duz = Z B2rvR(x, z))du..

xeLl,m F\H2

with L., = {u € Z% {§(u) = uj — dusuy — 4ugus = 4m}. As usual, with a = a,,, =
%(1,0,0,0,—m) or =*%(0,1,1,—(4m —1)/4,0) for vy =0 or = 1, we infer

(15.7.2)
I1(0,v,m) = Z I1(0,v,m,n), [(O,U,m,n):/

n2|57m 1—‘a(),'rn/'n,z \H2

/ 6727FUR(na0,77L/7L2’Z)Tdr/rdu(z)7
1

and similarly, for I(1,v,m). Finally, we got in (12.16.1)) that the integrals over Kudla’s
Green function and the Green function from Bruinier-Kiithn [BK] Definition 4.1 and The-
orem 4.10 essentially add up to the coefficient of the derivative of the Eisenstein series.

15.8. Corollary. For m # 0, and B = [, Q* =27°3725"!, we have
(158.1)  ch(y,m,0,0) = e **((4/B) - (I(y,m,v) = I"* (v, =m,v)) + * co(y,m, 0,0)).

This is in line with the result from Ehlen-Sankaran [ES] Theorem 3.6: For each z € D°(V),
in the g—series

(15.8.2) —log vy + Z(Gré((m, v) — Gré(m))q™

is the g—expansion of a modular form in A\ (pY) of weight x = p/2 + 1.
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16 Appendix: Gauge forms, invariant differentials and
measures.

As the evaluation of Kudla’s for this text central integration formula depends on the nor-
malization of measures, we assemble some material related to this topic which, though here
finally superfluous may also be interesting in some other context.

Measures from Bruinier-Yang and Lie Algebras

16.1. In his famous article [Ta], Tamagawa on his way to translate Siegel’s mass for-
mula from [S6] into the adelic language, restates the following Siegel material. Take
S € Sym,,(Z). Let G be the algebraic group of real nxn matrices X = (z;;) with " XSX = 5
and detX = 1. For X € M,(R), let ‘XSX =T = (t;;) and let ¢;;,1 < i < j < m be the
coordinate functions of the n(n + 1)/2—dimensional affine space of all n x n symmetric
matrices. Then the ¢;; are polynomials of z;;, so one has a n(n — 1)/2—form @ such that

(1611) /\ijldl‘ij == /\iéjdtij N W.

One has the injection map ¢ : G — M,,(R), so that (*(w) = w is a n(n — 1)/2—form on G.

16.2. As allready used above in (12.6.2), in [BY], Bruinier and Yang extending part of
Section 5.3 from [KRY]| propose a kind of refinement which comes down to the following.
Let F be a (local) field and V' = F™ with a quadratic form ¢(x) = (1/2)*xzSx of signature
(p,q). Let a be a gauge form for V"1 i.e., a highest order exterior differential form

XXy X

and ( a gauge form for Sym,,_,(F), i.e.,

(16.2.2) B = Mcicjenrdtiy € (N"""D2Sym, _ (R))".

Take

(16.2.3) Q: V"' = Sym, ((F), x> (1/2)((zi,z;))

and let V7! be the subset of z € V! with det Q(x) # 0, and Sym,®, (F') be the subset of

T € Sym,,_;(F) with detT # 0. Then @Q reduces to a regular map from V2! to Sym,, (F').

reg

Fix an x = (x1,...,7,_1) € V-1 with Q(x) = T and identify the tangent space T, (V" 1)

reg reg

with V=1, Then the differential dQ, is given by

4Q.(v) = (1/2)((z,0) + (v,2)) € Sym,,(F), ve VT,
Let
(16.2.4) Je 1 Sym, (F) = V™1 wes j.(u) = (1/2)2Q(z) 'u.
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Then one has d@Q, o j,(u) = v and the decomposition
To(Vieg ') = Im(jz) @ ker(dQy).

Choose u = (U1, ..., Upmn_1)/2) € Sym,, = (F) with 3(u) # 0 and define a n(n — 1)/2—form

n—1

v € (A=D2yn=1)* as follows: for t = (t1,..., tym_1)2) € VD2 put

(16.2.5) v(t) == a(j.(u),t)3(u)"".

One can verify that this v is independent of u and (see [KRY] Lemma 5.3.1) that one has
(16.2.6) a=Q*(f)Av and v=(h,g)v

for h € SO(V) and g € GL,,_1, where SO(V) x GL,,_; acts on V" ! via (h, g)x = hxg™'.
One may identity ker d@, with the tangent space T,(Q'(T)) of Q=(T), and, hence, v
defines a gauge form on Q'(T). Finally, using the isomorphism

(16.2.7) ip : SO(V) = Q T), hwrsi,(h)=nhx

one obtains a gauge form *(v) on SO(V) which is again denoted by v. This form does
not depend on z or 7' and gives a Haar measure dh = d,h on H = SO(V). In [BY]
Section 2.3, this is made more explicit: Let e = (ey,...,e,) be an ordered basis of V' and
J = Q(e) = (1/2)((e;, e;)) € Sym,,(F). Let E;; denote a matrix whose (ij)—entry is one
and all other entries are zero. Then one has V"' = (E;;,1 <i<n;1 <j<n—1). Let
de;; be the dual basis and o = A;;de;; with

Oé((EZj)) = Oé(Ell, E127 e ,En’nfl) =1.

Hence, Yi; = Ei; + Eji;1 < i < j < n—1is a basis of Sym,_,(F). Let dy;; be the dual
and 5 = /\Udy’U with
ﬁ(}/lla }/127 ce 7Yn—1,n—1) =1

Now, assume J = diag(ay,...,a,) and let be X;; := a;E;; — a;E;;. Hence, one has h =
so(V) = (X;;1 <i<j<n)and ([BY] Prop. 2.5)

(1628) V(Xlg, X13, e 7Xn71,n) = 41.

In section 3, Bruinier and Yang proceed as follows. Let V' have signature (m, 2) with Witt
decomposition V = Vy+eR+ fRR, e, f isotropic with (e, f) = 1. Let D be the Grassmannian
of oriented negative 2-planes in V' and

H={z=a+iy € Voc; (y.y) <0}
the associated tube domain where G = SO(V') acts as

(16.2.9) guw(z) = j(w,2) - w(gz),9 € G,w(z) =z+e—q(2)f € V.

132



Hence, the first Chern form of the dual of the tautological bundle over D is the (1,1)-form
onD~H

(16.2.10) Q = ddlog(—(y,v))

as in [Kul] Prop.4.11, given by

1 (y,dz) A\ (y,dz)  (dz,dZ)
S (7Y ERA T

As in [Kul] (5.8) or [BK] (4.50), the measure du(z) on D ~ H is given by Q3 with

(16.2.11) 0=— ).

i

3
1673

(16.2.12) 0F = det(y)_?’(%)?’dzl Adz A dzg A dZs A dzs A dZs.

In the paper [BY] by Bruinier and Yang, there is another formula relating differential forms
and measures. From Proposition 3.4 in [BY], we have

m!
(16.2.13) (de)* (=)™ = ﬂ:Wl/p

Here, fixing a base point z € H, in [BY] (3.10) and (3.11) one has explicit isomorphisms
l,: G(R)/Kyw ~H and dl, : p ~ Vj ¢ inducing

(16.2.14) (dly)"(dxg Ndya A -+ Ndxp_q1 N dyn—1) = £14.
vy is part of the decomposition v = v A v_ A1, corresponding to the decomposition
(16.2.15) g==t, ot _Dp.

To get back to our case, we look at:

16.3. The Lie algebra g = s0(3,2). We have

g=t+p
={(*5), A€ Ms(R)skew, B € My(R)skew} + {(: ©),C € Ms5(R)}
= (X192, X13, Xo3, Xus) + (X1, X1 5, Xoa, Xo5, X34, X35)
(16.3.1)

Here we put X9 = Fi9 — Ey; etc. and Xi4 = Fiy + Ey etc,, i.e., the negative of the Xj;
from [BY] above.
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There are the Lie relations

(16.3.2) (X129, X13] = —Xa3, [Xi2, Xos] = X133,
(X192, X14] = —Xo4, [Xip, Xou] = X14,
[(X12, X15] = —Xo5,  [Xi2, Xos) = X155,
(X192, X34] =0, [X12,X35] =0, [Xi12, Xy5]=0,
(X135, X14) = — X34, [X13,X24] =0,
(X135, X15] = —X35, [X13,Xo5] =0,
[(X13, X34] = X14, [X13,X35] = X15, [X13, Xus] =0,
(X114, X15) = Xus,  [X14,Xo3] =0,
(X1, Xoa) = X1p, [X14,Xo5] =0,
(X1, X34] = X133, [X14,X35] =0, [Xi4, Xys] = X155,
[(X15,X03] =0, [X15 X34] =0,
[(X15, X04] =0, [X15 X35 = X3,
[(Xi5, Xos] = X12, [X15, Xus] = —X14,
[(Xo3, Xou] = —X34, [Xogz, Xos] = — X5,
[(Xo3, X34 = Xou, [Xos, X3s] = Xos,  [Xosz, Xus] =0,
[(Xo4, X34] = Xo3, [Xoa, X35] =0,
[(Xo4, Xos] = Xus,  [Xoa, Xus) = Xos,
[(Xos, X34] =0, [Xos, Xzs] = Xogz, [Xos, Xas] = —Xoy
(X34, X35 = Xus, [Xza, Xus] = X35, [Xzs5, Xys] = =X
Here £, p are the &1 eigenspaces of the Cartan involution 7 with 7X = —*X, Moreover, we

look at three involutions ¢ commuting with 7,

1 0 1 0
—1 -1
X = -1 )X ( -1 ) , (case I)
0 -1 0 -1
L 0 1 0
03X = -1 ) X ( -1 ) , (case I’)
0 1 0 1

o0 1,0
(16.3.3) o5 X = L > X ( L ) , (case II)
1

0 -1

h,q denote (respectively) the +1 eigenspaces of the involution o, b a maximal abelian
subalgebra of pNq, and m the centralizer of b in [ = ¢Nh and I the orthogonal complement
of min [.
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Hence, we have g = ¢+ p

= (X192, X135, Xo3, Xus)p = (X4, X135, Xoa, Xos, X34, Xs5)
(16.3.4)

and g = b + q for the respective cases [,I” and II

h = (Xo3,Xus, Xoa,Xo5, X34, X35 q = (Xi2,X13, X14,X15),

(1635) = <X172,X4,5,X174,X1,5,X274,X2,5> - <X1,37X2,37X3,47X3,5>7
= <X1,27X1,37X2,37X1,47X2,47X3,4> = <X1,57X2,57X3,57X4,5>7
with
[=¢Nbh = (Xo3,Xus) pNg = (X14,X15), b = (Xis5),m = (Xog),
= (X2, Xu5), = (X34,X35), = (Xs5) = (X12),
= (X2, X133, X23), = (X15, X2, X35), = (Xis), = (X23)
and

hNp = (Xou, Xos, X34, X35), ! = (Xus),
<X1747X1,5aX2747X2,5>7 - <X4,5>a
= (X14,X24,X34), = (X2, X13)

Corresponding groups are G = SO(3,2), K = SO(3) x SO(2) and

H = 80(2,2), L = SO(2)xS0(2), L/M =~ SO(2)
= SO0(2,2), = SO(2) x SO(2). ~ SO(2)
= S0(3,1), = SO(3), ~ S0(3)/S0(2).

16.4. Guided by Heckman-Schlichtkrull [HS] p.109f, we also look at the following (here
we restrict to the cases I and II). Take

gr = tNbh+png = (Xaogz, Xus) + (X14,X15),
(X192, X13, Xo3) + (X15, Xo5, X35),
g- = tNng+pnh = (X2, Xi3) + (X4, Xos5, X34, X35),
(Xas) + (X1, Xou, X34),

and, for a € b*, with g, = {Y € g;[B,Y]| = a(B)Y for all B € b} one has in case |

do = <X2,37X1,5,X2,4,X3,4>
g1 = (Xio+ Xog, X133+ X35, Xas — X14)
(16.4.1) g1 = (Xi2— Xo5, Xi3— X35, Xus + X14).

We decompose g, = g} @ g, where gi: = go M g+, put mf; = dim 935 and

(16.4.2) JY) = H sinhmza(Y)coshmga(Y)

aeXt(b,g)
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Hence, in our situation we get

J(B) = sinhtcosh®t in Case I,
(16.4.3) — sinh®tcosht in Case II.

16.5. For a := (X5, X54) and ¥ := A(a, g) one has the root spaces g,, = G;R

Gis= X3t X35, Gsr=Xo3+ X34,
Goy =Xt X5+ Xy5 — Xig,
(16.5.1) Gsg = X190+ Xos F Xy5 + X4,

i.e., one has the roots ¥ = {(0, £1), (£1,0), (1, £1), (=1, £1)}.

16.6. For a moment, we stay with [HS]. As a refinement of the Cartan decomposition
G = K expp from Heckman-Schlichtkrull [HS] Theorem 2.4, we have the decomposition

(16.6.1) G=KA"™H, A=expb"

which also appears in Kudla [Kul] p.318. As already remarked above, this formula looks
as if the right hand side doesn’t cover the elements of the left hand side, i.e., in our Case

I, {exptX;4; t € R} does not appear in one of the three factors on the right hand side but

1
one easily verifies Ad(¢)exp X5 = expX 4, for £ = { Y 01
10
IT, on the Lie algebra level, one has on the right hand side

) € K. Similarly in Case

<X127 X137 X237 X45>7 <X15>7 <X127 X13) X237 X147 X247 X34>
but one has [XLQ,XLS] = —X2’5 and [X173,X1’5] = —X375.
Oda-Tsuzuki’s integral formula
16.7. In [OT] p.49, we find the relation

(1671) g= (Ad Cl,t)b + RX15 + E, ay = exp tXlg,.

There is still more background. Oda and Tsuzuki [OT] have the fundamental integration
formula (1.3.2)

[ etars = [ dunth) [ ai [~ ethespripmnai
(16.7.2) Ya\G(t) = (sinh(t))m;r(Cosh(t))m;(2_lsilr1h(2t))m5(cosh(2t))m2—A
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for which they refer to Heckmann-Schlichtkrull [HS] p.110,Th.2.5. This theorem says that
an invariant measure dr on X = G/H is given by

(16.7.3) /X f(z)dr = /K N f(kexp(Y)-0)J(Y)dYdk

where J(Y') is given by ((16.4.2)) is the « in the formula above. There is no proof of the
general result in [HS] but the discussion of the example G = SO.(p, q), H = SO¢(p,q — 1),
ie.,

X=G/H={zeR": ai+ - Fa—al  — - —a, =1}

The Lebesgue measure dr = dzy ...dx,., on RPT? is G—invariant. One takes polar co-
ordinates (v,7) € SP7! x RT and (w,s) € S7! x RT on the first p and last ¢ entries,
respectively, to get

dr = dvdwrPtdrs?ds,

where dv and dw are rotation invariant measures on the two spheres. Restricting to
the open set where r > s one can write the pair (r,s) as (£cosht,Esinht), and one has

drds = £d&dt. Hence,
dr = dvdwéPT171d¢ cosh? 't sinh? 'tdt,
and as X is given by £ = 1, we get that the measure
dvdw cosh?™ 't sinh? 'tdt

is invariant on X and this is said to be in accordance with the theorem above.

16.8. Another way to the proof of Theorem 2.5 in [HS is indicated by their Example 2.2.
For

(16.8.1) X =80.(p,q)/SO(p —1,q)
= {xGR”+q;x%+---+x§—m§+l—---—:1712)+q: 1}, 2y > 1lifp=1,

b = RX, ., is maximal abelian in p N q and the centralizer Cxnp(b) of X 4, in KN H
consists of elements of the form

1
( VW1>,VGSO(p—l),WESO(q—l).

Hence K/Cxgnp(b) can be identified with SP~' x S~! and one has a polar coordinate map
® given by
(16.8.2) SP ' xS xR =K/Cxnu(b) x R = X

v,w,t) — (vicht, ... v,cht, wicht,... w,cht
P q
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This leads to a transformation formula
(16.8.3) / f(z)dx = / /f(/%expB - 0)J (v, w, t)dtdk,
X K/Ckgnu(b) Jb

where J(v,w,t) is the functional determinant.

16.9. Remark. This is still not the formula appearing in [HS|] Theorem 2.5 where the
integral on the right is done over K. (I would like to know how this is done.)

Tsuzuki’s Formula.

16.10. Finally, in a paper by Tsuzuki [Ts|, we found a refinement of the fundamental
integration formula from [OT] (1.3.2) (here cited by (16.7.2))) resp. Kudla’s Green-integral
formula (12.1.6). We take over from [Ts] Section 4. Let I' be a discrete subgroup of
G =1U(n,1)and H C G, Ky = HN K, such that H/Kp is of codimension r in G/K, and
'y = T'N H. Moreover, let dk and dky be the Haar measures of the compact groups K and
Ky with total volume 1. There is a unique Haar measure dg on G such that the quotient
measure dg/dk corresponds to the measure on the symmetric space G/K determined by
the invariant volume form vol. Define dh on H analogously: dh/dkg corresponds to the
measure on H/Kjy determined by voly. Then Tsuzuki has his

Lemma 4.1. For any measurable function f on G we have

(16.10.1) /Gf(g)dg:/Hdh/de/Ooof(hatk:)p(t)dt

with dt the usual Lebesgue measure on R and
p(t) = 2¢,(sinht)* ! (cosht)* 2" ¢, = 7" /(r — 1)L.

Proof: For closed subgroups Q1 C Q2 of G with Lie algebras ¢;,7 = 1,2 regard (q2/q1)* C
qt by the dual map of the orthogonal projection q¢ — o and the canonical surjection
q2 — q2/q1. Let volg, /q, be the element {5 A--- A& € A(q2/q1)" with (&) any orthogonal ba-
sis of (q2/q1)*. Assume @Q); is compact, then there exists a unique left (Q;—invariant s—form
Z0,/0, on Q2/Q1 whose value at 0 = eQ)s is volg,/q,. Let dZg, o, be the Qy—invariant
measure on Q/Q; corresponding to Zg,/q,. For example volye = vol and voly/m =
volg A volyae/m-

From [HS|] Theorem 2.4 p.108 resp. [FLJ] p.262, one takes that the decomposition G =
HAK jields a diffeomorphism

(16.10.2) j:H/M x (0,00) = (G — HK)/K, (h,t) = ha,K
Here, for G = U(n, 1), from [Ts] p. 314, one has
(16.10.3) A = {a; = exp(tYy) = diag(Ln—1, (] Shi)) t € R}

M = {diag(u1, uz, ug, uo); ur € U(n — 1), uz € U(r —1),up € U(1)}
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Analyzing the differential forms resp. the Lie algebra relations, one can prove
(16.10.4) 3" Za k= 2(sinh t)* (cosh )" > Zy ap A dt.

Using j as an identification, we then have for the corresponding measures
(16.10.5) dg/dk = dZq/k(§) = 2(sinh t)* " (cosh t)** =2 dZ pr(h)dL.

Let dm be the Haar measure of M with total volume one. The resulting quotient measure

dh/dm is proportional to dZy/n(h), i.e.,

(16.10.6) dh/dm = CodZ s (h)
Since dZp/mnw(h) = dh/dko, one has

dZg () = dh/dko - dZ s ar (ko)
and, using dh/dm = (dh/dky)(dko/dm), one comes to
(16.10.7) dko/dm = CodZ e (ko)

From 1 = dky = meH/M dko/dm [,, dm, one has meH/M dko/dm = 1 and obtains

fKﬁH
(16.10.8) Cit = / dZ g /ar (ko).
KnNH/M

To compute this integral, use the diffeomorphism KN H/M + S*~! to get C;t = 7" /T().
Putting all this skillfully together should lead to the above proposed formula:

(16.10.9)
/G f(g)dg = /G Rz /K akf (k)

-/ Aol | msn)

:/ dZH/M(h)/ dkf(hatk)/ 2(sinh t)* ~!(cosh )"~ **1dt
H/M K 0

= dh/dm(h)(1/Cy) [ dk h hagk)2(sinh )2~ (cosh ¢)2" =214t
/H/M / <></>/K /0f< )2(sinh £) " (cosh 1) ’

16.11. Remark. For G = SO(3,2) and H = SO(2,2) (Case I) resp. = SO(3,1) (Case II)
the same procedure leads to

(16.11.1) /Gf(g)dg:/Hdh/de/ooof(hatk)p(t)dt
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with

(16.11.2) p(t) = 2(sinht)(cosht)*2x, Case I,

=2
— 2(sinht)?(cosht)4, Case I1.

Namely, here one has KNH/M = (SO(2)xSO(2))/SO(2) resp. = SO(3)/SO(2),i.e.,c = 2,
resp. = 4.
From p.313 in [T, in our case we have dg/dk = vol = (1/3!)w?® (and dh/dko = voly =

(1/2D)wy. for Case II). If we apply the fomula ((16.11.2)) with these normalizations to Kudla’s
formula for the Green integral, we get the formulae used above in the main text.

Flensted-Jensen’s integration formula

16.12. The decomposition formula is also the background for Flensted-Jensen’s
important integration formula. To be careful, we reproduce still more from Section 2 of
[FL]]. There the Killing form defines Riemannian (i.e., Euclidean) structures on p N h, b,
and L/M, and one lets the measure on L/M be vol(L/M)~! times the volume element.
Via Killing form, one has Riemannian structures on GG/K and H/L, and by their volume
elements also measures.

Remark. g = so(p, ¢) has the Killing form

(16.12.1) B(X;Y)=(p+q—2)tr (XY).

Hence, for (p,q) = (3,2)), and the X;; from above, we have B(X;;, X;;) = 6.
Moreover, take measures on G and H such that

/Gf(a:)da: = /G/K/Kf(a:k)dkde, /de =1, forf e C.(G)
(16.12.2) /Hf(x)dx = /H/L/Lf(xk)dkda:L, /Ldk: =1, forfeC.(H).

One has the standard diffeomorphism ( [FL]] (2.1))

(16.12.3) Oo:pNhxpNgx K -G, (X, Yk)—expX - -expY k.
In [F1J] p.261, from Helgason (|[He] X Lemma 1.16) one has that the map
(16.12.4) V:L/Mxb—pngq, (IM,B)— Ad()B

is a diffeomorphism onto an open dense set. Therefore, the maps

(16.12.5) O :pnhx L/Mxbx K — G, (X,IM,B) — (expX lexpB),
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and
(16.12.6) P:pNhx L/Mxb—G/K

given by
O(X,IM,B) = n(expX lexpB),

where 7 : G — G/K is the canonical map, are diffeomorphisms unto open dense sets.

Taking the Jacobians J(X,IM, B) = |det d®x a,p)| and J;(X) = |det d<I>1X | with refer-
ence to the respective Riemannian structures, one has for f € C.(G) and f1 e C.(H)

fi(x)dx = / f1(expz IM)Jy(X)dIMdX
H/M pnh JL/M

f(z)dz = vol (L/M) / f(®(X,IM,B))J(X,IM, B)dBdIMdX
G/K pnh JL/M Jot

(16.12.7) = vol (L/M) | (exp B3y (B)dBdl:

H/M

where 01(B) = |det d®cr,p)|, B € b". From here (his formula (2.9)), Flensted-Jensen
comes to the formula (2.14) in his Theorem 2.6

/f(a:)da::vol (L/M)// f(kexp Bh)o(B)dBdhdk for f € C.(G)
G K JH Jot

where § given by Flensted-Jensen’s formula (2.12) comes from the ;.

We observe that in this formula the number of variables to be integrated may be dif-
ferent on both sides. For our case A of SO(3,2) we have 10 on the left and 11 on the
right. By private mail of Flensted-Jensen this is explained as follows. As M is compact, in
one can write H instead of H/M in his formula (2.9) and use the rest of his proof.

16.13. The following here helpful observation to reduce the number of integrations is owed
to Jens Funke: If M is compact, there is an invariant measure dx and one has

/M/Mf(fﬂl~:t72)al951d952:/M(/Mf(gc)d%)d%2

(16.13.1) — vol(M) /M f(@)dz

In formula (16.15.12)) M is the centralizator of A in H N K and one has members of M
in H and K which can be brought together by commuting with exp B € A. Apparently,
Flensted-Jensen had this in mind.
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16.14. In addition, we reproduce two integration formulas from Knapp’s book [Kn]:
Theorem 8.32. Let G be a Lie group, let .S and T be closed subgroups such that SNT is
compact, multiplication S x T — G is an open map, and the set of products ST exhausts G
except possibly for a set of Haar measure 0. Let Ar and Ag denote the modular functions
of T and G. Then the left Haar measures on GG, S, and T' can be normalized so that

(16.14.1) /G f@yda= [ f(st)izgdlsdlt

for all Borel functions f > 0 on G.

Theorem 8.36. Let GG be a Lie group, let H be a closed subgroup, and let Ag and Ay
be the respective modular functions. Then the necessary and sufficient condition for G/H
to have a nonzero G invariant Borel measure is that the restriction to H of Ag is equal to
Ap. In this case such a measure du(gH ) is unique up to a scalar, and it can be normalized
so that

(16.14.2) /G £(g)dig = /G o /H F(gh)dih]du(gH) for all f € C.(G).

16.15. Now, we follow Flensted-Jensen for G = SO(p, ¢) : There, the Killing form defines
Riemannian (i.e., Euclidean) structures on p Nh, b, and L/M, and Flensted-Jensen lets
the measure on L/M be vol(L/M )" times the volume element. Via Killing form, one has
Riemannian structures on G/K and H/L, and by their volume elements also measures.
Remark. g = so(p, ¢) has the Killing form

(16.15.1) B(X;Y)=((p+q—2)tr (XY).

Hence, for (p,q) = (3,2)), and the X;; from above, we have B(X;;, X;;) = 6.
Moreover, take measures on G and H such that

/Gf(a:)da: = /G/K/Kf(.rk)dk:dx[(, /de =1, forfeC.(G)
(16.15.2) /Hf(x)dx = /H/L/Lf(xk‘)dk;de, /Ldk =1, forfeC.(H).

One has the standard diffeomorphism ([FL]] (2.1))

(16.15.3) Oo:pNhxpnNgx K =G, (X, Yk)—expX - -expY -k.
In [F1J] p.261, from Helgason ([He] X Lemma 1.16) one has that the map
(16.15.4) V:L/Mxb—png, (IM,B)— Ad(l)B

is a diffeomorphism onto an open dense set. Therefore, the maps

(16.15.5) O :pNhx L/Mxbx K — G, (X,IM,B) — (expX lexpB),
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and
(16.15.6) P:pNhx L/Mxb—G/K

given by
O(X,IM,B) = n(expX lexpB),

where 7 : G — G/K is the canonical map, are diffeomorphisms unto open dense sets.

Taking the usual transformation formula, Flensted-Jensen gets

f(x)dz = vol (L/M) / F(®(X,IM, B))J(X,IM, B)dBdIMdX
G/K pr J L/ ot
(16.15.7)
with the Jacobian J(X,IM, B) = |det d®(x 5| As above, one has the diffeomorphism
(16.15.8) O pnh— H/L, X expXL
and the appropriate transformation formula
(16.15.9) f(x)dx = / f(@'(X))J1(X)dX Ji(X) = |det d®x,].
H/L pNh
Via [, = Iy /L I; s this extends to Flensted-Jensens formula

(16.15.10) fi(x)dzr = / Si(expXIM)J\(X)dIMdX, Ji(X) = |det d®y,|.
H/M py J L/

Since the measure on G/K is H—invariant, he has J(X, (M, B) = J;(X)d;(B) and joins
(16.15.7)) and (16.15.10)) to his equation (2.9)

(16.15.11) f(z)dz = vol (L/M) f(hexp B)d1(B)dBdh.
G/K L/M Jot

From here (his formula (2.9)), Flensted-Jensen comes to the formula (2.14) in his Theorem
2.6

(16.15.12) / F(@)dz = vol (L/M) / / F(k - exp BR)S(B)dBdhdk for f € C.(G)

where § given by Flensted-Jensen’s formula (2.12) comes from the 0;.
In his text he provides the calculation of d® s,y We will reproduce part of this below.
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Our application revisited

16.16. We can use this for our interpretation of Kudla’s formula for our Green integral.
Here, our integrand is a function which from the left is H—invariant and from the right
K —invariant, hence essentially depends on the group A. Hence, we can apply (16.12.7)) to
write

(16.16.1) f(x)dx = vol (L/M) / f(hexp B)d1(B)dBdh
G/K H Jot

with

dr = dl’14d.7315d$24dl’25d$34d$35
dBdh = dx15d:1:23dx45dx24dx25dx34dx35
(16162) = de’15d$12dl'13d$23d$14d1'24d1‘34

in case I resp II. And one has to determine 6;(B), i.e., the derivative of ®(gcns p)-

In [FLJ] this is done as follows. We have by [FL]] (2.8)
p:pNhx L/Mxb—G/K, ¢(X,IM,B) =n(expX lexpB).

Fixan B € b™, put a = expB, s = (0,eM, B) and, for the canonical map 7 : G — G/ K, one
has the differential at e dm : g — g/€ ~ p, i.e., for X € g we have dr(X) = (1/2)(X—7X) =
(1/2)(X 4+ tX). Then ®(s) = m(a) and the tangent spaces are given by

Ty=pnhxUxb", Tru~p.

Flensted-Jensen now chooses orthonormal bases in Ty and T (,). In our cases, for T, this
comes to the following.
- For

pNh=Bges+uioy Vs
Vs ={X € pnb;(adB)’X = (8, X)*X for all B € b}

using from above , we have in Case I p Nh = (Xog, Xo5X34, X35)
(16.16.3) Vi = Vi = (Xos, X35), Vo = (Xoa, Xa4)
and in Case IT pNbh = (X4, X204 X34)
(16.16.4) Vi = Vi = (X14), Vo = (Xog, Xza)
- Similarly, for

= @QGA+U{O}[/OL

[, ={T €l;(adB)*T = (o, T)*>X for all B € b},
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in Case A we have [[, =} = (T := Xy5), and [[, = [} = (T} := Xj2,T5 := Xj3) in Case B.
- For b, in both cases, we have B = X;5 Hence, taking together the three types of elements
Xi;, we have an orthogonal base for Ty where the Killing form says, we should
apply a factor 1/6 to get normalization.

Concerning T, ~ pNb+pNg, one has the following general remark. Since B is in b and
b is maximal abelian in p N q, it follows that adB(I') + b = p N q and that

Yi= —(a,BY B, T, a € A

and i = 1,...,m, is a basis for ad B(l'). In particular, in Case A, we only have Y =
—({a, BY™'X14, and in Case B we come to Y; = —(a, B) ' Xy; and Y_ — («, B) "' X35. We
get a basis of T, if we take B = X5, these Y and the X from ((16.16.3) resp. (|16.16.4)).

Again, in the general case, Flensted-Jensen has his result for the factor ¢ in the integral,
if he verifies

dps(B)=B for B€ b
dos(T!) = sinh(a, B)Y! fora € Af,i=1,...,m,
(16.16.5) dpo(X}) = cosh(B, B)X] forBe Al i=1... gz
If (X,T,B") € T, then dos(X,T,B’) is the tangent vector v (0) to the curve through
m(a),a = exp B,
v(t) = w(exptX exptT exp (B +tB'))
(16.16.6) = an(exptAd(a ') X exptAd(a )T exp (tB'))
Then, he gets
1) If X =T =0 then v(0) = B,
2) f X =B'=0and T =T_ then
7 (0) = dr(Ad(a™)T,) = (1/2)(e™PT, — 7(e1PTy))
sinh(a, B)

(16.16.7) = (1/2)(e BT — BT = @.B)

[B,T!] = sinh{a, B)Y,,

3) If T =B =0and X = X}, then
7(0) = dn(Ad(a™)X3) = (1/2) (P X] — (e P X))
(16.16.8) = (1/2)(e P X} + e PXY) = cosh(B, B) X7,
Here, apparently, one uses Ad(exp X) = ¥ and the fact that the ad B X in the formulae

above are skew while the ad BT are symmetric.
In our situation this restricts to the following. In Case A we have

(16.16.9) ds(B) = B,
do(T) = sinh(1)Y,
d¢S(X25> = COSh(t)X25 and d¢S(X35> = COSh(t)ng,,
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i.e., for the missing factor in we have

(16.16.10) 61(B) = |sinh(t)|cosh?(¢)
and analogously in Case B

(16.16.11) 61(B) = sinh®(t)cosh(t).

As they should, these formulae are consistent with Kudla’s formulae (3.23) in [Kul]. Hence,
in our situation, we have from ({16.16.1f), for a discrete I', C H

(16.16.12) /F\G/Kf( 2)dz = vol (/M) /\H F(hexp B)S,(B)dBdh

61(B) = |sinh(t)|cosh?(t) in Case A
= sinh®*(t)cosh(¢) in Case B

16.17. Here, to show some more background, we reproduce some standard material from
Helgason’s book on differential geometry [He|. Given a manifold M with affine connection,
on p.32/3 he denotes by Exp = Exp,, the exponential mapping from an open neighborhood
of 0 ot the tangent space T,M to an open neighborhood of p in M given by X — vx(1)
as described in Theorem 6.1. Theorem 6.5 (with a long proof) gives a formula for the
differential of the map Exp. In Chapter II Theorem 1.7, this is used for the derivative of
the map
exp:g=LeG -G, Xw—expX

with Lg = hg to get
1— e—adX
ad X

On p.179 in Chapter IV, this is applied to take g = € + p with sX = —X and for X € p,
let

(16.17.1) dexpy = d(Lexpy )e ©

TX = (ad X)2’p,

and 7 : G — G/K the natural mapping, o0 = me and 7(g) the mapping K — gzK of
G/K onto itself. dr identifies p with the tangent space T,(G/K). Hence, Theorem 4.1 says
that the Exponential mapping of p to G/K is independent of the choice of the Riemannian
structure and its differential is given by

— (Tx)"

n=0

X ep.
Injections and measures

16.18. In the application of Kudla’s central formula, we have the problem of the relation
between the measures for the different volume integrals, namely for the signature (3,2) and
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the signature (2,2) and (3,1). We have already discussed Siegel’s approach to parametrize
his representation spaces. It is tempting to use this here:
We have

(16.18.1)
Go =S0(2,1) = G_ =S0(3,1) = G = S0(3,2) + G4 =S0(2,2) + Go =S0(2,1)

and use the embeddings ¢ given by

A b A b0,
Goagoz(t d — [ fc dO0 | eGy A€ My,bce My,de M,
c t
0, 01
A b 1t05 0
Goag(): (tc d) —> OQA bl eG_ AEMQQ,b,CEMQl,dGMH
Otc d
A b A b0s
Gag:(t d)H te d0 | € G A& Mss,b,c€ Msy,dec My
¢ 0, 1

A B 1'05 "0,
(16182) G+ 20+ = (C D) — | 0obA B ed A,B,C,D € Mos.

0.C D

As one has the maps to the homogeneous spaces, Siegel’s representation spaces D

Gag:(é g>HBD‘1:Ze]D),

we get injections
(16.18.3) D1 — D31 — D3p < Do <Dy

and one could hope that this helps in the understanding how to normalize in the factor
vol(I';\G.), G, = G_or = G4 in Kudla’s formula.

We already discussed the (3,1)-case and for the parametrizing by the space H*t got in
(11.4.18))

n o m-—-n

dvgie = (det(E — X'X)™2 T [ don =

k=1 =1

dz N\ dy A dr

= aAvg+
73

and in the (2,2)-case for H? we got in (11.3.8)
dvsie = (1/(4y2y2)) dxy A dyy A dag A dys = (1/4)dvgs.

Unfortunately, the (3,2)-case is a bit more tiresome to compute.
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Z21 22

For the parametrization W of the representation space D3 by the elements z = (z .
2 23

of Siegel’s half space Hs,, and the map A : Sp(2,R) — G = SO(Q), we have from (

n nrsfys 2(T3ys — T2y3) /s (T3ys — 22eyeys + x1y2)/(nys) —C/n

. n/ys 2y2/ys vs/(nys) —z1/1
Alg.) = 1 Y2/n —22/
93/77 —333/77
1/n
a; az a3 a4 as
bg b3 b4 b5
(16184) = 1 Cq4 Cpy
dy ds
€5
One has
G =950(3,2) = C~'GC
with
1 1 1 -1
1 1 1 -1
C = (1/V2) 1 . T =(1/V2) 2 :
—1 1 1 1
—1 1 1 1

Hence, with

772 = Y1Y3 — 3/3, CQ = T3 — 95%7 I = x3y1 — 2x9ys + 21y3, [1 = 772 - CZ,
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1 —1 a; ag as a4 as 1 1
1 -1 by bs by by 1 1
(16.18.5) = (1/2) 2 1 ¢y cs 1
1 1 dy ds ~1 1
1 1 es —1 1
ap Qs as ay a5 — e 1 1
by b by—dy bs—ds 1 1
= (1/2) 2 264 205 1
by by by+dy bs+ds —1 1
a; Qag as ay as + es —1 1
a; — as + es ay — Q4 as Qo + ay a1 +as —e;
—bs+ds by—by+dy by by+by—dy bs — ds
= (1/2) 2 24 25
—bs —ds by—by—dy by by+by+dy bs + d5
a; — ag — €5 QAo — Ay as Ao + Qg a1 + as + es
I I71-1
B=1/n)[yi—ys x3—m
2y2 —2ZL'2
_ Y1 +Y3s —T1— T3
D_(l/")( I II+1)
Z =BD™!
= (1/D) | (yr —ys)(IL + 1) + (z1 — x3)] 2(y173 — 21Y3) ,
2y2(]I + 1) + 2[L’2] 2y2(l‘1 + 173) — 2$Q(y1 + y3)
R <11 212
= (1/D) 221 222 |
231 %32

D =n’det D = (y1 +ys)(L+1° = (%) + (w301 — 2x2y2 + 21ys) (21 + 33).
211 = 2(w3y1 — 22212 + 11Y3)

212 =y (lzs]? = 1423 — 3) +ys(|za ] — L+ 23 — 43) — 2xap0(21 + 3)
21 = —yi(|zs)? = T+ a5 —v3) +ys(|2a]* = 1+ 23 — y3) — 2waya(3 — 21)
292 = 2(y1T3 — T1Y3)

231 = 2(1Y2y3 — Y5 — T1T3Y2 + Yo + T1T3YL + T1T3Y3 — T3Yo)

232 = 2(x1y2 — oY1 — XT2Ys3 + $3y2>‘

Though perhaps this won’t help here much, but for the sake of some completeness, we add
the corresponding results for the other cases.
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i) For A : SLy(R) — SO(1,2) and ¥ : HH — D;5 we have from (11.6.7)

?+yt+1 =2+ -1 2y -
A(g:) = (1/2y) - |2 +y° =1 =2’ +y°+1 2y | = (t )
c D
—2x +2x 2y
and from ((11.6.9))
U(z)=2Z,=bD""
2y 2xy
(1/(l2* + 1))(|2* = 1, —22)

and ¥*dvg;e = dug.

)(1/5), (=2 +y°+1

Similarly, one has for A : SLy(R) — SO(2,1) and ¥ : H — Dy

2y —2xy —2xy A b
Alg.) = (1/2y) - | 22 =2 +y*+1 —22+9y*—1] = (tc d>

2 ?+yP-1 22+yP+1

and this time
_ _p. -1 2 2 —2xy [T

(16.18.6) V(z)=Z,=b-d" =1/(z"+y“+ 1)) (_xQ b —1) T )
Here, with £ = 2% + 3? + 1, we get
(16.18.7) dry A dzy = —8(y? /) dx Ndy, and det(Ey — Z.'7Z.) = 4y* /€2,

hence, for dvsi, = det(Ey — Z.'Z.)~3/?dzy A dxo (strangely enough?)

dz Ad
(16.18.8) Tdvge = Y — g dug
y

ii) For A : SLy(C) — SO(1, 3) and the map ¥ : H" — D3, we have from (11.4.12)

(P +1+r2)/(2r) = y (=[P =1)/(2r)
x/r 1 —x/r
y/r 1 —y/r
(|2P=147%)/(2r) = y (P —[2>+1)/(2r)

Ap

If here we take (as in (1. 4 16]))

1 —z/r
b= (z,y, (" = [2]* = 1)/(2r)), D = 1 —y/r
vy (P =z +1)/(2r)
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and put Z := det(D) = (1 +r* + 22 + y?)/(2r) we get

E—2¥/r —zy/r x/r
Xp="b-D7' = (2,7 =Z)- | —ay/r E-y*/r y/r]|(1/5)
- -y 1

= (1/(r2)(z,y,r= = 1)
One has 1 — Xp!Xp = =272 and with 7= = (1/2)(2* + y* + 1?)
d(z/(rZ)) Ad(y/(rE)) Ad(1 —1/(rZ)) = (rZ) *rdx A dy A dr.

Hence, from ((11.4.18)) for n = 1, m = 4 Siegel’s volume element ({11.2.7)) comes out as
dUSie = (det(E — XtX)_m/2 H H dfbkl,
k=1 I=1
== (rE)trdx Ady A dr,
_dx ANdy Ndr

r3 ’

(16.18.9)
i.e., exactly the standard volume element dvy+ for the hyperbolic three-space.

Similarly, for A : SLy(C) — SO(3,1) and the map ¥ : H" — D3;, we have

—|z)*+ 1+ r? 2rr 2yr 4|22 -1
—2y 2r 2y
—2x 2r 2x

—|z2 = 1+72)/(2r) 2yr 2zr r*+2)2+1

Ap = A(gp) = (1/2r)

and
r?+ 2> =1 x
Xp="b-d"" = 2y (1/2)= |22 |, E=r+2+¢y*+1
21‘ x3
We get

dxy A dwy A das = (4r /2 dz A dy A dr,
det(Es — Xp'Xp) = 4r°=72,

hence, for dvg;. = (det(Es — Xp'Xp))2dz; A dzy A drs again

dz A dy Ad
(16.18.10) U dg, = % — dug+
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iii) For A : SLy(R)?> — SO(2,2) = G and the map ¥ : H> — Dy, with z = (21, 20) €
H?, ¢, = VY1Yz2, @2 = \/y1/y2 we have from (11.3.3)
(16.18.11)

Az) = (é g) ca

o+ 1/ +xime/q —2ao+21/0c —x2g2 — 1 /92 1 — 1/qn — v122/ (0
—(1/2) (=21 +22)/qn g2 +1/q —q2+ 1/ (z1 —22) /1
(1 4+ 22)/q1 —q2+1/q2 G+ 1/¢ —(21 4+ 22)/q1

G —1/q+mm2/qn T2 +71/qa T2qa+ 1/ @+ 1/ — 2132/

We have ¢ = detD = (1/(4y192))&, € := ((|z1* + 1)y2 + (|22)* + 1)y1), and, hence, from
(11.3.5) we get the map ¥ : H* — Dy 5

H?*> 2= (2,2)~ Z=BD™'

e (o Xt m) (P D (-
(Iz1]? = Dy2 — (|22 = D 2(z1y2 — v211)
b
= <i d) S ID)Q’Q.
With § = ad — bec = _(|zll2+1)y2+(‘z2|2+1)y1, we have

(Iz1 P41 g2+ (22 P+ 1)y
A=det(E-2'Z)=1—a*> -0~ —d* +6°
= 2'yiya/ (|2 + D2 + (|22 + Dyn)* = ¢
and
da NdbAdeNdd = 269%93/(’7«’1‘2 + 1)ys + (’ZZP + 1)91)4 dzy Ndyr A dza A dys.

Hence, for our case, Siegel’s formula (11.2.7)) shows up to the factor 1/4 the usual volume
element for H?

(16.18.12) U dvgie = (1/(4yty3)) dwy A dyy A dog A dys = (1/4)dvge.
Similary to (16.18.11]), we have
(16.18.13)

A(z) !t = (él g) €G

l+zime +11y2 —x1 + T2 —21 — 22 1 — 2172 — Y12
_ (1/<2q1>> _(xl - $2)y2 U1 ‘1‘92 Y1 — Y2 (zl - l‘2)y2
(21 + x2)y2 Y1 — Yo Y1+ Y2 (21 + x2)y2

14+xi2o — 1y —11+22 —21 — 22 1 — 2122 + 1192

9 .
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16.19. Summary. using the embeddings ([16.18.2)) we realize the injections from ((16.18.3])

(16.19.1)

| , 1 0 0
Dlg > @12(2) = W(|Z| — 1,21‘) —> W <|Z|2 1 2$)) € ]D)QQ,
1 —2xy 1 —2xy 0
Do 3 W) = Fmg (_x2 Tty 1) SR (_xz -1 0) € D2z,
] r?+ 2> -1 1 r?+z2=1 0
Dgl > \Ilgl(P) = # 2y — ﬁ 2y 0 € ]Dgz,
r2+|z]2+1 9 r24+|z]2+1 90 0
1 2(z1y2 + 221) (lz1* = Dy2 + (|22 = D
Dyy 5 U S
23 Pnlan ) = g (—<|zl|2 ~ g+ (12— Dy 2rys — o)
1 0 0
g 2(z1y2 + 211) (J21]? = Dya + (22> = Dy1 | € Dy,
T \—(zl = Dy + (|22 = Dw 2(x1y2 — T291)
1 2] ](ZEl + 1’3) + (I] — 1)(y1 —+ yg)
D3o 5 Waa(21, 22, 23) = ) (yi —ys) (LT + 1) + (z1 — x3)] 2(yhrs — 21Y3)
2y2(II + 1) =+ 21‘2[ 2y2($1 + 1‘3) — 2$2(y1 + y3)

with Z = (|21)2 + Dz + (|22 + Dy1, D = (y1 +y3)(IT + 1) + (21 + 23)1, and
1’ = yiys — Y3, CF = maxy — 25, 1 = w3y1 — 2x0ys + 11ys, [T =1 — ¢2.

In particular, we get

(16.19.2)
1 2(z1y3 + 231) yi(lzs> = 1) + ys(lza* = 1)
D3o 3 Ws9(21,0,23) = B =11 (|zs]? = 1) + ys(|z)* — 1) 2(y173 — 11Y3)
0 0

with D = y1 (|22 + 1) + ys(| 212 + 1).

16.20. Remark. This is very near to what one would expect from the embedding of Dy
in D3, given above (the zero-line has the wrong place). This can be cured by changing the
embedding above of SO(2,2) into SO(3,2) to

A B

(16.20.1) $0(2,2) (g‘ g) 1 1 |esoe2
¢ D
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Done this, one has the following picture of our orthogonal world

(16.20.2)
H2 H2 HT
SL2<OF+) Sp,(Z) SL2(OF_)
SLy(R)? J Sp,(R) SL,(C)
L(Q4) IN(®) N(Q-)
SO(2,2)¢ SO(3,2) ’SO(3,1)
D¢ D39 ’D3y
Hence, with
aq b1
J:SL(2R) x SL2.R) = Sp(2 ), (gu.g0) | P
1 1
(&) dg
21 R9
and Z = ( ) , from ({16.19.1)) one has maps
Z9 23
(16.20.3) H? > (23,2)) ————— Z € H, P = (z,y,r) € H".
W (23, 21) Uss(Z) W31 (P)

The square on the left hand side is commutative, while we have not found a nice formula
for a map from H* to Hy resp. from SLy(C) to Sp,y(R).
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16.21. . Trying to find some, we attempted the following: We have from (11.4.12))

(IzP+1+7%)/(2r) =y (r?—]2>=1)/(2r)
Algp) = Z: b :Z; € S0(3,1)
Iz =1+72)/(2r) = y (2> +1)/(2r)

ap Ty oy

o x/r 1 —z/r
y/r 1 —y/r
51 Tr vy 54
and this nor as
o Ty oy ap Ty Qy
x/r 1 —x/r x/r 1 —x/r
y/r 1 —y/r neither as | y/r 1 —y/r
o T Yy 04 1
1 o Ty 04
fits into an element ((16.18.5)) from SO(3,2)
a1 —as+es Qs — a4 as az + aq a1 +as —e;
—bs+ds by—by+dy by by+0by—dy bs — ds
Alg.) = (1/2) 2 2¢y 2¢5

—bs —ds by—by—dy by bo+bys+dy bs + ds
a; — as — €5 A9 — Ay as Qg + ay a1 + as + es

16.22. Above in ([16.3.1)) we treated the Lie algebra of SO(3,2). It is isomorphic to the Lie
algebra of G = Sp(2,R) and we discuss this here:

One has
G={9=(48),"AD-"'CB=E,'CA="AC,'"DB ="'BD},
K={g=(4%1%):(A+iB) e U@2)},
LieG=g=sp(2,R)={X=(48),A=-"D,B="B,C="'C e M(2,R)}
=t+p,
t={X=(A8),A=D=-'"D,B="B=-C=-'Ce M(2,R)},
(16.22.1)  p={X=(48),A="'"A=-"D=-D,B="B=C="'Ce M(2,R),}.

We take as basis for €

0 1
(16.22.2) K = ( é) Ky = ( at )
0-100 -1



and for p

1 0
A1:< 071 )7A2:< 10 )7
0 -1
0010 0
R ]
0 0100
1 1 0
(16.22.3) G3:< ! ),G4: (1 _1).
1 0 —-10

16.23. A way to realize the isomorphism between sp(2,R) and s0(3,2) is hidden in the
problems in [Kn] p.208. We propose to proceed as follows.

Here (clearly going back to Siegel [S3|[S4] and as in [GN]), we realize V = R’ as the space
Y of skew-symmetric matrices

(16.23.1) M = M(u) = (‘}g}’ - ;] J> € My(R)
with
(16.23.2) X = Zz Zi) J = (_01 (1)) € My(R).

The symplectic group G = Sp(2, R) acts (transitively) on V via

(16.23.3) (9, M(u)) — gM(u)'g = M(A(g)u) =: M(u)

preserving the quadratic form ¢ = (1/2)* uQu = u3 — ugtiy — urus. As usual, this leads
to a homomorphism Sp(2,R) — G where g € G is mapped to the matrix A( ) with

~ A B
;L : B :
u = A(g)u. With g = (C’ D) , this leads to
gM (u)'g =
(W AJ'A+ BJIX'A+ AXJ'B —usBJ'B  wAJ'C + BJX'C + AXJ'D —uzBJ'D
- \wCJ'A+ DJX'A+ CXJ'B—usDJ'B wCJ'C+ DJX'C+CXJ'D—usDJ'D

(16.23.4)
(uyJ X'
C\JX kg )
If we apply this to the element g = exptX from the 1-parameter subgroup of Sp(2,R)

generated by an X € sp(2,R), we come to an element A(g) € SO(Q) and via conjugation
with C' we get C7'A(g)C = A(g) € SO(3,2), leading to an element ¢(X) € s0(3,2).
10

As an example, we take X = Gy = [ ! 1], get
0 -10

cs
=exptGy = (SC c —s) , C':=cht,S :=sht
0



and, using C? — S? =1,

1 0 1 0
- c2 20S  S? _ 1
A(g) = CS 2482 CS dA(g) =C1A(g)C = 2482 208 )
(9) <0 CS G245 Cs 1) , and A(g) (9) (O ohs s, 1)

Remembering C' := cht, S := sht, and deriving, with %(Sh t)|i=0 = 0, we get

0 0
( % ) =2X3y 650(3,2).

0 0

NOO

In the same way, we get the map ¢ : sp(2) — s0(3,2) given by

(16235) K1 — X23, A1 — X15 + X24, Gg — —2X35,
Ky = =Xy — Xys, Ag = X5 — Xog, Ga> 2X3.
K3 — Xi2 — Xus, Gi— X4 — Xos,
Ky~ —Xi3, Gy = Xig + Xos.
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